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Cloud Point Labeling in Optical Motion Capture Systems

by

Juan L. Jiménez Bascones

Submitted to the Department of Computer Science and Arti�cial Intelligence, in partial ful�llment

of the requirements for the degree of Doctor of Philosophy

Abstract

This Thesis deals with the task of point labeling involved in the overall work-

�ow of Optical Motion Capture Systems. Human motion capture by optical

sensors produces at each frame snapshots of the motion as a cloud of points

that need to be labeled in order to carry out ensuing motion analysis. The

problem of labeling is tackled as a classi�cation problem, using machine learn-

ing techniques as AdaBoost or Genetic Search to train a set of weak classi�ers,

gathered in turn in an ensemble of partial solvers. The result is used to feed

an online algorithm able to provide a marker labeling at a target detection

accuracy at a reduced computational cost. On the other hand, in contrast

to other approaches the use of misleading temporal correlations has been dis-

carded, strengthening the process against failure due to occasional labeling

errors. The e�ectiveness of the approach is demonstrated on a real dataset ob-

tained from the measurement of gait motion of persons, for which the ground

truth labeling has been veri�ed manually. In addition to the above, a broad

sight regarding the �eld of Motion Capture and its optical branch is provided

to the reader: description, composition, state of the art and related work.

Shall it serve as suitable framework to highlight the importance and ease the

understanding of the point labeling.

Keywords: Optical Motion Capture, MoCap, Marker Tracking, Ada Boost,

Genetic Search, Tree Search, Ensemble Classi�ers.
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Chapter 1

Introduction

This chapter is an overall introduction to the Thesis. First, we provide a

short motivation in section 1.1. A summary of the Thesis contents and

contributions are given in section 1.2. The publications achieved during the

work of the Thesis are listed in section 1.3. Finally, the main structure of

the Thesis is presented in section 1.4.

1.1 Motivation

Back in 1998, I got to know for the �rst time the discipline ofMotion Capture.

I happened to team up, as recent post-graduate engineer, with an enthusias-

tic group of people in charge of the development of a complete optical motion

capture system industry grade solution. The project started from scratch,

almost with no previous background knowledge in the topic. The challenge

involved dealing with multiple problems such as hardware selection, cabling

setup, lightning solution, image transfer and processing, camera calibration,

bio-mechanical calculation, 3D graphic rendering ... everything dressed up

with a complex software taking care of everything.

Most of the issues could be successfully tackled with the standard knowl-

edge acquired in the engineer academical training. But it didn't take long

before the optimal solution to a particular problem arose as well above our

skills: maker identi�cation, also known as marker tracking or marker la-

1
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belling. At the time, we came out with a coarse algorithm who managed to

get away with it most of the time, but indeed the issue remained without a

satisfying solution since then.

This Thesis spreads along two main axis:

� An account of the Optical Motion Capture components, stages, chal-

lenges and state-of-the art solutions.

� The main motivation of this work, which is to �nd a brand new method

to solve the optical marker labelling problem, appealing to the weaponry

of machine learning techniques.

1.1.1 Motion Capture

The term MOtion CAPture encompasses the processes, methods and tech-

niques that are put together to acquire, record and analyse the movement of

mainly persons, along the time. This Thesis begins covering the answer to

the what for, why and how of the Motion Capture, so that the reader may

have a broad view on the �eld. The work makes also a review of the aca-

demic papers related with the subject arranged by topic, trying to highlight

the interest of the community on the �eld.

Finally, a particular attention is paid to the branch of the optical marker-

based methodologies, whose composition and operation is shown in a ded-

icated chapter. This provides a good understanding of the overall picture

when it comes to the seldom discussed problem of marker labelling.

1.1.2 Marker labelling

Despite the crucial role played by the marker tracking in the whole process

of optical motion capture, at the time of writing this work the number of

published papers focused on marker labelling is scarce. Commercial systems

keep their proprietary methods unexplained, barely hinting the way they

solve the problem. On the other hand, the few papers covering the topic often

make use of predictive models exploiting the underlying kinematic model �

rigid bodies and joints�, predicting next marker positions from their past
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trajectories. After that, an algorithm estimates the most likely labelling by

matching the predicted trajectory against the most recently provided point

cloud.

According to our experience, marker algorithms are rather hard to tune

and lack the required reliability for an industrial solution: as soon as an

error is incurred, the subsequent tracking is likely to fail. The input data

has a high uncertainty, noise and ambiguities, and therefore machine learning

comes up as a promising approach to handle the marker labelling problem.

Consequently, the core motivation of this work is to connect the problem

and existing algorithms in a way that has never been attempted before.

1.2 Overview of the Thesis Contributions

The main contribution of the Thesis is the development of an algorithm for

the labelling of optical markers which can be embedded in the work�ow of

an optical motion capture system.

First, the problem of optical marker labelling is explained in the context

of the whole motion capture process. We de�ne a marker as a point in 3D

Cartesian space, marker model as a set of a priori de�ned markers and the

set of candidate points extracted from the video feed by image segmentation

and photogrammetric techniques. The di�erent situations corrupting the

input data are enumerated, stating the boundary conditions the labelling

algorithm has to work with. After that, we model the actual labelling of

the candidate points as a vector of integers, so the labelling problem can be

formulated as a search in the space of labelling vectors trying to maximise a

maximise a speci�c criterion function under some constraints.

In order to handle the marker labelling as a classi�cation task, we intro-

duce the concept of geometric features as geometric functions de�ned over

small sets of 3D points. From these geometric features we build weak clas-

si�ers that implement the decision `is this labelling a correct one?' over a

given cloud of candidate points. An ensemble of weak classi�ers are selected

and put together to build a strong classi�er. Weak classi�er selection is car-

ried out by means of a tailored implementation of the well known Ada-Boost
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algorithm. The strong classi�er is trained over a ground truth built on pur-

pose in the context of the project and composed by actual labelled maker

samples of real moving people.

We introduce also a marker labelling solving algorithm that takes advan-

tage of the trained strong classi�er, proving to be able to e�ciently label

markers at high rates under the assumption of no occlusions.

Keeping in mind that the real data usually su�ers from missing data

due to occlusions and segmentation �aws, a divide-and-conquer strategy is

proposed to deal with the complete problem. The concept of partial solver

comes in handy here. Indeed, strong classi�ers can be trained over subsets

of markers belonging to the complete model. Each strong classi�er is then

owned by a partial solver which can label the subset of markers up to a

given hit ratio and provided no marker from the subset is missing. As a

result, the partial solver yields a solution to the subspace spanned by the

corresponding partial marker labelling vector. In addition, the quality of a

given partial solver is determined by the number of times it correctly guesses

the right labelling over random samples of input point clouds. Such hit rate

is assessed against the ground truth and kept as attribute of the partial solver

for further use. Some interesting properties of the partial solver are stated

formally and discussed in detail in this Thesis.

It turns out that not any partial solver is equally apt to reach high hit

rates. Therefore, we develop and test and algorithm to select the elite of

partial solvers. To do so, we apply genetic algorithms where each partial

solver instance is viewed as a specimen whose genome is the subset of markers

it works over. This allows the selection to be dealt with as an evolution

process driven by a genetic algorithm, aiming to evolve the best individuals.

At the end of the evolutive process, the best ones are joint together in a

swarm of solvers forming a partial solver ensemble. A key control parameter

of the algorithm is the target hit ratio: the boundary that rules whether a

partial solver is worth to be kept alive in the genetic algorithm.

Once we count on a valid solver ensemble, the formulation of the �nal

labelling algorithm follows. Each partial solver contributes with none, one

or more solutions over its subspace. An ensemble of partial solvers builds
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the �nal labelling algorithm. As a result, not only is each marker matched

against its candidate with the requested con�dence but also the ensemble

may robustly decide if, conversely, it is better to take it as occluded.

be decided to be considered as occluded or just with no enough con�-

dence to guarantee the right labelling. Such algorithm is described in the

corresponding chapter and its reliability assessed against the ground truth.

