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Abstract. We have studied feature extraction processes for the detec-
tion of Alzheimer's disease on brain Magnetic Resonance Imaging (MRI)
based on Voxel-based morphometry (VBM). The clusters of voxel loca-
tions detected by the VBM were applied to select the voxel intensity
values upon which the classi�cation features were computed. We have
explored the use of the data from the original MRI volumes and the GM
segmentation volumes. In this paper, we apply the Support Vector Ma-
chine (SVM) algorithm to perform classi�cation of patients with mild
Alzheimer's disease vs. control subjects. The study has been performed
on MRI volumes of 98 females, after careful demographic selection from
the Open Access Series of Imaging Studies (OASIS) database, which is
a large number of subjects compared to current reported studies. 1

Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder, which is one of the
most common cause of dementia in old people. Currently, due to the socio-
economic importance of the disease in occidental countries it is one of the most
studied. The diagnosis of AD is done after the exclusion of other forms of de-
mentia but de�nitive diagnosis can only be made after a post-mortem study of
the brain tissue. This is one of the reasons why Magnetic Resonance Imaging
(MRI) based early diagnosis is a current research goal in the neurosciences.

Morphometry analysis has become a common tool for computational brain
anatomy studies. It allows a comprehensive measurement of structural di�er-
ences within or across groups, not only in speci�c structures but throughout the
entire brain. Voxel-based morphometry (VBM) is a computational approach to
neuroanatomy that measures di�erences in local concentrations of brain tissue,
through a voxel-wise comparison of multiple brain images [2]. For instance, VBM
has been applied to study volumetric atrophy of the grey matter (GM) in areas
of neocortex of AD patients vs. control subjects [4,16,9]. The procedure involves
the spatial normalization of subject images into a standard space, segmentation
of tissue classes using a priori probability maps, smoothing to correct noise and
small variations, and voxel-wise statistical tests. Statistical analysis is based on
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the General Linear Model (GLM) to describe the data in terms of experimental
and confounding e�ects, and residual variability. Classical statistical inference
is used to test hypotheses that are expressed in terms of GLM estimated re-
gression parameters. The computation of a given contrast provides a Statistical
Parametric Map, which is thresholded according to the Random Field Theory.

Machine learning methods have become very popular to classify functional
or structural brain images to discriminate them into two classes: normal or a
speci�c neurodegenerative disorder. The Support Vector Machine (SVM) either
with linear [10,14] or non-linear [7,11] kernels, have been extensively applied for
this task. There are studies applying SVM to discriminate AD patients from con-
trols based on Positron Emission Tomography (PET) or Single-Photon Emission
Tomography (SPECT) functional volumes [14,15,1]. There are di�erent ways to
extract features from MRI for SVM classi�cation: based on morphometric meth-
ods [6,7], based on ROIs (region of interest) [12,11] or GM voxels in automated
segmentation images [10]. Work has also been reported on the selection of a
small set of the most informative features for classi�cation, such as the SVM-
Recursive Feature Elimination [7], the selection based on statistical tests [12,14],
the wavelet decomposition of the RAVENS maps [11], among others.

Many of the classi�cation studies on the detection of AD were done over
populations mixing men and women. However, it has been demonstrated that
brains of women are di�erent from men's to the extent that it is possible to
discriminate the gender via MRI analysis [11]. Moreover, it has been shown that
VBM is sensitive to the gender di�erences. For these reasons, we have been very
cautious in this study. We have selected a set of 98 MRI women's brain volumes.
It must be noted that this is a large number of subjects compared with the other
studies referred above.

The approach taken in this paper is to use the clusters detected as result of
VBM as a mask on the MRI and Grey Matter (GM) segmentation images to
select the potentially most discriminating voxels. Features for classi�cation are
either the voxel values or some summary statistics of each cluster. We assume
for classi�cation the standard SVM, testing linear and non-linear (RBF) ker-
nels. Section Materials and Methods gives a description of the subjects selected
for the study, the image processing, feature extraction details and the classi�er
system. Section Results gives our classi�cation performance results and section
Conclusions gives some conclusions and further work suggestions.

Materials and Methods

Subjects

Ninety eight right-handed women (aged 65-96 yr) were selected from the Open
Access Series of Imaging Studies (OASIS) database (http://www.oasis-brains.org)
[13]. OASIS data set has a cross-sectional collection of 416 subjects covering the
adult life span aged 18 to 96 including individuals with early-stage Alzheimer's
Disease. We have ruled out a set of 200 subjects whose demographic, clinical



or derived anatomic volumes information was incomplete. For the present study
there are 49 subjects who have been diagnosed with very mild to mild AD and
49 nondemented. A summary of subject demographics and dementia status is
shown in table 1.

Very mild to mild AD Normal

No. of subjects 49 49
Age 78.08 (66-96) 77.77 (65-94)

Education 2.63 (1-5) 2.87 (1-5)
Socioeconomic status 2.94 (1-5) 2.88 (1-5)
CDR (0.5 / 1 / 2) 31 / 17 / 1 0

MMSE 24 (15-30) 28.96 (26-30)
Table 1. Summary of subject demographics and dementia status. Education codes
correspond to the following levels of education: 1 less than high school grad., 2: high
school grad., 3: some college, 4: college grad., 5: beyond college. Categories of socioe-
conomic status: from 1 (biggest status) to 5 (lowest status). MMSE score ranges from
0 (worst) to 30 (best).

