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1 Description
The objective is mobile robot vision based localization using associative mem-
ories. The map stores a path previously followed by the robot in the form of
several view “landmarks” representing points of interest in the path. Those
landmarks will identify a section of the path, dividing it in a sequence of lo-
cations without gaps between them. These landmarks are stored as gray-scale
patterns in a Kosko Subsethood Fuzzy Associative Memory (KS-FAM) [1]. Lo-
calization will be performed by feeding the KS-FAM with the images that the
robot acquires in its movement, obtaining from it the recognized position.

2 Experiment details
For the experiment, the optical image database already recorded is used [5, 4,
6, 7, 2, 3]. Results shown here are obtained from the first recorded path.

The code for the KS-FAM was provided by prof. Peter Sussner1.
Available example uses of KS-FAM are as Auto-Associative memories. In this

experiment, the Auto-Associative type has the additional problem of estimating
which position is the one recalled by the memory. Visual examination of results
with both Auto-Associative and Hetero-Associative memories seemed to give
very similar results. So, in a first approach, Hetero-Associative memories are
used and after evaluating their results, the same experiment will be performed
with Auto-Associative memories to compare their performance.

2.1 Hetero-Associative case
In the pairs (x,y), x will be the pattern (gray-scale image corresponding to the
landmark that is going to be stored) and y will be a vector of size n = # of
patterns to store. The vector will be composed of 0’s, except for one 1 in the
vector position corresponding to the map position of the stored pattern. e.g:

1http://www.ehu.es/ccwintco/groupware/webdav.php/apps/phpbrain/142/KSFAM%20-
%20Code.rar
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Being X = {x1, x2, x3, x4, x5} the patterns that we want to encode in the KS-
FAM. The pair y2 of pattern x2 (second pattern in the path) will be y2 = [01000].
Y (the matrix of outputs) will be then (vectors stored column-wise):

Y =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

which corresponds to an identity matrix of size nxn.
Initially, a simpler approach was used, being yi a scalar identifying the po-

sition (i.e. ’2’ for the second position instead of [01000]). However, results
obtained with that method were much worse.

For validation purposes, the same ground division based on the odometry
data of previous experiments has been used.

3 Implementation details

3.1 Hetero-Associative case
First, the image database is transformed to gray-scale [0,1], as is done in the
sample code provided by Sussner.

f o r i = 1 : nWalks
f o r j = 1 : tamsBD( i ) ;

bdImagenes { i }( j , : ) = mat2gray ( bdImagenes { i }( j , : ) ) ;
end

end

The patterns matrix is built using the images of the selected landmark po-
sitions from the first walk.

X = ze r o s ( tamVec , n S i t i o s ) ; % r e s e r v o e s p a c i o para mat r i z de pa t r on e s
% obtengo l o s pa t r on e s ( imagenes de l o s landmaks )
f o r i = 1 : n S i t i o s

X ( : , i ) = bdImagenes {1}( s i t i o s ( i ) , : ) ;
end

Output patterns matrix is built as the identity matrix.

Y = eye ( n S i t i o s ) ; % cada v e c t o r t end rá un 1 en l a p o s i c i ó n c o r r e s p o n d i e n t e

Mxz and Wzy memories are built using the input and output pattern matri-
ces.
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Mxz = BoxMax2 ( eye ( n S i t i o s ) , −1∗X’ ,− I n f ) ;
Wzy = BoxMin2 (Y, −1∗eye ( n S i t i o s ) , I n f ) ;

For each test walk i, the images are put in an input matrix and feed to the
memories. Some of the code is redundant or unnecessary, but was done like that
to make sure that it was being done correctly.

Xin = z e r o s ( tamVec , tamsBD( i ) ) ;
f o r j = 1 : tamsBD( i )

Xin ( : , j ) = bdImagenes { i }( j , : ) ;
end
[ Yout , u ] = AMM_Nova( Xin , Mxz ,Wzy ) ;

Output vectors are translated to scalars identifying the positions (’find’ re-
turns the nonzero position in the vector) .

posLoc ( j ) = f i n d ( Yout ( : , j ) ) ;

Success rate is calculated for each walk (i+1 because the first walk was used
for training) using the path division based on odometry.

a c i e r t o s ( i ) = sum( posLoc { i } ( : ) == gruposOdo{ i +1}( : ) )/ tamsBD( i +1);

3.2 Auto-Associative case
First, the image database is transformed to gray-scale [0,1], as is done in the
sample code provided by Sussner.

f o r i = 1 : nWalks
f o r j = 1 : tamsBD( i ) ;

bdImagenes { i }( j , : ) = mat2gray ( bdImagenes { i }( j , : ) ) ;
end

end

The patterns matrix is built using the images of the selected landmark po-
sitions from the first walk.

X = ze r o s ( tamVec , n S i t i o s ) ; % r e s e r v o e s p a c i o para mat r i z de pa t r on e s
% obtengo l o s pa t r on e s ( imagenes de l o s landmaks )
f o r i = 1 : n S i t i o s

X ( : , i ) = bdImagenes {1}( s i t i o s ( i ) , : ) ;
end

Output patterns matrix is the same than the patterns matrix.
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Ya = X; % s a l i d a en e l caso de l a s a u t o a s o c i a t i v a s

Mxz and Wzya memories are built using the input and output pattern ma-
trices.

