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Abstract. In the last 10 years, detection of Alzheimer's disease based
on brain T1-weighted Magnetic Resonance Imaging (MRI) have been a
highly sought goal in the neuroscienti�c community. However, the meth-
ods were assessed on di�erent datasets and not always publicly available
ones making reproducibility and validation impossible. Here, we evalu-
ated �ve deformation-based features (Jacobian determinant and trace,
modulated grey matter (GM), deformation vector norm and geodesic
anisotropy) and three feature selection processes (Pearson correlation,
Bhattacharyya distance and Welch's t-test) using the 416 subjects (316
controls and 100 patients) from the OASIS database. Our objective was
to correctly discriminate between controls (CN) and Alzheimer's disease
patients (AD). For this task we used a fully and non-fully independent
strati�ed 10-fold cross-validation and linear SVM. Our best mean detec-
tion result was 79.43% of precision, 96.67% of sensitivity and 97.37 of
area under the ROC curve. We also show discriminant voxel site locations
found with each measure.

1 Introduction

Alzheimer's Disease (AD) is a neurodegenerative disorder which is one of the
most common cause of dementia in old people. Due to the socioeconomic impor-
tance of the disease in occidental countries there is a strong international e�ort
focus in AD. The diagnosis of AD can be done after the exclusion of other forms
of dementia but a de�nitive diagnosis can only be made after a post-mortem
study of the brain tissue. Antemortem approaches for diagnosis of AD are under
development, but they require neuropathologic con�rmation of the characteris-
tic amyloid plaques and neuro�brillary tangles [23]. Therefore, the development
of automated detection procedures based in MRI and other medical imaging
techniques [7] is of high interest. In the early stages of AD brain atrophy may
be subtle and spatially distributed over many brain regions [16,8,5,2], including
the entorhinal cortex, the hippocampus, lateral and inferior temporal structures,
anterior and posterior cingulate.
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A similar study [27] obtained 83% of accuracy using similar approaches to
detect subjects with mild cognitive impairment. Although their results can not
be reproduced, this work con�rms that the approach that we follow is a promis-
ing area of research. Recently [6], a study with 509 subjects drawn from the
public available ADNI database achieved high accuracies up to 81% of sensitiv-
ity and 95% of speci�city using di�erent feature selection approaches based on
tissue segmentations, cortical and hippocampal measures and a hold out method
for validation. In [30] they combined regional segmentation and a manual hip-
pocampus delineation features from AddNeuroMed were used for detection of
AD patients with a sensitivity of 90% and a speci�city of 94% using orthogonal
partial least squares (OLPS).

Machine learning methods have become very popular to classify functional or
structural brain images to discriminate them into two classes: normal or a spe-
ci�c neurodegenerative disorder [3]. There are di�erent ways to extract features
from MRI for SVM classi�cation: based on morphometric methods [24,7,13],
based on ROIs (region of interest) [21] or GM voxels in automated segmenta-
tion images [17]. Work has also been reported on the selection of a small set
of the most informative features for classi�cation, such as the SVM-Recursive
Feature Elimination [9], the selection based on statistical tests [21], the wavelet
decomposition of the RAVENS maps [19], among others. It is important to note
that these techniques are aimed to help clinicians with more statistical evidence
for the diagnosis, it is not intended to substitute any other existing diagnosis
procedure.

In this paper we use deformation-based features to guide the feature extrac-
tion process analyzing displacement vectors resulting from non-linear registration
procedures with high number of degrees of freedom. Each subject in the dataset
is registered to a standard template and scalar measurements are calculated from
the resulting displacement �elds. These features are then used in a �lter selec-
tion process to localize the most discriminant voxel sites of the dataset. Using
these �ndings, sets for each measure and distance are created for further cross-
validation classi�cation tests. We report the results of Support Vector Machine
(SVM) with linear kernel performing the classi�cation task.

Section Materials and Methods gives a description of the subjects selected
for the study, the image processing, feature extraction details and the classi�er
system. Section Results gives our classi�cation performance results and section
Conclusions gives the conclusions of this work and further research suggestions.