A strong dependency is identi�ed between the target hit rate and how

bold is the resulting algorithm to label markers is presence of massive missing

data: the more demanding the hit rate, the less labelled markers in exchange

for a high hit con�dence and vice-verse. As a side result, the de�nition of the

suitability of a given marker distribution is settled in terms of capturability.

Summarizing, the contributions of the Thesis are the following ones:

� We provide a state of the art review up to the recent dates of the thesis

topics, namely optical marker labelling

� We provide an experimental dataset which has been published as open

access repository at the following address: http://doi.org/10.5281/

zenodo.1486208

� We have developed and tested an algorithm that generates the labels

of the 3D point clouds obtained by optical marker detection systems

for human motion capture. The point clouds generated at each time

instant are labelled independently, no tracking in time is required.

� This algorithm is able to produce labellings in real time in the presence

of occlusions

� The algorithm consists of an ensemble of classi�ers that are trained over

datasets from an speci�c motion, thus the solution has to be retrained

for each kind of motion to be analysed.

1.3 Publications

The Thesis is supported by the following achieved publications
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1. J. Jiménez-Bascones and M. Graña, "Preliminary Results on an AdaBoost-

Based Strategy for Pattern Recognition in Clouds of Motion Mark-

ers," 2016 Third European Network Intelligence Conference (ENIC),

Wrocªaw, Poland, 2017, pp. 239-244.

2. Jiménez-Bascones, Juan Luis & Graña, Manuel. (2017). �An Ensemble

of Weak Classi�ers for Pattern Recognition in Motion Capture Clouds

of Points.� 201-210. 10.1007/978-3-319-59162-9_21.

3. J.L. Jiménez Bascones, Manuel Graña, J.M. Lopez-Guede. �A solver-

ensemble strategy to deal with occlusions in the labelling of clouds of

motion markers.� Neurocomputing (in press).

4. Jiménez Bascones, Juan Luis, & Graña Romay, Manuel. (2018). Mo-

cap gait motion samples - Optical marker trajectories (Version 1.0.1)

[Data set]. Zenodo. http://doi.org/10.5281/zenodo.1486208

1.4 Contents of the Thesis

The contents of the Thesis are organised as follows:

� Chapter 2 provides a state-of-the-art review concerning the �eld of mo-

cap. The why and what for questions of this technology are answered

including and account of useful applications. The main di�erent exist-

ing solutions are discussed as well as that a number of publications are

mentioned to highlight the current interest of the community in this

area.

� In chapter 3 a description is made regarding the main components

and stages of an optical marker-based mocap system. The purpose

is to convey a better insight of the crucial role played by the marker

labelling, which is this Thesis main contribution. Consequently, the

description is not a balanced enumeration of the parts but instead the

stages preceding the labelling stand out above the others.
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� The chapter 4 is devoted to the marker labelling task and its resolution

tackled from an original approach. First of all, the problem is described

besides its boundary constraints. Afterwards, it is formulated as a

classi�cation problem in order to be dealt with machine learning tools,

namely weak and strong classi�ers and tree search algorithms. In a

�rst phase, an e�cient algorithm is de�ned to solve the particular

case where no markers are occluded. In the second phase, the solving

algorithm for the generic case is presented, built on the mining of the

most worthy instances of the later.

� In chapter 5 experimental results are given regarding both the e�ciency

and hit ratio of the presented algorithms. The methods are assessed

against the ground truth of a set of genuine capture data gathered on

purpose for this Thesis.

� Finally, in chapter 6 some conclusions are considered. Achievements

and shortcomings of this Thesis contribution are identi�ed and a draft

of future work is o�ered as an account for the pending todo wish list

in the future to cometh.
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Chapter 2

MoCap - State of the Art

Mocap industry comprises a variety of knowledge domains to make it possi-

ble. Over the last decades the requirements and solution for speci�c problems

evolved �and keep on doing� as so did the interest of users and developers.

In this chapter we provide a general view of the state-of-the-art, existing

solutions, practical applications, as well as a review of a number of relevant

publications to highlight the growing interest of the technical an scienti�c

community in the �eld. It will serve as foundation for a better understanding

of the marker labelling problem and its signi�cance by placing it in the right

context.

2.1 Interest in mocap

The use of primitive mocap forms can be traced back to the 1920s, when

the so-called �rotoscoping� started to be used by the Walt Disney Studios.

The artists projected live-action footage onto cell animation drawing tables,

which helped them to mimic the motion in animated cartoon characters

[9]. But it wasn't until the late 1980s and early 1990s that the modern

semi-automatic marker-based mocap turned up as part of a �ourishing �lm

computer animation industry. However, the systems were rather limited,

expensive and hard to operate. Way back when, the use of mocap was limited

to experts and con�ned in labs and research universities. But nowadays,

9
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improvements both in hardware and software have made possible a�ordable

systems that do not require specialised skills to be handled. As a proof

for that, recently many large mocap databases have been made available for

free or purchase, and even smaller studios and schools can a�ord multicamera

systems for production, teaching, and low-budget art projects. The mocap

potential has been unleashed on multiple applications ranging from character

animation to sport training. As a consequence, what has evolved the most

is the understanding of the medium [43] among the average public including

a wider variety of professional from di�erent �elds, who have started to

embraced it in the sight of its possibilities.

Movies, TV and gaming industry. Remarkable companies as Sony Im-

ageworks or Industrial Light and Magic have employed mocap to animate

background characters (crowds) as well as humanoid �ctional creatures in

movies as such as �Lord of The Rings� (see Fig. 2.1), �Titanic� or �Star

Wars� [9]. In these productions, the movements performed by a real ac-

tor are translated into an avatar, bringing him the subtle human pose and

action nuances that arti�cially built path trajectories do usually miss. Re-

cently, this technique broke through TV productions, where real and virtual

characters interact in real time both in live and prerecorded broadcasts.

Mocap is widely used in the production of video games. For instance,

Electronic Arts Canada has a huge in-house mocap studio1 to record motion

snippets that, once reordered and concatenated in real time on game con-

soles, they manage to reenact any motion during the game following on the

player's whims.

Medical applications. Gait analysis has been a very successful applica-

tion of human mocap, allowing �ne diagnosis and follow up of treatments. An

abnormal gait movement pattern may be due to a variety of patient's lesions:

it could be at the level of the central nervous system (cerebral palsy), in the

peripheral nervous system (Charcot-Marie-Tooth disease), at the muscular

level (muscular dystrophy), or in the synovial joint (rheumatoid arthritis).

1https://www.ea.com/news/tour-the-capture-studio-at-ea-canada
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Figure 2.1: Mocap in Lord of the Rings

Figure 2.2: Helen Hayes Hospital Marker Set, from Vaughan et al.

As explained in [12], the use of motion capture analysis techniques in clin-

ical gait analysis help doctors to understand the pathology and determine

methods of treatment. Figure 2.2 shows the standard optical marker model

used for gait analysis.

Other medical research areas rely on motion capture technologies as data

source or just for the validation of their results. To mention a few, Ferrari

et al. [17], propose and validate a protocol named Outwalk to measure

the thorax-pelvis and lower-limb kinematics during gait in free-living condi-

tions. Its validation is carried out with the help of a combination of inertial

sensors and optoelectronic systems. Also, Sartori et al. [50] use motion

capture technologies together with an EMG-driven musculoskeletal model

of the knee joint to predict muscle behaviour during human dynamic move-

ments. Another example is the work of Liu et al. [38], where the validation

experiments were carried out by using the reference measurements of a com-



12 CHAPTER 2. MOCAP - STATE OF THE ART

mercially available measurement system installed in a gait laboratory. The

goal was to develop a mobile force plate and 3-D motion analysis system

to measure triaxial ground reaction forces and 3-D orientations of feet. A

motion capture system, based on high-speed cameras, was adopted to sup-

port the experimental results of the developed system. Another work by

Yang et al. [61], presents a generic method to predict ground reaction forces

(GRFs). Motion capture was used to obtain postures for common standing

reaching tasks, whereas force plates were employed to record GRF informa-

tion in order to validate the prediction model. One more example is the

work of Siddiqui et al. [52], where the goal is the evaluation of de�cits in

exploratory behaviour in an open-�eld setting using a wireless motion cap-

ture. Twenty-one stable adult outpatients with schizophrenia and twenty

matched healthy controls completed the exploration task. The motion data

were used to index participants locomotor activity and tendency for visual

and tactile object exploration. Finally, Delrobaei et al. [13] focus on the

assessment of full-body tremor as the most recognised Parkinson's Disease

(PD) symptom. The main assessment tool was an inertial measurement unit

(IMU)-based motion capture system to quantify full-body tremor and to

separate tremor-dominant from non-tremor-dominant PD patients as well as

from healthy controls. In addition, they claim that lack of a uni�ed moni-

toring has been a major limitation to optimise therapeutic interventions for

these patients.