Mxz = BoxMax2 ( eye ( n S i t i o s ) , −1∗X’ ,− I n f ) ;
Wzya = BoxMin2 (Ya , −1∗eye ( n S i t i o s ) , I n f ) ;

For each test walk i, the images are put in an input matrix and feed to the
memories. Some of the code is redundant or unnecessary, but was done like that
to make sure that it was being done correctly.

Xin = z e r o s ( tamVec , tamsBD( i ) ) ;
f o r j = 1 : tamsBD( i )

Xin ( : , j ) = bdImagenes { i }( j , : ) ;
end
[ Yout , u ] = AMM_Nova( Xin , Mxz , Wzya ) ;

The obtained output is compared with the stored patterns. The recognized
position is the closest pattern. Since the memory always retrieves one of the
stored patterns, the lowest difference will be equal to 0.

f o r i = 2 : nWalks
% Compruebo a que p o s i c i ó n co r r e s ponde cada imagen d e v u e l t a
outWalk = grupos { i −1};
f o r j = 1 : s i z e ( outWalk , 2 )

% Compruebo cua l e s e l landmark mas ce r cano
d i f sA c = z e r o s ( tamVec , n S i t i o s ) ;
f o r k = 1 : n S i t i o s

d i f sA c ( : , k ) = X( : , k ) − outWalk ( : , j ) ; %d i s t a n c i a e n t r e e l landmark k y l a imagen d e v u e l t a para esa p o s i c i ó n
end
[ ordenados , orden ] = s o r t ( sum( abs ( d i f sA c ) ) ) ; %sumo d i f e r e n c i a s y ordeno
posLoc { i −1}( j ) = orden ( 1 ) ; %me quedo con e l menor

end
end

Success rate is calculated for each walk (i+1 because the first walk was used
for training) using the path division based on odometry.

a c i e r t o s ( i ) = sum( posLoc { i } ( : ) == gruposOdo{ i +1}( : ) )/ tamsBD( i +1);
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Image size Walk 2 Walk 3 Walk 4 Walk 5 Walk 6 Mean
242x314 0.3221 0.3812 0.2883 0.3264 0.246 0.3128
121x157 0.2969 0.3193 0.2909 0.3107 0.2086 0.28528
61x79 0.4678 0.4629 0.4494 0.389 0.4171 0.43724

Table 2: Position recognition success rates obtained using Auto-Associative KS-
FAM, with images of different sizes.

4 Results
Obtained results are rather poor, as can be appreciated in tables 1 and 2.
Surprisingly, the best results were obtained using the smallest images. Also,
exactly the same results were obtained with both Hetero-Associative and Auto-
Associative memories. The computation times of the Auto-Associative memo-
ries are much higher (figures 1 and 2) with no appreciable improvement in the
obtained results (Note: the higher computation time of the 2nd walk is probably
due the program reserving memory for the first time for the Xin variable).

Image size Walk 2 Walk 3 Walk 4 Walk 5 Walk 6 Mean
242x314 0.3221 0.3812 0.2883 0.3264 0.246 0.3128
121x157 0.2969 0.3193 0.2909 0.3107 0.2086 0.28528
61x79 0.4678 0.4629 0.4494 0.389 0.4171 0.43724

Table 1: Position recognition success rates obtained using Hetero-Associative
KS-FAM, with images of different sizes.
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>> localizacionKSFAM
Creando matr i ce s de entrada y s a l i d a .
Elapsed time i s 0 .003206 seconds .
Calculando Mxz .
Elapsed time i s 0 .632443 seconds .
Calculando Wzy.
Elapsed time i s 0 .004929 seconds .
Calculando l o c a l i z a c i o n walk 2 .
Elapsed time i s 4 .189256 seconds .
Calculando l o c a l i z a c i o n walk 3 .
Elapsed time i s 0 .903991 seconds .
Calculando l o c a l i z a c i o n walk 4 .
Elapsed time i s 0 .968646 seconds .
Calculando l o c a l i z a c i o n walk 5 .
Elapsed time i s 0 .982962 seconds .
Calculando l o c a l i z a c i o n walk 6 .
Elapsed time i s 0 .856521 seconds .

tTota l =

8.5421

Figure 1: Hetero-Associative run with smallest images.
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>> localizacionKSFAMAA
Creando matr i ce s de entrada y s a l i d a .
Elapsed time i s 0 .003120 seconds .
Calculando Mxz .
Elapsed time i s 0 .593087 seconds .
Calculando Wzya .
Elapsed time i s 0 .013334 seconds .
Calculando l o c a l i z a c i o n walk 2 .
Elapsed time i s 7 .779774 seconds .
Calculando l o c a l i z a c i o n walk 3 .
Elapsed time i s 5 .628681 seconds .
Calculando l o c a l i z a c i o n walk 4 .
Elapsed time i s 5 .091582 seconds .
Calculando l o c a l i z a c i o n walk 5 .
Elapsed time i s 5 .044541 seconds .
Calculando l o c a l i z a c i o n walk 6 .
Elapsed time i s 4 .827368 seconds .
Calculando l a po s i c i ón devue l ta .
Elapsed time i s 1 .303573 seconds .

tTota l =

30.2852

Figure 2: Auto-Associative run with smallest images.
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