2 Materials and Methods

The procedure we followed in this work was: (1) nonlinearly register each subject
to the MNI template, (2) calculate 5 measures using the displacement �elds and
GM volume estimation, (3) for each measure calculate 3 distance metrics to
separate patients and controls and �nally (4) for each distance metric, threshold
it and create feature vectors.



In this study we used all the subjects of the �rst Open Access Series of Imag-
ing Studies (OASIS) [22]. These subjects were selected from a larger database of
individuals who had participated in MRI studies at Washington University, they
were all right-handed and older adults had a recent clinical evaluation. Older
subjects with and without dementia were obtained from the longitudinal pool of
the Washington University Alzheimer Disease Research Center (ADRC). This
release of OASIS consists of a cross-sectional collection of 416 male (119 controls
and 41 patients) and female (197 controls and 59 patients) subjects aged 18 to
96 years (218 aged 18 to 59 years and 198 subjects aged 60 to 96 years). Further
demographic and image acquisition details can be found in [22]. The database
includes at least 3 raw anatomical MP-RAGE images from each subject as well
as post-processed images: (a) corrected for interscan head movement and rigidly
aligned to the Talairach and Tournoux space [26], (b) transformed to a template
with a 12-parameter a�ne registration and merged into a 1-mm isotropic image,
(c) skull-stripped and corrected for intensity inhomogeneity and (d) segmented
by tissue type. To carry out our experiment we used the volumes from (c).

The spatial normalization of each subject of the database has been performed
with FSL FNIRT [25]. A four step registration process with increasing resolution
and a scaled conjugate gradient minimization method has been performed using
the default parameters and the MNI152 brain template. A visual check has been
performed for all images in every processing step carried out in this experiment.

2.1 Voxel measures

Five measures were tested in this study: deformation Jacobian determinant and
trace, displacement norm, geodesic anisotropy of the deformation tensor and
modulated GM.

In Tensor-based Morphometry (TBM) a template T is nonlinearly regis-
tered to a subject S, and a displacement vector −→u (−→r ) is obtained such that
T (−→r −−→u ) corresponds with S (−→r ), where −→r denotes the voxel location. The
Jacobian matrix in this case describes the velocity of the deformation procedure
in the neighboring area of each voxel and it is de�ned by

Ji =

 ∂(x−ux)/∂x ∂(x−ux)/∂y ∂(x−ux)/∂z
∂(y−uy)/∂x ∂(y−uy)/∂y ∂(y−uy)/∂z
∂(z−uz)/∂x ∂(z−uz)/∂y ∂(z−uz)/∂z

 . (1)

For all the subjects these matrices are compared in a General Linear Model
procedure to �nd group di�erence e�ects. Here instead we use the Jacobian ma-
trices to �nd relevant features for disease detection in a supervised classi�cation
algorithm.

Using the deformation Jacobian matrices we de�ne �ve measures which will
be used as features in our feature extraction procedures.

The determinant of the Jacobian matrix is the most commonly used scalar
measure of deformation for TBM analyses [20]. The determinant of the Jaco-
bian matrix Ji is commonly used to analyze the distortion necessary to deform
the images into agreement. A value det (Ji) > 1 implies that the neighborhood



adjacent to the displacement vector in voxel i was stretched to match the tem-
plate (i.e., local volumetric expansion), while det (Ji) < 1 is associated with local
shrinkage. These features are denoted as jacs in the following section.

We also used the trace of the Jacobian matrix of the displacement �eld,
denoted as trace in the next sections.

The displacement vector magnitudes de�ned as mi =
√
x2i + y2i + z2i is de-

noted as norms in the sections bellow.

A modulated GM volume has been calculated for each subject, we used FSL
FAST [25] to obtain an estimation of the GM partial volume map and then
modulated it by multiplying to the Jacobian determinant. We denoted these
features as modgm further on.