Sports. Human body movement is crucial when it comes to sports. No

matter if we are dealing with technical gestures, long repetitive actions or

highly stressed musculoskeletal e�orts, the way the movement is developed

plays a very important role when we try to either improve the performance

or avoid sport injuries. Sports have received a lot of attention by the mocap

industry, as long as their popularity spreads among amateur sportsmen. As a

consequence, mocap systems are increasingly being used for sports training.

For example, Wan and Shan [58] collect 3D movement data to study and

identify several risk factors related to the development of muscle repetitive

stress injuries (RSIs). Based on the results, they propose a set of measures
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that can be applied to reduce the risk of RSIs during learning/training in

young sportsmen. Another common sportive research and development topic

is the Vertical Jump Height (VJH) and the Drop Vertical Jump (DVJ) land-

ing. While optimization of VJH is the primary target of any sport, DVJ

causes injuries on lower extremity. Therefore, in the research activity for [3],

Inertia Measurement Units (IMUs), an optical mocap system from Qualisys2

and muscle activity measurement sensors are integrated for customised DVJ

and VJH measurements.

A motion database for a large sample of penalty throws in team handball

is described by Helm et al. [25], performed by both novice and expert penalty

throwers. As well as the methods and materials used to capture the motion

data, additional information is given on the marker placement of the players

together with details on the skill level and/or playing history of the expert

group. Afterwards, this data set is employed in [24] to examine the kinematic

characteristics of captured movements by applying linear discriminant (LDA)

and dissimilarity analyses.

Fast and highly precise movements take advantage of motion capture sys-

tems too. A �agship example is the golf swing (�g. 2.3), where the kinematic

sequence of the movement plays an essential role. For instance, the purpose

of Cheetham et al. [10] was to compare key magnitude and timing parame-

ters of the kinematic sequence between recreational players (amateurs) and

PGA touring professionals (pros). To do so, a representative swing from

each of 19 amateurs and 19 pros was captured using three-dimensional (3D)

motion analysis techniques. All the magnitude variables showed a signi�-

cant di�erence between the amateurs and pros, although the mean of the

peak times showed no signi�cant di�erence between the pros and amateurs.

The study found out that the peaking order of the body segment speeds

was di�erent between pros and amateurs. Wang et al. [59] claim that in

order to understand an e�ective golf swing, both swing speed and impact

precision must be thoroughly and simultaneously examined. To probe their

hypothesis, seven golfers with di�erent handicap levels were recorded using

high speed video cameras. Another example of the importance of capture
2https://www.qualisys.com/



14 CHAPTER 2. MOCAP - STATE OF THE ART

Figure 2.3: Mocap playback in a swing golf analysis software named Gears
and powered by Optitrack)

techniques in golf is the work of Betzler et al. [6], where limitations of 3D

motion analysis in gol�ng are described, identifying several golf-speci�c error

sources. Among them is marker occlusion and the clutter of high numbers

of markers in a small area, which are closely related with the problem of

marker tracking.

Bike cycling (�g. 2.4) is another example of sportive activity that can

cause injuries due to repetitive movements if done in a wrong way. On the

other hand, a right biker position over the bike together with an appropriate

bike �tting can signi�cantly improve the overall performance. Therefore,

bike �tting is the perfect �eld where motion analysis stands out as a cutting

edge technology, and a number of papers have been published as result of

its application. For instance, Fonda et al. [19] face the lack of consensus

on what method (dynamic vs. static ones) should be used to measure the

knee angle in bike �tting, conducting a research is conducted on the validity

and reliability of di�erent kinematics methods. All methods were fed with

data coming from a Vicon MX motion analysis system (Oxford metrics)

consisting of thirteen cameras recording with a sampling rate of 250 Hz

and with a residual measurement error less than 1 mm. All the dynamic

methods have been found to be substantially di�erent compared to the static



2.1. INTEREST IN MOCAP 15

Figure 2.4: Mocap for bike �tting analysis

measurements. Such results wouldn't be possible without the use of tracking

methods. Regarding the relevance of 2D vs 3D measurements, the main

purpose of Garcia et al. [20] was to test the validity and sensibility of two

motion capture systems (sophisticated and expensive 3D vs low-cost 2D)

to analyse angular kinematics during pedalling. The main conclusions is

that both performs well regarding angular kinematic analysis in the sagittal

plane, but only the 3D systems can analyse asymmetries between left and

right sides. Additional validity research is carried out by Bouillod et al. [8],

where the 3D motion analyser from Shimano3 and a Vicon4 are used to collect

simultaneously the movement of cyclist at di�erent pedalling cadences. The

�nal conclusion is that experts and scientists should use the Vicon system

for the purpose of research whereas the 3D motion analyser from Shimano

could be used for less demanding bike �tting purposes. Finally, Moore et

al. [48], use motion capture techniques to prove that the bike rider uses

the upper body very little when performing normal manoeuvres, just using

steering input for bike control. The study found out that other motions such

as lateral movement of the knees were used in low speed stabilisation.

3https://www.bike�tting.com/
4https://www.vicon.com/
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Activity recognition. Ongoing human action recognition is a challeng-

ing problem that has many applications, such as video surveillance, patient

monitoring, human-computer interaction, and so on. Over the last years, a

number of research papers have been published on the topic. For instance,

Patrona et al. [49] present a framework for real-time action detection, recog-

nition and evaluation of motion capture data. The automatically segmented

and recognised action instances are fed to the framework action evaluation

component, which compares them estimating their similarity. Exploiting

fuzzy logic, the framework subsequently gives semantic feedback with in-

structions on performing the actions more accurately. Similarly, Barnachon

et al. [5] show another framework to recognise streamed actions coming from

Motion Capture (mocap) data. The proposed method is based on histograms

of action poses, extracted from mocap data, that are compared according to

Hausdor� distance, having the advantage of allowing some stretching �ex-

ibility to accommodate for possible action length changes. Another paper

addressing the human action recognition is [26], where reconstructed 3D

data acquired by multi-camera systems is processed as 4D data (3D space +

time) to detect spatio-temporal interest points (STIPs) and local description

of 3D motion features. Local 3D motion descriptors, histogram of optical 3D

�ow (HOF3D), are extracted from estimated 3D optical �ow in the neigh-

bourhood of each 4D STIP and made view-invariant. The local HOF3D

descriptors are divided using spatial pyramids to capture and improve the

discrimination between arm and leg-based actions. A bag-of-words (BoW)

vocabulary of human actions is built based on these pyramids, which is com-

pressed and classi�ed using agglomerative information bottleneck (AIB) and

support vector machines (SVMs), respectively.

In order to conduct their experiments, Ijjina et al [27] take advantage of

a number of datasets containing RGB-depth video camera motion sequences.

These video stream samples are binarized to extract silhouette information

which in turn are given as input to the convolutional neural network to learn

the discriminative features. Connected to the topic of gait analysis, Karg

et al. [30] examine the capability to �gure out the mood state thought the

gait movement. By analysing the motion capture data, it is revealed that
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expression of a�ect in gait is covered by the primary task of locomotion.

In particular, di�erent levels of arousal and dominance are suitable for be-

ing recognised in gait. Hence, it is concluded that gait can be used as an

additional modality for the recognition of a�ect.

