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Abstract: Diagnostic support for psychiatric disorders is a very interesting goal
because of the lack of biological markers with sufficient sensitivity and specificity
in psychiatry. The approach consists of a feature extraction process based on the
results of Pearson correlation of known measures of white matter integrity obtained
from diffusion weighted images: fractional anisotropy (FA) and mean diffusivity
(MD), followed by a classification step performed by statistical support vector
machines (SVM), different implementations of artificial neural networks (ANN)
and learn vector quantization (LVQ) classifiers. The most discriminant voxels
were found in frontal and temporal white matter. A total of 100% classification
accuracy was achieved in almost every case, although the features extracted from
the FA data yielded the best results. The study has been performed on publicly
available diffusion weighted images of 20 male subjects.
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1. Introduction

There is growing research effort devoted to the development of automated diagnos-
tic support tools that may help clinicians perform their work with greater accuracy
and efficiency. In medicine, diseases are often diagnosed with the aid of biological
markers, including laboratory tests and radiologic imaging. The process of diag-
nosis becomes more difficult, however, when dealing with psychiatric disorders,
in which diagnosis relies primarily on the patient’s self-report of symptoms and
the presence or absence of characteristic behavioral signs. Schizophrenia is a dis-
abling psychiatric disorder characterized by hallucinations, delusions, disordered
thought/speech, disorganized behavior, emotional withdrawal, and functional de-
cline [2]. Currently, diagnosis is made almost exclusively on subjective measures
like self-report, observation, and clinical history.

A large number of magnetic resonance imaging (MRI) morphological studies
have shown subtle brain abnormalities to be present in schizophrenia. Structural

∗A. Savio, M. Termenón, M. Graña are with the Grupo de Inteligencia Computacional (GIC),
Universidad del País Vasco, Spain
J. Charpentier is with the Institut Superieur de BioSciences de Paris (ISBS), ESIEE, Université
Paris-Est, France
A.K. Shinn is with the McLean Hospital, Belmont, Massachusetts; Harvard Medical School,
Boston, Massachusetts, US

c©ICS AS CR 2008 1



A. Savio et al.: Neural classifiers for schizofrenia diagnostic

studies have found enlargement of the lateral ventricles, particularly the tempo-
ral horn of the lateral ventricles [28];[28]; reduced volumes of medial temporal
structures (hippocampus, amygdala, and parahippocampal gyrus) [4, 17, 29], supe-
rior temporal gyrus [17], prefrontal cortex [15, 32], and inferior parietal lobule[27,
14]; and reversal of normal left greater than right volume in male patients with
schizophrenia [24, 12]. In 1984, Wernicke [35] proposed that schizophrenia might in-
volve altered connectivity of distributed brain networks that are diverse in function
and that work in concert to support various cognitive abilities and their constituent
operations. Consistent with the “dysconnectivity hypothesis”, studies have found
correlations between prefrontal and temporal lobe volumes [36, 7] and disruptions
of functional connectivity between frontal and temporal lobes in schizophrenia [23].
These findings strongly point to widespread problems of connectivity in schizophre-
nia.

Diffusion tensor imaging (DTI) is a MRI method that allows more direct inves-
tigation into the integrity of white matter (WM) fibers, and thus into the anatom-
ical connectivity of different brain regions. DTI depends upon the motion of water
molecules to provide structural information in vivo [25, 5], and yields measures
like fractional anisotropy (FA) and mean diffusivity (MD). The most commonly
demonstrated DTI abnormalities in schizophrenia are decreased FA in the unci-
nate fasciculus (a tract connecting temporal and frontal regions and involved in
decision-making, emotions, and episodic memory), the cingulum bundle (a tract
interconnecting limbic regions which involved in attention, emotions, and mem-
ory), and the arcuate fasciulus (a tract connecting language regions) [21]. Lower
anisotropic diffusion within white matter may reflect loss of coherence of WM fiber
tracts, to changes in the number and/or density of interconnecting fiber tracts, or
to changes in myelination [19, 22, 1, 20].