Geodesic anisotropy (GA) measures the geodesic distance between the Green

strain tensors de�ned as Si =
(
JTi Ji

)1/2
[20] on the tangent plane at the origin of

the symmetric positive-de�nite tensor manifold [11]. We denoted these features
as geodan in the following sections.

2.2 Feature Selection

We localized discriminant voxel sites using three methods: Pearson's correlation
(PC), Bhattacharyya distance (BD) and Welch's t-test (WT).

Considering each voxel site independently, we build two vectors pj and qj
(only one in case of PC) composed of the voxel intensities at the j-th voxel site
across control subjects and patients (all the subjects in PC) in the training set
(fully independent cross-validation) or in the whole dataset (non-fully indepen-
dent cross-validation). Once the distance measure is obtained for each voxel site
we calculate a mask that indicates voxel sites above a threshold of robust range
of 95%. This mask is used to extract independent sets of feature vectors from
the subjects for classi�cation.

Pearson's product-moment correlation coe�cient (PC) PC [4] (typi-
cally denoted by r) is a measure of the correlation (linear dependence) between
two variables x and y, resulting in a value between +1 and −1 inclusive. It
is widely used in statistics as a measure of the strength of linear dependence
between two variables. It was developed by Karl Pearson from a similar but
slightly di�erent idea introduced by Francis Galton [12]. The correlation coe�-
cient is sometimes called "Pearson's r."

Then for each voxel site we calculated abs (r) as a discriminant metric for
feature selection.

Bhattacharyya distance (BD) BD [1] is a measure of similarity between
two discrete or continuous probability distributions. Assuming that we have two
univariate Gaussian distributions (controls and patients) for each voxel site, the
absolute Bhattacharyya distance [15] was calculated between both groups.



Wech's t-test (WT) WT [29] is an adaptation of Student's t-test for the case
when comparing two samples that possibly have unequal variances. We computed
the absolute value of the WT between both groups for feature selection.

A 10-fold cross-validation was carried out to calculate the results, we strat-
i�ed training and test set in order to have proportional number of controls and
patients in each random disjoint set.

2.3 Support Vector Machines

The Support Vector Machines (SVMs) have attracted attention from the pattern
recognition community [6] owing to a number of theoretical and computational
merits derived from [28]. SVM separates a given set of binary labeled training
data with a hyperplane that is maximally distant from the two classes (known
as the maximal margin hyperplane). The objective is to build a discriminating
function using training data that will correctly classify new examples (x, y).
When no linear separation of the training data is possible, SVMs can work
e�ectively in combination with kernel techniques using the kernel trick, so that
the hyperplane de�ning the SVMs corresponds to a nonlinear decision boundary
in the input space that is mapped to a linearized higher- dimensional space [28].
In this way the decision function can be expressed in terms of the support vectors
only:

f (x) = sign
(∑

αiyiK (si,x) + w0

)
where K(., .) is a kernel function, αi is a weight constant derived from the

SVM process and the si are the support vectors [28].
The Support Vector Machine (SVM) [28] algorithm used for this study is

included in the SVM-Perf (http://svmlight.joachims.org/svm_perf.html)
software package. The implementation is described in detail in [14]. Given train-
ing vectors xi ∈ Rn, i = 1, . . . , l of the subject features of the two classes, and
a vector y ∈ Rl such that yi ∈ {−1, 1} labels each subject with its class, in
our case, for example, patients were labeled as -1 and control subject as 1. To
construct a classi�er, the SVM algorithm tries to maximize the classi�cation
margin. To this end it solves the following optimization problem:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subject to yi(w
Tφ(xi)+ b) ≥ (1− ξi), ξi ≥ 0, i = 1, 2, . . . , n. The dual optimiza-

tion problem is

min
α

1

2
αTQα− eTα,

subject to yTα = 0, 0 ≤ αi ≤ C, i = 1, . . . , l, where e is the vector of all ones,
C > 0 is the upper bound on the error, Q is an l×l positive semi-de�nite matrix,



Qij ≡ yiyjK(xi,xj), and K(xi,xj) ≡ φ(xi)
Tφ(xj) is the kernel function that

describes the behavior of the support vectors. Here, the training vectors xi are
mapped into a higher (maybe in�nite) dimensional space by the function φ(xi).
C is a regularization parameter used to balance the model complexity and the
training error.