Furthermore, Kadu et al. [29] assert that automatic classi�cation of hu-

man mocap data has many commercial, biomechanical, and medical applica-

tions. They present a classi�cation method that transforms the time-series

of human poses into codeword sequences, taking the temporal variations of

human poses into account. A family of pose-histogram-based classi�ers is

developed to examine the spatial distribution of human poses, merge their

decisions and soft scores using novel fusion methods. The results are vali-

dated on a variety of sequences from the Carnegie Mellon University5 (CMU)

mocap database. Likewise, Mao et al. [36], present a framework for recog-

nising action by means of a 3D skeleton kinematic joint model, aimed to the

e�ciency in terms of computational cost. To develop their research, the au-

thors use mocap samples from the Microsoft Research Redmond-Action 3D6

and the Carnegie Mellon University data bases. Tensor shape descriptor and

tensor dynamic time warping are proposed to measure joint-to-joint similar-

ity of 3D skeletal body joints. Afterwards, a multi-linear projection process

is employed to map the tensors to a lower dimensional subspace, which is

classi�ed by the nearest neighbour classi�er.

The evaluation of the quality of workouts and sport performance is a

straight application of automatic movement classi�cation. An illustrative

example is the automatic performance evaluation of dancers, studied by

Alexiadis et al. [2], using mocap data acquired from a Kinect-based hu-

man skeleton tracking. In this paper compact quaternionic vector-signal

processing methodologies are proposed. Thanks to the use of quaternionic

cross-correlations, which are invariant to rigid spatial transformations be-

tween the users, it is possible to synchronise dancing sequences from di�er-

ent dancers. The �nal score of the performance is done through a weighted

combination of di�erent metrics, optimised using Particle Swarm Optimisa-

5http://mocap.cs.cmu.edu/
6http://users.eecs.northwestern.edu/~jwa368/my_data.html
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tion (PSO). Similarly, Tits et al. [54] present a large 3D motion capture

data set of martial art gestures executed by participants of various skill lev-

els. The data was captured simultaneously by an optical motion capture

system from Qualisys composed by 11 cameras and a Microsoft Kinect V2

time-of-�ight depth sensor. The article details the way the data has been ac-

quired, including procedures and manual cleaning. The data can be used to a

wide variety of research purposes, such as a preliminary study on extracting

morphology-independent motion features for skill evaluation [55] .

Research with mocap as primary interest. Following the interest that

mocap awakes in di�erent �elds, surveys on the state of the art regarding

the technologies, available commercial solutions, limitations, pros and cons,

are the primary topic of a number of publications. Indeed, the assessment of

measuring tools represents a research area by itself [4][14][46][56]. All these

works have in common the aim to assist researchers and medical doctors

in the selection of a suitable motion capture system for their experimental

set-up for a variety of applications.

Moueslund et al. [47] present a survey review on advances in human

motion capture and analysis covering over 350 publications in the period

2000-2006. The authors assert that human motion capture continues to be

the subject of an increasingly active research. The research e�orts address

towards reliable markerless tracking and pose estimation in natural scenes.

The automatic understanding of human actions and behaviour is an appeal-

ing research topic too. Regarding the available technologies, Menache [43]

categorizes the most extended ones into optical, electromagnetic, and iner-

tial. Optical motion capture systems are is based on the input of several

digital CCD cameras placed around the human body. The magnetic and

inertial systems make use of small electronic devices attached to the objects

to be tracked (wearable). These receivers or sensors are connected to an

electronic control unit, in some cases by individual cables but also by wire-

less radio signals or a combination of them. Cheng et al. [11] discuss the
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problem of capturing human motion in a natural environment. The moti-

vation to achieve reliable markerless tracking solutions and the challenges

it entails is raised and the advantages and disadvantages of di�erent meth-

ods are compared and discussed. Estevez et al. [15], refer the creation of

an open mocap data base (the Mocap-ULL), including the study of all as-

pects of mocap, from system handling (users guide) to data interpretation.

The paper also makes a review of state of the art of the motion capture tech-

nology (electromechanical, electromagnetic, optical marker-based and other)

and current �elds of application.

Another matter of interest is the implementation from scratch of a com-

plete mocap system, o�ering a de�nite solution for each of the process stages.

Such ambitious goal is tackled in a number of publications. For instance,

Guerra-Filho [22] de�nes what optical motion capture is and its main moti-

vation and applications. Then, it lists the required resources from cameras

to a capture area and marker suits. Later, the paper presents a framework

where each of the sub-problems involved in mocap are lodged and solved in

a modular way. Such sub-problems are listed as well, being among them the

temporal correspondence problem (tracking) that involves the matching two

clouds of 3D points representing detected markers at two consecutive frames

(marker labelling). The work covers the computation of the rotational data

(joint angles) of a hierarchical human model (skeleton) and further issues

as inverse kinematics and dynamics and the use of standard output data

formats available for motion capture.

Most of the currently available mocap software packages are expensive

and proprietary. Flam et al. [18] propose a software architecture for real

time motion recording and processing, focusing on its is �exibility which

would allow the addition of new optimised modules for speci�c parts of the

capture pipeline. The architecture encompasses the steps of initialisation,

tracking, reconstruction and data display. According to the authors, despite

lacking the robustness and precision of the compared commercial solutions,

the e�orts responds to the interest for an open source solution and de�nitely

it serves as an incentive for future research in the area.

Another work facing the implementation of a marker-based mocap sys-
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tem is the thesis by Mehling [42]. This work thoroughly covers all topics

from hardware, IR lightning, camera setup, 2D blob detection, 3D camera

calibration and 3D reconstruction. When it comes to the subject of marker

tracking, the author claims that from the Cartesian marker position itself no

information can be derived to tell which object a reconstructed marker be-

longs to (i.e. labelling). Then he proposes the labelling of groups of markers

(instead of markers individually) belonging to the same rigid body (constel-

lation of markers) called tracking target. For each tracking target, a distance

matrix is computed containing all distances between its markers and such

information is used to �t it among the unlabelled reconstructed points. If

the �tting is good enough, the labelling follows.

2.2 Mocap Technologies

2.2.1 General overview

At the base of any motion capture system lies the physic principle for which

the movement is detected. Such detection is eventually carried out by some

form of electronic device which transforms the stimulus into signals to be

processed and transformed in raw data of di�erent �avours. Being the sensor

hardware the most visible part of any mocap system, they use to be classi�ed

accordingly. But indeed, that is not the only form of classi�cation. As long as

the main contribution of this Thesis is the description of a marker labelling

algorithm, the classi�cation chosen here is organised to give it a special

prominence.

2.2.2 Wearable systems

Wearable mocap systems encompasses all the methods involving the attach-

ment of the sensors to the object whose movement has to be tracked. In the

case of human body capture the person to be tracked must bear the sensors

on the body, one device for each limb segment �xed with glue, adhesive tapes

or velcro straps. The sensors are sometimes wired between them and to a

host computer, but the market is moving fast towards full wireless solutions
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Figure 2.5: Example of electromechanical suite from Gypsy

in order to make the set more comfortable and less intrusive. When com-

pared to non wearables, these systems allow the person to move in larger

areas, but in exchange they turn out to be a bit annoying to carry because

of their weight and size.

Electromechanical The person must wear a special suit (see �g. 2.5) with

rigid parts made of metal or plastic rods linked by potentiometers. According

to the body movement, the costume and its structures adapt to it copying its

actual position. Meanwhile, the potentiometers collect data on the degree

of openness of the joints and the collected information is transmitted back

to the software running on a host computer through wires or antennas. The

downside is that the system is rather obtrusive, lacking the ability to measure

the position of the person respect to an inertial system of reference, since

all the measurements are relative displacements between parts of the same

body.

Electromagnetic In the case of electromagnetic mocap systems, an arti-

�cial low-frequency electromagnetic �eld is generated all along the capture

area. A set of electromagnetic sensors, placed over the body to be tracked,

measure the orientation and intensity of electromagnetic �eld and send the
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data to a central computer which estimates the position and orientation of

each sensor relative to the arti�cially generated �eld.