The present paper will focus on the application of machine learning (ML) al-
gorithms for the computer aided diagnosis (CAD) of schizophrenia, on the basis of
feature vectors extracted from DTI measures of WM integrity, FA and MD. This
feature extraction method is based on Pearson correlation, and is simpler than
others found in the literature [13, 11]. These features will be the input for statis-
tical SVM and artificial neural networks (ANN) classifiers. We found literature on
the application of ML algorithms to the discrimination of schizophrenia patients
from healthy subjects. A minimum recognition error of 17,8% using geometry
features and FA of DTI from a database of 36 healthy subjects and 34 patients
with schizophrenia was reported in [34]. A study of the effect of principal compo-
nent analysis (PCA) and discriminant PCA (DPCA) was carried on FA volumes
reaching a minimum one-leave-out validation classification error 20% using Fisher
linear discriminant (FLD) in [9]. Good classification results were also obtained in
structural MRI (sMRI) studies [37, 11].

Section 2. gives a summary of the classification algorithms used for this study.
Section 3. describes the materials and methods in the study: characteristics of
the subjects conforming the database for the study, the acquisition protocol, the
preprocessing steps of the MRI and DTI volumes and the feature extraction process.
Section 4. gives the results of our computational experiments. Section 5. gives our
final comments and conclusions.

2



A. Savio et al.: Neural classifiers for schizofrenia diagnostic

2. Neural Network and Statistical Classification Al-

gorithms

We deal with two class classification problems, given a collection of training/testing
input feature vectors X = {xi ∈ R

n, i = 1, . . . , l} and the corresponding labels
{yi ∈ {−1, 1}, i = 1, . . . , l}, which sometimes can be better denoted in aggregated
form as a binary vector y ∈ {−1, 1}l. The algorithms described below build some
classifier systems based on this data. The simplest algorithm is the 1-nearest neigh-
bor (1-NN) which involves no adaptation and uses all the training data samples.
The classification rule is of the form:

c (x) = yi∗ where i
∗ = arg min

i=1,...,l
{‖x− xi‖} ,

that is, the assigned class is that of the closest training vector. To validate their
generalization power we use ten-fold cross-validation.

2.1 Support Vector Machines

The support vector machine (SVM) [33] approach to build a classifier system from
the given data consists in solving the following optimization problem:

min
w,b,ξ

1

2
w

T
w+ C

l
∑

i=1

ξi, (1)

subject to

yi(w
Tφ(xi) + b) ≥ (1− ξi), ξi ≥ 0, i = 1, 2, . . . , n. (2)

The minimization problem is solved via its dual optimization problem:

min
α

1

2
α

TQα− e
T
α, (3)

subject to

y
T
α = 0, 0 ≤ αi ≤ C, i = 1, . . . , l. (4)

Where e is the vector of all ones, C > 0 is the upper bound on the error, Q
is an l × l positive semidefinite matrix, whose elements are given by the following
expression:

Qij ≡ yiyjK(xi,xj), (5)

where

K(xi,xj) ≡ φ(xi)
Tφ(xj), (6)

is the kernel function that describes the behavior of the support vectors. Here,
training vectors xi are mapped into a higher (maybe infinite) dimensional space by
the function φ(xi). The decision function is:
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sgn(

l
∑

i=1

yiαiK(xi,x) + b). (7)

The regularization parameter C is used to balance the model complexity and
the training error. It was always set to 1 in this case study.

The chosen kernel function results in different kinds of SVM with different per-
formance levels, and the choice of the appropriate kernel for a specific application
is a difficult task. In this study we only needed to use a linear kernel, defined as:

K(xi,xj) = 1 + x
T
i xj , (8)

this kernel shows good performance for linearly separable data.

