

Zorana Banković

Using Self-organizing Maps for Intelligent Camera-based User Interface

Objective

- > Problem:
 - Human-Machine Interface
 - Growing fast
 - ➤ High importance in all technological systems
 - ➤ Most of the solutions based on complex methods
 - Require high-resource devices
 - > Not viable for embedded systems
- **>** Solution:
 - **>** Low-cost
 - Camera-based gesture interface

Outline

- > Introduction
- Motivation
- Implementation Details
- **>** Evaluation
- Conclusions and future work

Introduction

- ➤ Human-machine Interface
 - Transparent
 - The user does not have to adapt to special conventions or rules;
 - ➤ The environment should be the one to adapt to the natural way of user interaction.
 - ➤ Hand gestures: the most natural and comfortable way
 - ➤ Most of the solutions consume significant resources
 - ➤ Embedded systems (camera) exhibit limited resources

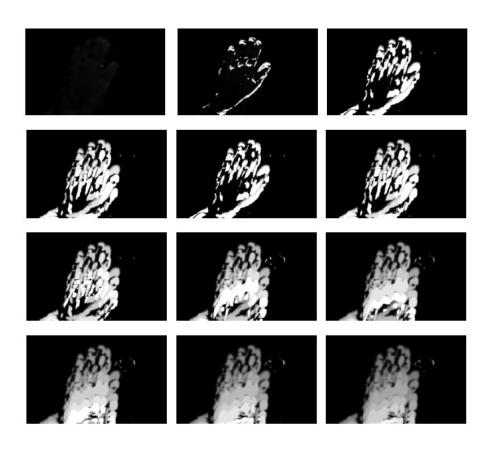
Introduction

- Camera-based gesture interface
 - Model gestures capturing their temporal properties
 - Significantly reduces storage requirements
 - Appropriate for implementation in embedded systems
 - Self-organizing maps for gesture classification

- Introduction
- Motivation
- Implementation Details
- **>** Evaluation
- Conclusions and future work

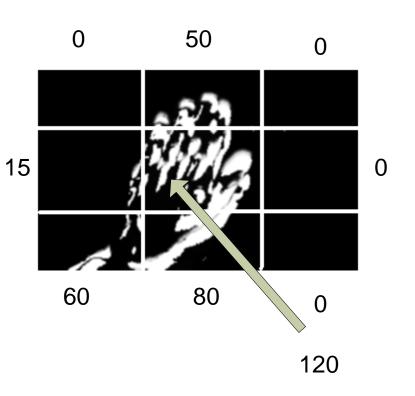
Motivation

- Common SOM solutions
 - ➤ Two stages: the first stage captures the temporal properties → two learning algorithms
 - Standard characterization: trajectory of the hand, resultant direction of the movement, velocity of the movement...
 - ➤ Additional computational overhead


- Introduction
- Motivation
- > Implementation Details
- **>** Evaluation
- Conclusions and future work

Implementation Details – Gesture Characterization

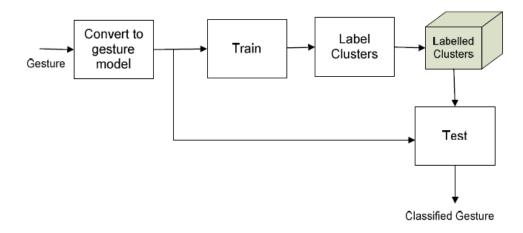
Gesture: set of frames of variable size



Implementation Details - Gesture Characterization

- **→** Divide each frame into *n* x *n* parts
- Aassign to each part a value that corresponds to its luminosity (0 – 255)
- Characterize temporal evolution of each part
 - E.g. 0 0 20 40 50 60 70 50 10, sliding window size 3

0 0 20	0.16
0 20 40	0.16
20 40 50	0.16
40 50 60	0.16
50 60 70	0.16
70 50 10	0.16


- Number of features not fixed → distance between sequences
 - Distance between two gestures the sum of absolute distances of the parts

Implementation Details - SOM

- Specific part: node update
 - ➤ If the node does not contain a feature from a certain input, we add it to the node with the value 0
 - Discard all the features that have at least 100 times smaller value of the maximal feature value of the node
- Label the nodes with the label of the gesture from the set of labeled gestures that is closest to the node according to the distance function

Advantages

- Simplicity
 - ➤ Gestures distinguished by clustering → no need to label all the gestures
 - ➤ The characterization significantly reduces the memory needed to store a gesture
 - ⇒ 507kB reduced to 625B (5x5 division of the frame)
- Enables implementation on devices with limited resources

- Introduction
- Motivation
- Implementation Details
- **>** Evaluation
- Conclusions and future work

Training and Testing Dataset

- Five types of gesture:
 - ▶ left-right
 - right-left
 - > up-down
 - down-up
 - random gestures labeled as unknown
- ▶ 12 persons 760 gestures
 - **>** 1.08GB of storage space → after characterization 3.11MB

Results

- ➤ Testing with both 3x3 and 5x5 frame partitions
- Sestures left-right and right-left → confused with each other

Gesture	Detection Rate (%)
Unknown	88
Down-up	100
Up-down	92
Left-right	13
Right-left	13
Overall	80

- Introduction
- Motivation
- Implementation Details
- **>** Evaluation
- > Conclusions and future work

Conclutions and Future Work

- ➤ Low-cost algorithm for gesture classification
- Characterization of gestures that captures temporal properties of gesture
- ➤ Detection rate of up to 100% for certain gestures and overall detection of 80% at most
- > Future work:
 - ➤ Add one more stage of SOM clustering in order to detect the users.