Imaging Protocol

Multiple (three or four) high-resolution structural T1-weighted magnetization-
prepared rapid gradient echo (MP-RAGE) images were acquired [8] on a 1.5-T
Vision scanner (Siemens, Erlangen, Germany) in a single imaging session. Image
parameters: TR= 9.7 msec., TE= 4.0 msec., Flip angle= 10, TI= 20 msec.,
TD= 200 msec., 128 sagittal 1.25 mm slices without gaps and pixels resolution
of 256×256 (1×1mm).

Image Processing and VBM

We have used the average MRI volume for each subject, provided in the OA-
SIS data set. These images are already registered and resampled into a 1-mm
isotropic image in atlas space and the bias �eld has been already corrected [13].
The Statistical Parametric Mapping (SPM5) (http://www.�l.ion.ucl.ac.uk/spm/)
was used to compute the VBM which gives us the spatial mask to obtain the
classi�cation features. Images were reoriented into a right-handed coordinate sys-
tem to work with SPM5. The tissue segmentation step does not need to perform
bias correction. We performed the modulation normalization for grey matter,
because we are interested in this tissue for this study. We performed a spatial
smoothing before computing the voxel-wise statistics, setting the Full-Width at
Half-Maximum (FWHM) of the Gaussian kernel to 10mm isotropic. A GM mask
was created from the average of the GM segmentation volumes of the subjects
under study. Thresholding the average GM segmentation, we obtain a binary
mask that includes all voxels with probability greater than 0.1 in the average



GM segmentation volume. This interpretation is not completely true, since the
data are modulated, but it is close enough for the mask to be reasonable. We
design the statistical analysis as a Two-sample t-test in which the �rst group cor-
responds with AD subjects. We also have done some experiments with nWBV
(normalized whole brain volume) as the covariate. The general linear model con-
trast has been set as [-1 1], a right-tailed (groupN > groupAD), correction FWE
and p-value=0.05. The VBM detected clusters are used for the MRI feature
extraction for the SVM classi�cation.

Support Vector Machine Classi�cation

The Support Vector Machine (SVM) [17] algorithm used for this study is in-
cluded in the libSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) soft-
ware package. The implementation is described in detail in [5]. Given training
vectors xi ∈ Rn, i = 1, . . . , l of the subject features of the two classes, and a vec-
tor y ∈ Rl such that yi ∈ {−1, 1} labels each subject with its class, in our case,
for example, patients were labeled as -1 and control subject as 1. To construct
a classi�er, the SVM algorithm solves the following optimization problem:

min
w,b,ξ

1
2
wTw + C

l∑
i=1

ξi

subject to yi(wTφ(xi) + b) ≥ (1 − ξi), ξi ≥ 0, i = 1, 2, . . . , n. The dual
optimization problem is

min
α

1
2
αTQα− eTα

subject to yTα = 0, 0 ≤ αi ≤ C, i = 1, . . . , l. Where e is the vector of all
ones, C > 0 is the upper bound on the error, Q is an l by l positive semide�nite
matrix, Qij ≡ yiyjK(xi, xj), and K(xi, xj) ≡ φ(xi)Tφ(xj) is the kernel function
that describes the behaviour of the support vectors. Here, the training vectors
xi are mapped into a higher (maybe in�nite) dimensional space by the function

φ(xi). The decision function is sgn(
∑l
i=1 yiαiK(xi, x) + b).

The chosen kernel function results in di�erent kinds of SVM with di�erent
performance levels, and the choice of the appropriate kernel for a speci�c appli-
cation is a di�cult task. In this study two di�erent kernels were tested: the linear
and the radial basis function (RBF) kernel. The linear kernel function is de�ned
as K(xi, xj) = 1+xTi xj , this kernel shows good performance for linearly separa-

ble data. The RBF kernel is de�ned as K(xi, xj) = exp(− ||xi−xj ||2
2σ2 ). This kernel

is basically suited best to deal with data that have a class-conditional probability
distribution function approaching the Gaussian distribution [3]. One of the ad-
vantages of the RBF kernel is that given a kernel, the number of support vectors
and the support vectors are all automatically obtained as part of the training
procedure, i.e., they don't need to be speci�ed by the training mechanism.