2.2 Backpropagation

Backward propagation of errors, or backpropagation (BP), [26, 16] is a non-linear
generalization of the squared error gradient descent learning rule for updating the
weights of artificial neurons in a single-layer perceptron, generalized to feed-forward
networks, also called multi-Layer perceptron (MLP). Backpropagation requires that
the activation function used by the artificial neurons (or "nodes") is differentiable
with its derivative being a simple function of itself. The backpropagation of the
error allows to compute the gradient of the error function relative to the hidden
units. It is analytically derived using the chain rule of calculus. During on-line
learning, the weights of the network are updated at each input data item presen-
tation. We have used the resilient backpropagation, which uses only the derivative
sign to perform the weight updating.

We restrict our presentation of BP to train the weights of the MLP for the
current two class problem. Let the instantaneous error Ep be defined as:

Ep (w) =
1

2
(yp − zK (xp))

2
, (9)

where yp is the p-th desired output yp, and zK (xp) is the network output when
the p-th training exemplar xp is inputted to the MLP composed of K layers, whose
weights are aggregated in the vector w. The output of the j-th node in layer k is
given by:

zk,j (xp) = f





Nk−1
∑

i=0

wk,j,izk−1,i (xp)



 , (10)

where zk,j is the output of node j in layer k, Nk is the number of nodes in layer
k, wk,j,i is the weight which connects the i-th node in layer k−1 to the j-th node in
layer k, and f (·) is the sigmoid nonlinear function, which has a simple derivative:

f ′ (α) =
df (α)

dα
= f (α) (1− f (α)) . (11)

The convention is that z0,j (xp) = xp,j . Let the total error ET be defined as
follows:
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ET (w) =

l
∑

p=1

Ep (w) , (12)

where l is the cardinality of X . Note that ET is a function of both the training
set and the weights in the network. The backpropagation learning rule is defined
as follows:

∆w (t) = −η
∂Ep (w)

∂w
+ α∆w (t− 1) , (13)

where 0 < η < 1, which is the learning rate, the momentum factor α is also
a small positive number, and w represents any single weight in the network. In
the above equation, ∆w (t) is the change in the weight computed at time t. The
momentum term is sometimes used (α 6= 0) to improve the smooth convergence
of the algorithm. The algorithm defined by equation (13) is often termed as in-
stantaneous backpropagation because it computes the gradient based on a single
training vector. Another variation is batch backpropagation, which computes the
weight update using the gradient based on the total error ET .

To implement this algorithm we must give an expression for the partial deriva-
tive of Ep with respect to each weight in the network. For an arbitrary weight in
layer k this can be written using the Chain Rule:

∂Ep (w)

∂wk,j,j
=

∂Ep (w)

∂zk,j (xp)

∂zk,j (xp)

∂wk,j,i
. (14)

Because the derivative of the activation function follows equation 11, we get:

∂zk,j (xp)

∂wk,j,i
= zk,j (xp) (1− zk,j (xp)) zk−1,j (xp) , (15)

and

∂Ep (w)

∂zk,j (xp)
=

Nk+1
∑

m=1

∂Ep (w)

∂zk+1,m (xp)
zk+1,m (xp) (1− zk+1,m (xp))wk+1,m,j ,

which at the output layer corresponds to the output error :

∂Ep (w)

∂zK (xp)
= zL (xp)− yp. (16)

2.3 Radial Basis Function Networks

Radial basis function networks (RBF) [10] are a type of ANN that use radial basis
functions as activation functions. RBFs consist of a two layer neural network, where
each hidden unit implements a radial activated function. The output units compute
a weighted sum of hidden unit outputs. Training consists of the unsupervised
training of the hidden units followed by the supervised training of the output units
weights. RBFs have their origin in the solution of a multivariate interpolation
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problem [8]. Arbitrary function g (x) : Rn → R can be approximated by a map
defined by a RBF network with a single hidden layer of K units:

ĝθ (x) =

K
∑

j=1

wjφ (σj , ‖x− cj‖) , (17)

where θ is the vector of RBF parameters including wj , σj ∈ R, and cj ∈ R
n;

let us denote w = (w1, w2, . . . , wp)
T
, then the vector of RBF parameters can be

expressed as θ
T =

(

w
T , σ1, c

T
1 , . . . , σK , cTK

)

. Each RBF is defined by its center
cj ∈ R

n and width σj ∈ R, and the contribution of each RBF to the network
output is weighted by wj . The RBF function φ (·) is a nonlinear function that
monotonically decreases as x moves away from its center cj . The most common
RBF used is the isotropic Gaussian:

ĝθ (x) =

p
∑

j=1

wj exp

(

−
‖x− cj‖

2

2σ2
j

)

.