The main drawback of this method is the presence of uncontrolled elec-

tromagnetic �elds or large metallic objects that may interfere with the �eld

generated by the system. In addition to that, both the accuracy and the

sampling rate is rather poor when compared with other methods like the op-

tical motion capture. Finally, the movements are constrained to the volume

where the arti�cial �eld can be kept.

IMUs Inertial Measurement Units (inertial for short) employed in mocap

applications are small electronic devices (see �g. 2.7) provided with triax-

ial accelerometers and gyroscopes. Very often, a triaxial magnetometer is

added to the set, hence getting the name of 9 axis sensor after the total

number of independent magnitudes they can measure. They are also known

as gyroscopes or just gyros, since it is the most attention grabbing part of

the hardware.

Nowadays, the motion capture based on inertial devices is probably the

best alternative to optical mocap. It gets rid of the occlusion problem in-

herent to the computation of correspondences between camera views, and

it operates in bigger areas since the person is not subjected to stay in the

�eld of view of static sensors, because the sensors are attached to the body

using a sort of special suit (Fig. 2.8). Moreover, the mass production of gy-

roscopic sensors and wireless connectivity components for the mobile market

has notably reduced the price of the units increasing the diversity of avail-

able con�gurations regarding their characteristics and performance. When

compared to the optical solution, the inertial devices still shows two main

drawbacks: lower levels of accuracy and the inability to catch natively the

absolute position of the object to be tracked. However, both de�ciencies can

be partially overcomed by sophisticated reverse kinematics calculations.

The basic working principle is as follows. A triaxial gyroscope is a sen-

sor able to measure the rotational speed relative to a reference frame local

to the sensor itself. By numeric integration of the speeds, the absolute 3D

rotation can be estimated. However, despite an accurate measurement of
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Figure 2.6: Diagram example of an usual IMU fusion algorithm

the rotational speed at high sampling rates, eventually the estimation suf-

fers from drifting due to small measurement and numerical integration errors

that are added up along the time. In order to compensate such drifting, the

use of the accelerometer and magnetometer signals come in help, but they

must be handled carefully. Indeed, as in the case of the purely electromag-

netic sensors, the magnetometer readings are disturbed for the presence of

inhomogeneous magnetic �elds caused in turn by near metallic objects or

for arti�cial magnetics sources such as the printed circuit board itself and

other alien electronic equipment. On the other hand, the accelerometer not

only does read the tilt orientation, but also the e�ects of the variation in

the velocity (the acceleration) of the inertial sensor. To worsen things, the

readings are also in�uenced by temperature changes. Therefore, even if the

gyros are calibrated at the factory to have a zero o�set in absence of rota-

tions, changes in the temperature cause the so called gyroscopes' zero-bias

drift.

Nevertheless, despite their reading are not fully reliable, the information

regarding the orientation of the sensor is somehow there, so we can expect

that a smart estimation of it should exists. The solution comes in the form

of a fusion algorithms �very often a tailored variant of a Kalman �lter, see

�g. 2.6� which carries out a weighted combination of the signals in order

to overcome the e�ect of drifting.

The literature is full of articles covering this topic, from the fusion algo-
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Figure 2.7: Common IMU circuitry and in-house commercial unit device
from Xsens

rithm itself to a wide variety of calibration procedures. Many open source

software implementations of diverse levels of complexity are also available

to be used out of the box. All things considered, in the end the typical ab-

solute measurement errors, very dependent on the kind of movement, range

from 0.5 up to 10 angular degrees. Such errors rates might be acceptable for

some application such as character animation, but unsuitable for the more

demanding medical applications.

In the �ght against the position estimation drifting, the next natural step

is to take into account the kinematic constraints tied to the human skeleton.

Once the individual rotation of each device is estimated, undoubtedly the

combination of all rotations must meet the kinematic constraints imposed

by the geometry of the joints including the rigid contact of the feet with the

�oor. For instance, Kok et al. [31] present an optimisation-based solution

to magnetometer-free inertial motion capture, taking advantage of the inclu-

sion of biomechanical constraints for the handling of non-linearities and to

overcome drifting. Interestingly, the work makes use of an optical mocap sys-

tem as validation assessment tool for the capture of the human lower train.

The use of kinematic constraints invariably involves the use of limb measure-

ments. Hence, Zhou et al. [67], use premeasured lengths of the upper and

lower arms in order to compute the position of the wrist and elbow joints

via a proposed kinematic model for the upper and lower arms. According to

the authors, the results validated against that of a optical mocap, show an

error in position lower than 0.009 meters, with an RMS angular error lower
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Figure 2.8: IMU motion capture suit

than 3 degrees.

A original approach is taken by Goulermas et al. in [21], where a neural

network estimates joint kinematics by taking account the proximity and gait

trajectory slope information through adaptive weighting. Multiple kernel

bandwidth parameters are used that can adapt to the local data density.

The validation is carried out by comparing the results with those given by

commercial inertial capture systems as well as an optical tracking set up.

Another major issue posed by the use of wearable fabric-embedded sen-

sors is the undesired e�ect of fabric motion artefacts corrupting movement

signals (and actually, this problem is faced also by the optical marker-based

mocaps). Michael and Howard [45] present a nonparametric method to learn

body movements. The undesired motion artefacts are dealt with as stochas-

tic perturbations of the sensed motion and orthogonal regression techniques

are used to build predictive models of the wearer's motion that eliminate

these artefacts in the learning process.

Alternative wearable systems There is a number of wearable solutions

developed outside the main streams of the industry trying to explore and

push the limits of alternative sensors. For instance, �exible nanomateri-

als with excellent electrical properties such as carbon nanotubes, metallic

nanowires or graphene, are being used in strain sensors for the application of

human motion monitoring [63]. Thanks to its ability to be bent or twisted,

it is possible to detect complex movements combining high sensitivity and a
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broad sensing range, even including the detection of the pulse and heartbeat.

Zhang et al. [63] work with a wearable graphene-coated �ber sensor manu-

factured on purpose for their experimental work. Particularly, the device is

tested to quantify the human body movements during sport performances.

Similarly, Koyama et al. [32] report a single-mode hetero-core optical �ber

sensor manufactured and sewed to be sensitive to stretch on the weared fab-

ric. A basic setup composed by just two sets of sensors sense three kinds of

motions at the trunk, which are ante�exion, lateral bending, and rotation

and provide enough information to analyse a swing golf movement.

In the line of unconventional hardware, it is possible to �nd heterodox

approaches as the ones attempted by Laurijseen et al. [35], that propose

a solution based on the adoption of ultrasonic transmitters and receivers.

The transmitters simultaneously broadcast ultrasonic encoded signals from

a distributed transmitter array (which consists of at least three elements).

Such signals are caught by the receivers built of multiple mobile nodes, each

one equipped with at least three microphones. Using signal processing, a

distance can be calculated between each transmitter and microphone result-

ing in at least nine distances for each mobile node. Using these distances in

combination with the con�guration of the transmitters and the microphone

array, not only the XYZ-position of the mobile node but also its rotation can

be estimated. On the other hand, Krigslund et al. [33] present a method

based on a radio frequency identi�cation (RFID) with passive ultra high fre-

quency (UHF) tags placed on the body segments whose kinematics have to

be tracked. The basic principle lies in the fact that the inclination of each

tag can be estimated based on the polarisation of its responses caught by

dual polarised antennas.

Likewise, Baradwaj et al. [7] use IR-UWB (impulse radio-ultra wide-

band) technology to build compact and cost-e�ective body-worn antennas

able to locate and track human body limb movements. The UWB can be

used for positioning by utilising the time di�erence of arrival (TDOA) of the

RF signals between the reference points (beacons) and the target (wearable

device), estimating the distances between them according to the time that it

takes for a radio wave to pass between the two devices. Counting on at least
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three reference points, the calculation of the actual XYZ position follows.