Feature Extraction

We have tested three di�erent feature extraction processes, based on the voxel
location clusters obtained from the VBM analysis:

1. The �rst feature extraction process computes the ratio of GM voxels to the
total number of voxels of each voxel location cluster

2. The second feature extraction process computes the mean and standard de-
viation of the GM voxel intensity values of each voxel location cluster

3. The third feature extraction process computes a very high dimensional vector
with all the GM segmentation values for the voxel locations included in each
VBM detected cluster. The GM segmentation voxel values were ordered in
this feature vector according to the coordinate lexicographic order

Classi�er Performance Indices

We evaluated the performance of the classi�er using the 10-fold cross-validation
test. To quantify the results we measured the accuracy, the ratio of the number of
test volumes correctly classi�ed to the total of tested volumes. We also quanti�ed
the speci�city and sensitivity of each test de�ned as Specificity = TP

TP+FP and

Sensitivity = TN
TN+FN , where TP is the number of true positives: number of AD

patient volumes correctly classi�ed; TN is the number of true negatives: number
of control volumes correctly classi�ed; FP is the number of false positives: number
of AD patient volumes classi�ed as control; FN is the number of false negatives:
number of control volumes classi�ed as patient.

Results

In this section we present for each experiment the following data: the number
of features, accuracy, speci�city, which is related to AD patients and sensitivity,
which is related to control subjects. We have performed the VBM twice, �rst
without any covariate included in the GLM (Table 2) and second taking into
account the normalized brain volume (nWBV) (Table 3). Each VBM process
produces di�erent sets of voxel location clusters, and, therefore, di�erent sets of
feature vectors. The covariate helps to focus the VBM, giving less and smaller
clusters than the VBM without covariates. This implies that the feature vectors
will be smaller. Each table entry contains the SVM results using the linear and
RBF kernels upon the corresponding feature vector set. In both tables rows
correspond to feature extraction processes as described in section 1.

The best accuracy result (Table 2) is 80.6% with the RBF kernel, but this
result is not far away from the results of the linear SVM. The classi�cation results
of table 3, using the covariate nWBV in the design matrix of the GLM, con�rm
that the non-linear SVM is more accurate. However, as the size of the feature
vectors is lower than in table 2, results in table 3 are systematically lower.

Overall the sensitivity results in tables 2 and 3 are much lower than the
speci�city. We hypothesize that the source of error is the confusion of mild



Feature extracted Features Accuracy (lk/nlk) Sensitivity (lk/nlk) Speci�city (lk/nlk)

GM proportion 12 69.39% / 68.36% 0.88 / 0.90 0.63 / 0.61
Mean & StDev 24 78.57% / 80.61% 0.88 / 0.89 0.72 / 0.75
Voxel intensities 3611 73.47% / 76.53% 0.75 / 0.76 0.72 / 0.77

Table 2. Classi�cation results with a linear kernel (lk) and a non-linear kernel (nlk). No
covariates have been taken into account in the GLM used for the VBM. The values of
γ =

(
2σ2
)−1

for non linear kernel were 0.5, 0.031, 0.0078 for each feature extraction
process, respectively.

Feature extracted Features Accuracy (lk/nlk) Sensitivity (lk/nlk) Speci�city (lk/nlk)

GM proportion 2 51% / 51% 1 / 1 0.50 / 0.50
Mean & StDev 4 69.38% / 72.45% 0.79 / 0.79 0.65 / 0.68
Voxel intensities 265 66.32% / 75.51% 0.67 / 0.80 0.65 / 0.72

Table 3. Classi�cation results with a linear kernel (lk) and a non-linear kernel (nlk).
The normalized brain volume (nWBV) covariate has been taken into account in the
GLM for the VBM. The values of γ for nlk were 0.5, 2.7, 0.004 for GM proportion,
Mean & StDev and voxel intensities respectively.

demented AD patients with control subjects. Mild demented AD patients are
subjects with CDR=0.5 (Clinical Dementia Ratio) and a high value for the
MMSE (Minimental-State Examination), i.e. MMSE=30. Therefore we repeat
the feature extraction and classi�cation experiment taking out of the population
9 mild demented AD patients. The results for the RBF kernel SVM are given in
table 4. The classi�cation accuracy of the grows from 80.6% (in the best result
of table 2) up to 87.5%. Also sensitivity and speci�city improve if we compare
table 2 and table 3 against table 4.

Feature extracted Features γ Accuracy Sensitivity Speci�city

GM proportion 12 0.9 72.5% 0.84 0.66
Mean & StDev 24 0.6 87.5% 0.89 0.86
Voxel intensities 3611 1.5 86.25% 0.85 0.87

Table 4. Classi�cation results of 40 AD patients vs. 49 control subjects with the SVM
and a RBF kernel, 9 possible outliers were taken out from the AD patients subset.

Conclusions

In this work we have studied feature extraction processes based on VBM analysis,
to classify MRI volumes of AD patients and normal subjects. We have analyzed
di�erent designs for the SPM of the VBM and we have found that the basic GLM
design without covariates can detect subtle changes between AD patients and
controls that lead to the construction of SVM classi�ers with a discriminative



accuracy of 87.5%. In [6] they compare their results on a smaller population of
controls and AD patients to the ones obtained with a standard VBM analysis
using only one cluster and found a classi�cation accuracy of 63.3% via cross-
validation. Therefore, the results shown in this paper, along with the careful
experimental methodology employed, can be of interest for the Neuroscience
community researching on the AD. Further work may address the extraction
of features based on other morphometric methods, such as Deformation-based
Morphometry.
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