The network can be thought as the composition of two functions ĝθ (x) = W ◦
Φ (x), the first one implemented by the RBF units Φ : Rn → R

K performs a data
space transformation which can be a dimensionality reduction or not, depending
on whether K > n. The second function corresponds to a single layer linear
Perceptron W : RK → R giving the map of the RBF transformed data into the
class labels. Training is accordingly decomposed into two phases. First a clustering
algorithm is used to estimate the Gaussian RBF parameters (centers and variances).
Afterwards, linear supervised training is used to estimate the weights from the
hidden RBF to the output. In order to obtain a binary class label output, a hard
limiter function is applied to the continuous output of the RBF network.

2.4 Probabilistic Neural Networks

A probabilistic neural network (PNN) [31] uses a kernel-based approximation to
form an estimate of the probability density function of categories in a classifica-
tion problem. In fact, it is a generalization of the Parzen windows distribution
estimation, and a filtered version of the 1-NN classifier. The distance of the input
feature vector x to the stored patterns is filtered by a RBF function. Let us de-
note the data sample partition as X = X1 ∪X−1, where X1 =

{

x
1
1, . . . ,x

1
n1

}

and

X1 =
{

x
−1

1 , . . . ,x−1
n−1

}

. That is, superscripts denote the class of the feature vector

and n1 + n−1 = n. Each pattern x
i
j of training data sample is interpreted as the

weight of the j-th neuron of the i-th class. Therefore the response of the neuron
is computed as the probability of the input feature vector according to a Normal
distribution centered at the stored pattern:

Φi,j (x) =
1

(2π)
n/2

σn
exp

[

−

∥

∥x− x
i
j

∥

∥

2σ2

]

. (18)

Therefore the output of the neuron is inside [0, 1]. The tuning of a PNN network
depends on selecting the optimal sigma value of the spread σ of the RBF functions,
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which can be different for each class. In this paper an exhaustive search for the
optimal spread value in the range (0, 1) for each training set has been done. The
output of the PNN is an estimation of the likelihood of the input pattern x being
from class i ∈ {−1, 1} by averaging the output of all neurons that belong to the
same class:

pi (x) =
1

ni

ni
∑

j=1

Φi,j (x) . (19)

The decision rule based on the output of all the output layer neurons is simply:

ŷ (x) = argmax
i

{pi (x)} , i ∈ {−1, 1} , (20)

where ŷ (x) denotes the estimated class of the pattern x. If the a priori probabilities
for each class are the same, and the losses associated with making an incorrect
decision for each class are the same, the decision layer unit classifies the pattern x

in accordance with the optimal Bayes’ rule.

2.5 Learning Vector Quantization Neural Network

Learning vector quantization (LVQ), as introduced by Kohonen [18], represents
every class c ∈ {−1, 1} by a set W (c) = {wi ∈ R

n; i = 1, . . . , Nc} of weight vectors
(prototypes) which tessellate the input feature space. Let us denote W the union
of all prototypes, regardless of class. If we denote ci the class the weight vector
wi ∈ W is associated with, the decision rule that classifies a feature vector x is as
follows:

c (x) = ci∗

where
i∗ = argmin

i
{‖x−wi‖} .