The accuracy achieved with the ultra-wideband technology is several order

of magnitude greater than that of systems based on IMUs, RFID or GPS

signals. Furthermore, the signals can penetrate walls making the technol-

ogy suitable for indoor environments because UWB signals maintain their

integrity and structure even in the presence of noise and multi-path e�ects.

2.2.3 Markerless Optical Systems

The systems discussed so far entails the use of some kind of hardware devices

to be worn by the body to be tracked. The enticing idea of getting rid of

those obtrusive junk has been �and still is� a topic of steady and active

research interest. Ideally, the person to be tracked would develop free move-

ment (dancing, wrestling, hugging, ...) in any environment (i.e. no chroma

background is needed) without any item attached to its body, (i.e. excludes

tight capture suits, visual tags, �ducial markers, etc) while being recorded

by calibrated, conventional colour cameras. Image segmentation and multi-

view image matching techniques are used to massively track detected salient

points over the person's skin and clothing. In the end, a human kinematic

model is �tted to the cloud of the captured points satisfying kinematic, dy-

namic and/or probabilistic constraints. All in all, the huge variety of the

input data �no restrictions at all when it comes to background, clothing,

scene environment, movement complexity� makes the tasks really challeng-

ing.

So, in Liu et al. [39] present an algorithm able to track multiple char-

acters using a multiview markerless approach. A probabilistic shape and

appearance model exploiting multiview image segmentation is employed to

segment the input images to determine the image regions each person belongs

to, assigning each pixel uniquely to one person. The segmentation allows to

generate separate silhouette contours and image features for each person,

thus reducing the ambiguities. From the shapes and a human articulated

template, a combined optimisation scheme is applied to �t each individual

pose. Afterwards, even a surface estimation is carried out to capture detailed
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nonrigid deformations, despite the physical model of the cloth is assumed to

be unknown.

Similarly, Zhang et al. [65] present another multi-view approach. In

this case, a multilayer search method is proposed where a new generative

sampling algorithm is introduced: instead of assuming an available body

model �tting the subject, the new approach automatically creates a voxel

subject-speci�c 3D body model which best �ts the shape and that can be

created from a large range of initial poses. Despite the parallelization of the

algorithm to speed up the calculations, real time response is limited to no

more than 9fps.

The reconstruction of the movement is carried out by a two steps algo-

rithm by Li et al. [37]. To begin with, a dense depth map estimation is

computed solving the correspondences of points across the cameras. To do

so, in addition to the similarity in the luminance, gradient and smoothness

constraints, the epipolar geometry (derived from the geometric calibration of

the the cameras) is taken into account. A numerical solution for the minimi-

sation of an energy function yields the depth maps of all the views. Finally,

in the seconds step, the point clouds of all the views are merged together

and reconstructed into a 3-D mesh using a marching cubes method with

silhouette constraints.

The emergence of a�ordable RGB-depth devices such as the Microsoft

Kinect (see �g. 2.9, up to 35 million units sold until 2017 7), gave a fresh

starting point for many research approaches. These devices provide a RGB

image matrix together with an estimation of the depth for each pixel, which

certainly is a useful source of data when it comes to motion tracking. How-

ever, being their target market the interaction with entertaining computer

software (replacing the traditional input controllers), the depth map lacks

the required accuracy for demanding mocap applications. Nevertheless, a

number of research e�orts tried to push the limits of what can be achieved

from them. For example, Liu et al. [40] present a real-time probabilistic

framework to denoise Kinect captured postures. To do so, a set of Gaussian

Processes are de�ned in local regions of the state space and employed to
7Source: https://en.wikipedia.org/wiki/Kinect
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Figure 2.9: Kinect RGB-Depth device unit

improve the position data obtained from Kinect. To ensure that accurately

acquired areas remain unchanged, a set of joint reliability measurements is

added into the optimisation framework together with a temporal consistency

term to, in turn, constrain the velocity variations between successive frames.

2.2.4 Marker-based Optical Systems

Marker-based optical systems are able to capture the movements of any ob-

ject by tracking special target points �known as markers� attached to it.

The position of the markers is detected in the images captured by cameras

equipped with an ad hoc lightning system. The markers are usually small

spheres coated with a re�ective material that returns back the light gener-

ated next to the camera lenses, so that the bright re�ective markers can be

easily segmented applying a trivial set image intensity threshold, discard-

ing all other elements such the background, skin and clothing. The planar

position of the marker within the two-dimensional BW images captured by

the cameras is estimated as the grey-level weighted centre of gravity of con-

nected pixels. Provided the cameras are calibrated, it is possible to use

photogrammetric techniques to turn a collection of 2D marker centroids into

3D absolute coordinates for each camera pair. The process is repeated over

the time at the cameras frame rate, so that the sequence of Cartesian co-

ordinates of the same marker along a period of time build up its temporal

trajectory. However, since all the markers appear identical it is required

some sort of tracking process to link the coordinates of the same physical

point in contiguous frames, thus avoiding accidental marker identity swaps
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that are di�cult to recover from. To avoid such errors and to provide a high

coverage of the capture volume, an optical marker capture system typically

consists of around 2 to 32 cameras, or even hundred of them in high-end fa-

cilities. But a high number of cameras does not guarantee a marker identity

swap-free tracking and de�nitely raises the required budget as well as the

setup complexity.

Marker-based Optical Systems is doubtless the �agship of mocap indus-

try. It is a well known technique and widely accepted as the reference in the

�eld of animation, sports and medical analysis with dozens of successful �eld

application. Despite its drawbacks (namely: expensive hardware/software,

di�cult to set up, and tricky to handle), its hegemoty hasn't been beaten

in the last decades, although many attempts have been driven towards more

a�ordable, reliable and ease-to-use alternatives. Partly, this is due to the

advances in the industry of optical systems providing the market with af-

fordable hardware and software accessible enough to be used out-of-the-box

requiring only a short training.

By and large, most of the issues risen during the design of a optical mocap

(see Chapter 3) have been discussed in the literature and known solutions

are available for them. For instance, camera calibration (see section 3.3) is

a topic widely covered in the �eld of machine vision. Biomechanical compu-

tation, in charge of turning marker XYZ components into meaningful body

parameters such as vectors, angles, degrees of freedom (Figs. 2.10 and 2.11),

has been tackled in mechanical engineering, whereas the representation of

the capture data (3D rendering, chart visualisation, ...) falls in the domain

of computer graphics and data visualisation. Regarding the hardware (cam-

eras and wires), suitable solutions including the lightning, can be borrowed

from the industrial vision machine market.

That said, however, a key problem to be solved for marker-based capture

as it is the automatic marker labelling, is seldom covered in the literature.

The most immediate consideration is that we can identify each marker in

accordance to some continuity restriction along the frames, also supported

by the kinematic constraints of the underlying human skeleton. Hence, the

natural approach [18][22] is to keep the track along the time axis using trajec-
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tory estimators, predicting next marker positions from those in the previous

frames. In some cases, such prediction is achieved by means of a Kalman

�lter tuned to �t each particular marker behaviour. Given an estimation

on the movement, an energy function is formulated between the predicted

trajectory and the provided point cloud and some kind of energy minimi-

sation algorithm is applied to assign the labels. The value to optimise is

very often the mean or weighted distance between the candidates and the

predicted marker positions [44][51][41] while the minimisation algorithm is a

tailored implementation of the well known Hungarian method [34]. However

this strategy turns out to be error prone when it comes to deal with marker

occlusions (points kept out of sight of the cameras) lasting several consecu-

tive frames and have di�culties to recover from small errors, often leading to

divergent behaviours. In absence of a reliable trajectory estimation the goal

function becomes untrustworthy to assess the right labelling. On the other

hand, the appraisal of future marker movement based in its recent trajectory

is simply too uncertain for very abrupt movements. As it has been pointed

out, it is like `trying to drive your car forward looking through the rear view

mirror.'