The kernel function chosen results in di�erent kinds of SVM with di�erent
performance levels, and the choice of the appropriate kernel for a speci�c ap-
plication is a di�cult task. In this study we only tested the linear kernel for
simpli�cation. The linear kernel function is de�ned as K(xi,xj) = 1 + xTi xj .

3 Results

In this section we present the linear kernel SVMs performance using the full 10-
fold cross-validation. In table 1 we report accuracy ((TP + TN) /N), precision
(TP/ (TP + FP )), sensitivity (TP/ (TP + FN)), F1-score (Precision × Sensitivity)
and area under the ROC curve (AUC) [10,14] for each combination of defor-
mation measure and feature selection method. As the accuracy is not a good
measure for non balanced datasets, i.e., has no equal number of patients and
controls, we will take into account the rest of performance measures.

The results obtained with jacs and modgm are signi�cantly worse than the
other measures in all distances. The best performance is the trace using the
Bhatacharyya distance with 97.37 of AUC, although the experiments with the
same measure and the other distances give very good results as well. The next
measures in performance are norms and �nally geodan.

Accuracy Precision Sensitivity F1-Score AUC
jacs 76.02 (0.91) 50.76 (1.70) 58.33 (3.73) 54.22 (2.11) 80.32 (1.53)
norms 88.10 (2.75) 87.14 (6.12) 58.33 (8.98) 69.67 (8.48) 94.79 (2.53)

PC modgm 88.10 (0.00) 81.74 (3.96) 65.00 (5.00) 72.14 (1.55) 94.27 (0.43)
trace 89.43 (2.70) 74.55 (5.77) 86.67 (4.71) 80.07 (4.81) 96.67 (0.44)
geodan 92.07 (1.12) 95.83 (5.89) 70.00 (0.00) 80.83 (2.15) 93.49 (1.04)

jacs 79.27 (1.22) 56.44 (1.89) 65.00 (5.00) 60.39 (3.25) 82.36 (1.54)
norms 88.89 (1.77) 88.09 (5.33) 61.67 (3.73) 72.55 (4.38) 94.12 (1.48)

BD modgm 81.74 (1.77) 67.94 (4.14) 43.33 (7.45) 52.74 (6.93) 91.67 (1.08)
trace 93.09 (2.60) 79.43 (4.15) 96.67 (7.45) 87.14 (5.21) 97.37 (0.29)
geodan 84.92 (1.78) 72.62 (6.94) 60.00 (0.00) 65.57 (2.74) 90.37 (0.99)

jacs 84.15 (3.07) 67.36 (6.67) 68.33 (6.87) 67.76 (6.23) 91.67 (0.39)
norms 88.50 (0.89) 79.40 (3.62) 70.00 (0.00) 74.36 (1.53) 94.95 (0.87)

WT modgm 82.93 (0.89) 65.98 (1.55) 58.33 (3.73) 61.89 (2.83) 93.54 (0.50)
trace 89.83 (0.91) 74.62 (0.85) 88.33 (3.73) 80.88 (2.10) 95.00 (0.52)
geodan 84.92 (1.78) 69.42 (4.85) 66.67 (7.45) 67.64 (4.61) 94.32 (0.55)

Table 1. Mean (standard deviation) of Accuracy, Precision, Sensitivity, F1-Score and
ROC area of the fully independent 10-fold cross-validation classi�cation results. Note
that the cross-validation population subsets were all the same for all the experiments.



3.1 Comparing full and partial cross-validation

One of our concerns was the e�ect on the results of the fully independent cross-
validation method against non-fully independent cross-validation method. In the
�rst, the voxel selection mask was created using the whole dataset, leading to
a double dipped analysis often used in research studies and sometimes di�cult
to detect in the articles [18]. In table 2 we show the classi�cation results for the
non-fully independent cross-validation method, the improvements are signi�cant
in most cases.