The training algorithm of LVQ aims at minimizing the classification error on
the given training set, i.e., E =

∑

j (yj − c (xj))
2, modifying the weight vectors on

the presentation of input feature vectors. The heuristic weight updating rule is as
follows:

∆wi∗ =

{

ǫ· (xj −wi∗) if ci∗ = yj

−ǫ· (xj −wi∗) otherwise
, (21)

that is, the input’s closest weight is adapted either toward the input if their
classes match, or away from it if not. This rule is highly unstable, therefore, the
practical approach consists in performing an initial clustering of each class data
samples to obtain an initial weight configuration using equation 21 to perform the
fine tuning of the classification boundaries. This equation corresponds to a LVQ1
approach. The LVQ2 approach involves determining the two input vector’s closest
weights. They are moved toward or away the input according to the matching of
their classes.
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3. Materials and Methods

Structural MRI and DTI data from twenty men (aged 21-55 yr), ten patients
and ten controls, from a publicly available database from the National Alliance
for Medical Image Computing (NAMIC) 1 were the subjects of this study in this
experiment. The imaging parameters and demographic information about the sub-
jects can be obtained from the web site, we omit them for lack of space. A technical
description of the feature extraction method and the data will be available 2, be-
cause many of the difficulties found have no place in an academic paper, but are
important for the reproducibility of the results.

3.1 Scalar Features of Diffusion Tensors

In DTI, a diffusion tensor at a voxel is a 3×3 positive-definite symmetric matrix D,
which can be represented by its decomposition as D = λ1g1g

T
1 +λ2g2g

T
2 +λ3g3g

T
3 ,

where λ1 ≥ λ2 ≥ λ3 and g1, g2, g3 are the eigenvalues and eigenvectors of D,
respectively. Two scalar measures were extracted [6] from the voxels diffusion
tensors: the mean diffusivity (MD) and the fractional anisotropy (FA). The first
corresponds to the average eigenvalue:

MD =
Tr (D)

3
=

λ1 + λ2 + λ3

3
. (22)

The FA measures the fraction of the magnitude of D that can be related to
anisotropic diffusion in a mean-squared sense (i.e. the extent of deviation from
isotropic diffusivity in all direction). Its magnitude is also rotationally invariant,
and independent from sorting of the eigenvalues. The FA is calculated as follows:

FA =

√

1

2

√

(λ1 − λ2)
2 + (λ2 − λ3)

2 + (λ3 − λ1)
2

√

λ2
1 + λ2

2 + λ2
3

. (23)

Thus, isotropic diffusion is imaged as zero value and FA maximum value is one.
Figure 1 show slices of FA and MD volumes of one study subject.

3.2 Image preprocessing

Feature extraction requires that the diffusion related data is spatially normalized,
in order to compute the correlation measure and to extract the values of the feature
vectors. Our starting point was the nonlinear registration [3] of the T1-weighted
sMRI skull stripped volumes of each subject to the Montreal Neurological Institute
(MNI152) standard template, using the ANTS3 nonlinear elastic registration algo-
rithm. For the elastic registration, a probabilistic correlation similarity metric was
chosen with window radius 4 and gradient step length 1. The optimization has been
performed over three resolutions with a maximum of 100 iterations at the coarsest
level, 100 at the next coarsest and 10 at the full resolution. The optimization stops
when either the distance between both images cannot be further minimized or the

1http://www.insight-journal.org/midas/collection/view/190?path_navigation=17
2http://www.ehu.es/ccwintco/index.php/GIC-experimental-databases
3http://www.picsl.upenn.edu/ANTS
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Figure 1 FA and MD maps of one subject.

maximum number of iterations is reached. We used a Gaussian regularization with
sigma parameter value 3 which operates only on the deformation field and not on
the similarity gradient. In addition, a previous histogram matching step has been
performed. The deformation fields of this registration were used afterwards for the
spatial deformation of the FA and MD volumes.

The DWI scans were already noise filtered and corrected for eddy currents
and head motion by the group that originally acquired the scans. A brain mask
was obtained for each DWI data volume to calculate the FA and MD maps of
each subject [6]. The FA and MD maps were linearly registered to the sMRI
skull stripped volumes [30] of each subject and then non-linearly registered to MNI
applying the deformation fields obtained from the sMRI data nonlinear registration.
All of the FA and MD volumes were then considered spatially normalized.