So as to strengthen the marker labelling recovery after a long lasting

occlusion, some authors take advantage of the underlying human skeleton

geometry by the identi�cation of the markers belonging to the same body

limb. The markers can be clustered analysing the pairwise distance along

the time keeping in mind that the skin movement and other artefacts pre-

vents us from using classical rigid body restrictions. The identi�cation of

a reappeared maker is backed up by the identi�cation of those sharing the

same limb. This method may fail in case of massive occlusions where nearly

all markers from the same limb have been hid for too long. Some authors

[44][41] face these most adverse situations, exploiting the fact that the mark-

ers are placed over a articulated mechanism. Not only do the markers belong

to the same rigid bodies and therefore the distances among them are sup-

posed to remain the same along the time [62][42], but also the limbs are

linked between them by means of physical joints. Hence, the overall range of

movements is limited. In other words, they suggest to make use of kinematic
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(direct or inverse depending on the author) calculation techniques. Hence,

the number of degrees of freedom (DOF) of the underlying mechanism is re-

stricted and so is the feasible marker labelling. This contributes to identify

markers after a long time occlusion.

For instance, in [44], after standing the person to be tracked in an approx-

imate T-pose, the proposed method can estimate the skeleton con�guration

through least-squares optimisation. Afterwards, a probabilistic tracking is

carried out exploiting the skeleton structure to prevent the algorithm from

drifting the it away. At each frame, the algorithm determines the maximum

likelihood skeleton con�guration (pose) given the unlabelled, noisy observa-

tions of markers. The goal is to �nd the con�guration of the skeleton that

minimises the quadratic error, which is the quadratic distance between the

estimated position of the markers for a given con�guration and the actual

marker observation. To improve the feasibility of the skeleton pose estima-

tion, penalties are included in the goal function for those joint con�gurations

that are outside of certain limits de�ned by considering the natural ranges

of the joint movement. For instance, the knee joint is constrained to a plane

(1 degree of freedom) and enclosed in a certain range that prevents it from

bending forwards. At each frame, an optimisation procedure is carried out,

usually converging after a few iterations. In the backstage lies the con�dence

in the correctness of the pose estimation for the previous frame, as from it

the initial estimation of the next iterative process is initialised. This depen-

dency on previous frames may lead to the failure of the convergence when

massive or lasting occlusions occurs.

Yu et al. [62] point out that the markers must be labelled along the time

in such way that a certain distances between them remain approximately

constant up to a given tolerance. Indeed this is true for markers placed over

the same limb (rigid body), assuming small shifts due to skin/mesh/clothing

artefacts. Moreover, even markers placed in di�erent limbs must keep a range

of distances between them, as is the case of markers placed on the head re-

spect to markers in the hips. Therefore, for all the unlabelled markers along

the frames of a training session, the standard deviation of all possible pair

distances are computed. After that, the markers are clustered in groups
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Figure 2.10: Human body kinematic model (left) and leg detail (right)

with a group-internal standard deviation small enough to form a rigid body

(interestingly, this links right way with the concept of feature discussed later

in 4.3). These clusters, together with their internal distances and standard

deviations, are taken into account during the labelling stage. At each consec-

utive frame, the correspondences are progressively assigned in an exhaustive

search so that the markers achieve a computed score according to how well

they �t the learnt distances. To speed up the process, only a few candidates

are considered for each marker relying in the continuity of its trajectory.

Again, the correctness of the labelling in the previous frame plays a crucial

role in the overall performance.

Shubert et al. [51] also ask the person to be tracked to start in T-stance

to initialise the tracking process. However, the problem takes a more generic

shape, because their goal is the automatic initialisation of the tracking of an-

imals who will barely take notice of the system demands. In their approach,

the authors make use of a large database of previously observed poses for

the corresponding skeleton. Given a new initial frame, the set of markers are

matched across the database, scaling and rotating in whatever way it takes
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Figure 2.11: Marker based mocap suite and its 3D counterpart

to �t a particular sample. Several considerations, some based on a k-means

algorithm, are made to speed up the whole process, discarding most of the

false matches at an early stage. After the initialisation, the tracking itself

follows. The most likely skeleton con�guration is the one which minimises

the distance between the predicted marker position and the observations.

And identically, the goal function includes a quadratic joint limit cost term,

which penalises abnormal joint con�gurations.

The marker labelling turns up to be particularly di�cult in the case of

hand tracking due to self-occlusion between the �ngers. In [41], an algorithm

is presented for the fully automatic tracking of hands, where a kinematic

model of the underlying skeleton is employed to resolve ambiguities. The

method tries to �t models (rigid or articulated) by minimising the overall dis-

tance error to the 3D unlabelled point data. Initially, the models are aligned

to the target by trying all possible combinations in a brute-force manner and

selecting the assignment with the lowest cost using the Hungarian method.

Afterwards, the skeleton pose is estimated by inverse kinematics, minimis-

ing an energy function that represents the least squares error between the

models and the targets. In contrast to direct kinematics, where the position

of each body in an open loop is explicitly computed from the degrees of

freedom (DOFs, mainly angles at the joints), the inverse kinematics stands

for the calculation of the DOFs from the position of the bodies (hence the

word inverse), which usually entails the solving of a system of equations.

The main advantage of the approach is a higher resilience against random
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occlusions of markers belonging to intermediate kinematic chain segments.

Despite devoted to hand and face tracking, the overall problem of marker

tracking is perfectly stated by Alexanderson et al. [1]. In this paper, the

authors highlight the fact that in passive marker tracking the underlying

problem arises from a lack of individual discriminating features for identify-

ing the markers. When placed on rigid objects or kinematic chains (such as

human skeletons), it is possible to provide more or less invariant features that

help to solve ambiguities. However, markers placed on more �exible struc-

tures such as �ngers and faces yield much more ambiguous information. In

addition, the uncertainty in the spatial information is especially problematic

if temporal coherence is deteriorated due to frequent occlusions or stretches

of noisy data. To address these problems, this paper introduces two main

concepts: the generation of multiple ranked hypotheses from the spatial dis-

tribution of the unlabelled markers in each frame and a hypothesis selection

method for selecting a smooth sequence of assignments in time. That way,

the lack of information is overcome by using multiple hypotheses that post-

pone decisions until more discriminative observations arrive. The hypothesis

generation uses a collection of Gaussian Mixture Models (GMMs) to model

each marker's location in space, while hypothesis selection uses Kalman �l-

ters and the Viterbi algorithm to determine the best sequence of hypotheses

in time.

In addition to the academic approaches mentioned above, there is a num-

ber of commercial solutions available for marker tracking such as Motive,

from Optitrack 8, Cortex (developed by Motion Analysis 9 ), Track Man-

ager (from Qualisys) or Clima (by s.t.t.). Little has been published about

the details of the internal tracking mechanism they implement due to the

proprietary nature of these packages. The only information is provided by

descriptive brochures or �yers. For example, it is known that the software

from Qualisys10 uses a tracking algorithm (named AIM, which stands for

Automatic Identi�cation of Markers) that basically learns from each manu-

8https://optitrack.com/products/motive/
9https://motionanalysis.com/

10https://www.qualisys.com/software/qualisys-track-manager/
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ally veri�ed track. What this means in practice is that after labelling each

marker the underlying model is updated. When a new track is provided to

the system, it applies the model and attempts to automatically label the

markers over the whole trial, automatically �lling in gaps of certain sizes.

Apparently, huge bene�ts are obtained when markers �icker or disappear for

short periods of the movement since the AIM model automatically labels

them when they reappear.



Chapter 3

Optical Motion Capture -

Components

This chapter is devoted to provide a comprehensive knowledge of the compo-

nents of an optical capture system in order to understand the circumstances

of the labelling task, which is the main research topic of this Thesis. All other

optical capture tasks conceal issues whose solutions are pretty straightfor-

ward or requires the use of methods and algorithms already widely discussed

in the literature so they and won't be treated deeply here. We start dis-

cussing sensors, and the sensor deployment in a typical system. Next we

present the concepts of photogrammetry that allow the recovery of the 3D

position of the optical markers. The �nal part of the chapter presents the

overall computational pipeline involved in the mocap system and the analysis

of the data obtained from mocap sessions.