Accuracy Precision Sensitivity F1-Score AUC
jacs 75.20 (1.68) 49.48 (2.85) 60.00 (0.00) 54.19 (1.70) 79.78 (1.23)
norms 87.70 (2.14) 85.06 (2.35) 58.33 (8.98) 68.91 (7.45) 93.59 (3.16)

PC modgm 88.10 (0.00) 77.78 (0.00) 70.00 (0.00) 73.68 (0.00) 95.37 (0.61)
trace 89.02 (1.86) 72.65 (3.40) 88.33 (3.73) 79.71 (3.38) 96.34 (0.61)
geodan 90.48 (1.37) 87.96 (6.45) 70.00 (0.00) 77.86 (2.51) 93.12 (0.94)

jacs 79.68 (1.15) 57.07 (1.78) 66.67 (4.71) 61.47 (3.06) 81.13 (1.50)
norms 90.08 (0.89) 87.20 (0.67) 68.33 (3.73) 76.58 (2.68) 94.48 (1.68)

BD modgm 86.91 (1.82) 81.54 (5.98) 58.33 (3.73) 67.98 (4.34) 95.94 (0.31)
trace 92.27 (2.60) 77.44 (4.62) 96.67 (7.45) 85.88 (5.06) 97.26 (0.25)
geodan 84.92 (1.77) 79.16 (6.36) 50.00 (5.77) 61.11 (5.20) 89.84 (1.03)

jacs 86.59 (1.86) 72.96 (4.24) 71.67 (3.73) 72.28 (3.70) 92.63 (1.13)
norms 86.51 (1.13) 75.93 (1.31) 63.33 (4.71) 69.01 (3.30) 94.74 (0.49)

WT modgm 85.71 (0.00) 72.50 (2.50) 65.00 (5.00) 68.34 (1.66) 94.84 (0.56)
trace 90.65 (0.91) 75.32 (0.72) 91.67 (3.73) 82.68 (1.92) 95.59 (0.24)
geodan 88.10 (0.00) 77.78 (0.00) 70.00 (0.00) 73.68 (0.00) 95.00 (0.48)

Table 2. Mean (standard deviation) of Accuracy, Precision, Sensitivity, F1-Score and
ROC area of the non-fully independent 10-fold cross-validation classi�cation results.
Note that the cross-validation population subsets were all the same for all the experi-
ments.

3.2 Location of discriminant voxels

The average location of the voxel sites that remained after the threshold are
listed in this section. In 1 we show a few slices of the MNI152 template with
an overlay with the average voxel sites across the full cross-validation training
sets that survived the 95% range threshold. We also checked the locations of the
thresholded voxel sites in the training sets separately using probabilistic atlases
(MNI structural atlas and the Harvard-Oxford cortical and subcortical atlas).
The regions from the di�erent experiments are all within similar brain areas:
frontal and parietal lobes, cerebellum, temporal and occipital lobes, frontal pole,
lateral occipital cortex, superior division, precentral gyrus, postcentral gyrus and
hippocampus.



Fig. 1. The average voxel sites across the full cross-validation training sets voxel sites
which passed the 95% robust range threshold in the PC (left), BD (middle) and WT
(right) of the trace measure.

4 Conclusions

In this paper we report classi�cation results on the application of a feature ex-
traction process based on the deformation vectors obtained from non-linear reg-
istration processes. The sample is the complete cross-sectional OASIS database.
From the displacement vector we calculated 5 scalar measures and tested them
against 3 di�erent methods to measure a distance between both groups. Results
show that the deformation vectors can be very useful in full brain detection of
AD patients and that the common measures as jacobian determinants (jacs) and
modulated GM (modgm) do not provide the best discrimination results, at least
in this case. Overall, taking into account the AUC, the best displacement vector
measure was the trace and the best distance measure was the Welch's t-test.
We are working on the application of non-linear SVM using RBF kernels, and
extending the experimental exploration to other classi�ers and combinations.
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