3.3 Feature extraction

Once the FA and MD maps were spatially normalized, we processed them inde-
pendently. We considered each voxel site independently, forming a vector at the
voxel site across all the subjects. Then we computed the Pearson correlation co-
efficient between this vector and the control variable with the labels (patient=1,
control=−1). Thus we obtained for FA and MD data two independent volumes
containing correlation values at each voxel. For each volume we estimated the em-
pirical distribution of the absolute correlation values and determined a selection
threshold corresponding to a percentile of this absolute correlation distribution.
Voxel sites with absolute value of the correlation above this threshold were re-
tained, and the feature vector for each subject was composed of the FA or MD
values at these voxel sites. In table I we show the percentiles and the number of
voxels selected for each feature vector.

Although the voxel sites selected to build the feature vectors (the feature mask)
were localized in many different regions of the subject brains, we found that most
were concentrated in regions of characteristic abnormalities found for schizophrenia
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Database Percentile DT Measure Number of voxels

A 99.990% FA 241
MD 241

B 99.992% FA 193
MD 193

C 99.995% FA 121
MD 121

D 99.997% FA 72
MD 72

E 99.999% FA 24
MD 24

Table I Databases considered, percentile on the correlation distribution and size of
the feature vectors.

shown in the literature (see [19] for references). The features voxel locations 4 were
different for FA and MD maps. In the case of FA, the selected voxels were localized
mainly in parietal and temporal lobes, but also in the cerebellum and occipital lobe.
More specifically, in WM we found discriminant voxel values in the cingulum bun-
dle, superior and inferior longitudinal fasciculus and in the inferior fronto-occipital
fasciculus. On the other hand, in the MD maps, the most discriminant voxel values
were the ones localized in frontal and parietal lobes, more specifically thecingulum
bundle, inferior fronto-occipital and longitudinal fasciculus, and superior longitu-
dinal fasciculus.

3.4 Classifiers parameters

All classifiers were calculated with a maximum iteration number (epochs) of 100.
For the 1-NN classifier, we used the nearest neighbor rule with euclidean distance.
In the SVM algorithm, a linear kernel function was used as well as a sequential min-
imal optimization for the separating hyperplane method. For BPNN, the number
of neurons in the hidden layer was 4, the learning rate was set to 0.05, tan-sigmoid
transfer function, and training and learning functions were gradient descent with
momentum. LVQ2 was trained with 2 hidden neurons, learning rate set to 0.01.
The training function used for RBF was according to resilient backpropagation
algorithm. In the case of PNN, random order incremental training was used. For
the last three algorithms (BPNN, LVQ2 and RBF) zeros were set as initial input
and layer delay conditions. These parameters have been selected after a sensitivity
analysis.

We tested several cross-validation strategies, because the small database size
may have an influence on the results obtained with each of these cross-validation
processes. Cross-validation partitions were computed 40 times and we show average
accuracy, sensitivity, and specificity for the 10-fold cross-validation procedure.

4This specification of the voxel locations were obtained with the “atlasquery” tool from FM-
RIB’s FSL (http://www.fmrib.ox.ac.uk/fsl/) using the “MNI Structural Atlas” and the “JHU
White-Matter Tractography Atlas”.
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Database FA MD

A 1-NN 1.00 (1.00-1.00) 1.00 (1.00-1.00)
SVM 1.00 (1.00-1.00) 1.00 (1.00-1.00)
BP 0.75 (0.67-1.00) 0.78 (0.69-1.00)

RBF 0.98 (0.97-1.00) 1.00 (1.00-1.00)
PNN 1.00 (1.00-1.00) 0.54 (0.54-0.54)
LVQ2 1.00 (1.00-1.00) 1.00 (1.00-1.00)

B 1-NN 1.00 (1.00-1.00) 1.00 (1.00-1.00)
SVM 1.00 (1.00-1.00) 1.00 (1.00-1.00)
BP 0.75 (0.66-1.00) 0.78 (0.70-1.00)

RBF 1.00 (1.00-1.00) 1.00 (1.00-1.00)
PNN 1.00 (1.00-1.00) 0.52 (0.52-0.52)
LVQ2 1.00 (1.00-1.00) 1.00 (1.00-1.00)

C 1-NN 1.00 (1.00-1.00) 1.00 (1.00-1.00)
SVM 1.00 (1.00-1.00) 1.00 (1.00-1.00)
BP 0.77 (0.68-1.00) 0.77 (0.68-1.00)

RBF 1.00 (1.00-1.00) 1.00 (1.00-1.00)
PNN 1.00 (1.00-1.00) 0.52 (0.52-0.52)
LVQ2 1.00 (1.00-1.00) 1.00 (1.00-1.00)

D 1-NN 1.00 (1.00-1.00) 1.00 (1.00-1.00)
SVM 1.00 (1.00-1.00) 1.00 (1.00-1.00)
BP 0.77 (0.68-1.00) 0.77 (0.68-1.00)

RBF 1.00 (1.00-1.00) 0.84 (0.79-0.90)
PNN 0.99 (0.99-1.00) 0.55 (0.55-0.55)
LVQ2 1.00 (1.00-1.00) 1.00 (1.00-1.00)

E 1-NN 0.94 (0.90-0.99) 1.00 (1.00-1.00)
SVM 0.95 (0.90-1.00) 1.00 (1.00-1.00)
BP 0.76 (0.67-1.00) 0.77 (0.68-1.00)

RBF 0.92 (0.90-0.94) 0.89 (0.91-0.88)
PNN 0.94 (0.90-0.99) 0.52 (0.52-0.52)
LVQ2 0.97 (0.94-1.00) 1.00 (1.00-1.00)

Table II 10-fold cross-validation results. Accuracy (Sensitivity, Specificity)
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4. Results

The results are presented in table II. The most striking result is that we found
optimal performance of almost all classifiers built from the provided feature vectors.
The only exceptions were the results of PNN on MD data; tuning of the Gaussian
kernel variance was more difficult than applying the training algorithm of other
approaches . Also BP shows lower performance than the others. The second
general result is that MD features seem to perform slightly better than FA features,
disregarding the anomaly of PNN classifiers. In the experimental design we wanted
to test if decreasing the size of the feature vectors had an impact on the classifiers
performance. We found that performance was not affected down to the smallest
feature vector (database E) where decreases in performance can be appreciated
in all the classifiers for the FA data, while 1-NN, SVM and LVQ2 maintain their
performance for MD data.

5. Conclusion

The goal of this paper was to test the hypothesis that classification algorithms con-
structed using statistical and Neural Network approaches can discriminate between
schizophrenia patients and control subjects on the basis of features extracted from
DTI data. The way to build the feature vectors has been the direct selection of
voxels from the DTI-derived FA and MD scalar valued volumes that show a high
correlation with the control variable that labels the subjects. The selected voxels
roughly correspond to findings reported in the medical literature. Surprisingly, all
the classifiers obtain near perfect results. Despite the simplicity of our feature ex-
traction process, the results compare well with other results found in the literature
[9, 34]. We think that appropriate pre-processing of the data is of paramount im-
portance and can not be disregarded trusting that ensuing statistical or machine
learning processes may cope with the errors introduced by lack of appropriate
data normalization. Therefore, our main conclusion is that the proposed feature
extraction is very effective in providing a good discrimination between schizophre-
nia patients that can easily be exploited by the classifier construction algorithms.
The main limitation of this study is that the results come from a small database.
Therefore, more extensive testing will be needed to confirm our conclusions. Nev-
ertheless, we are making available 5 the actual data employed in the computational
experiments to allow for independent validation of our results.
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