3.1 Sensors

3.1.1 Markers

Doubtless, the emblem of the optical motion capture is the re�ective marker

itself (see �g. 3.1). Normally it is manufactured as a little ball made out of

plastic or cork, covered with a layer of re�ective material very similar to the

37
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Figure 3.1: Marker specimen

Figure 3.2: Lightning setup

used in the re�ective vests. Its main purpose is to return back the light that

falls upon its surcafe in the same direction that it arrives.

That way, the light sent by a source placed right next to the camera

hits the marker and is sent back to the camera as shown in �g. 3.2, being

captured by its optics and �nally reaching the camera sensor. The electronic

sensor image is composed by a 2D array of photosensitive cells producing up

a 2D grey-scale image of pixels arranged by rows and columns (see �g. 3.3).

The value read from each cell is proportional to the intensity of light received

by it. After applying a threshold �lter to the whole image, the pixels not
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Figure 3.3: Image marker 2D position

corresponding to a marker are ruled out. The remaining ones are processes

by image connectivity analysis algorithm, yielding a list of XY centroids with

the location, in the reference frame of the image, of all the visible markers.

With the purpose of being less intrusive and to optimise the image con-

trast against the background, very often light in the infrared wave length is

used to illuminate the markers. The light source is originated in a ring of IR

LEDs arranged around the camera lens. In addition, the lenses are equipped

with a IR passband �lter which reduces the ambient light noise.

3.1.2 Cameras

In contrast with the simplicity of a marker, the cameras are the more so-

phisticated elements of the electronic sensorization (like the model shown in

�g. 3.4). Hence, the optical marker systems are not considered a wearable,

since the actual sensors are placed outside the object to be tracked instead

of attached to it. The main features of motion capture cameras are:

� Image resolution: from VGA sizes (640x480) up to megapixel reso-

lutions (1920x1080, 2048x2048, ...), a bigger size stands for a bigger
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Figure 3.4: Motion capture camera with built-in IR lightning source and its
exploded view. Drawing borrowed from the Optitrack web site
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Figure 3.5: Camera �eld of view (FOV).

sensitivity (metric units per pixel) to the spatial position. In addition,

it is easier to make out very proximate markers and their actual size can

be smaller. The set o� is that the listing price increases accordingly;

� Field of view (FOV), illustrated in 3.5: angular range of sight of the

camera. The bigger it is, the bigger is the coverage of marker detection.

In return, as the number of pixel cells remains the same, the sensitivity

level to the position goes down with larger FOVs;

� Sampling rate (Hz): number of images captured per second. Com-

mon acquisition frequencies range between 50 and 100Hz, enough to

properly acquire most of human movements. However, more and more

advanced models are able to record up to 200Hz for high end appli-

cations or just to serve as distinctness towards the competence. Very

often the camera allows to look for a trade o� between resolution and

frequency, a valuable feature that makes it all terrain models;
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� IR light source: in the case of mocap cameras the IR lighting is inte-

grated in the device housing, easing the setup and deployment;

� Sync: as will be explained later, the calculation of 3D marker positions

require the simultaneous detection of the marker in at least two cam-

eras. Therefore, the images have to be acquired synchronously by the

hardware requiring a wired sync mechanism;

� On-board processing: in the past, the image processing was carried out

in the host computer. However, modern mocap cameras have basic on-

board image processing software so as to extract 2D marker coordinates

right out from the raw image. This lighten the processing in the com-

puter but, best of all, it drastically reduces the data tra�c between

the cameras and the host, making it less prone to wired data transfer

failures;

� Connectivity: all the information generated in the camera must be sent

to the host by means of some kind of communication protocol. The

most common standard used is Ethernet (both wired and WiFi) and

USB cabling, but image speci�c interfaces or even proprietary solutions

can be found in the market;

� Control and SDK: for the remote con�guration and control of the cam-

eras, the manufacturer usually provides a SDK (software development

kit), which makes possible a seamless integration in 3rd party software;

3.2 System deployment

3.2.1 System location

There are a few recommendations when it comes to choose a suitable setup

location and arrange it to avoid some basic troubles. In this section some key

ideas are given for human body motion capture, but similar considerations

might be taken for other speci�c applications (hand or face motion capture,

tool tracking, ...).
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We must pick an indoor location where to place the system. Motion

capture cameras are IR light sensitive and despite some manufacturers claim

that their models are not a�ected by sunlight, in fact the sun turns out to

be a hassle always. For this reason, it is highly recommended to cover all

windows/hatches to block the natural daylight that might come into. The

technician must seek and remove any re�ective objects (shiny parts, polished

surfaces, ... non-re�ective tapes are his/her best friend here!) other than the

markers themselves, as well as hot light sources such as light bulbs. The

use of matte rubber carpets is often the best choice for covering re�ective

�ooring.

The location should have room enough not only to develop the movement

but also to accommodate further equipment such as computers, screens,

tables and so on. In addition to the space needed for the movement, there is

a minimum distance between the cameras and the markers depending on the

�eld of view (the smaller �eld of view, the more distance is required) which

demands an extra dead unused surrounding area between human body and

cameras.

Once the system is calibrated, a process that may take some time and

annoying physical e�ort, any tiny unintended displacement of the cameras

would invalidate the calculation and therefore a brand new calibration pro-

cess must be carried out. To prevent such cases, the use of wall mounts

instead of tripods is a great choice. On the other hand, setting up the cam-

eras at a high elevation (typically from 220 to 260cms) enhances the coverage

of the capture volume, reducing the chance of marker occlusion and widening

the sight of view.

Last but not least, it is recommended to remove any obstacle and un-

necessary object from the capture area scene that may prevent the markers

from being detected by the cameras.

3.2.2 Camera Arrangement

The common guidelines to properly place the cameras around the capture

area for human body tracking include:
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Figure 3.6: Typical camera distribution around the capture area.

� to evenly place the cameras in a ring around a common centre, as show

in �g 3.6;

� to mount the cameras at least at the maximum height of the capture

volume;

� to point the cameras inwards, adjusting the tile and heading angles

and tightening the corresponding handles and screws to prevent them

from moving;

� landscape orientations of the FOV increases the horizontal coverage

area;

� avoid letting any camera IR ring fall in the sight of another: otherwise

it might be taken as a legitimate marker.
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3.3 Photogrametry

As it has been exposed in section 3.1, the sensors will convey us an anony-

mous collection of 2D coordinates in pixel units. A di�erent, unsorted list of

2D projections will be made available per camera, with no information at all

regarding the right matching among them. However, we are interested in the

3D {X,Y, Z} coordinates in world reference frame, where the real movement

is taking place, computed from the local pixel {x, y} coordinates.

Mathematical model Photogrametry is a well known topic in the �eld

of machine vision, supply us with the required calculation tools to relate 2D

and 3D camera coordinates.

Let P = {X,Y, Z} denote a Cartesian point in R3 given in metric units,

in a inertial reference frame. Knowing the position P0 and orientation R3x3

of a camera in that reference frame allows us to evaluate the orthogonal

projection P ′ = {X ′, Y ′, Z ′} of P in the camera plane.

P ′ = R (P − P0) (3.1)

The actual value of the Z ′ component is the distance from the point to

the camera, and together with the e�ective focal length allows us to compute

the projective coordinates {x′, y′} according to the pinhole model.

{
x′

y′

}
=

f

Z ′

{
X ′

Y ′

}
(3.2)

However, in the former equality we are missing the optic distortion (�g.

3.7) introduced by the camera lenses. Instead of getting {x′, y′} right out
from the sensors, what we get is its {x, y} distorted version. From [23], we

reproduce here a successful model for the 2D distortion:

{
x′r

y′r

}
=

{
x′
(
k1r

2 + k2r
4 + . . .

)
y′
(
k1r² + k2r

4 + . . .
) } (3.3)



46 CHAPTER 3. OPTICAL MOTION CAPTURE - COMPONENTS

Figure 3.7: E�ects of lens distortion.

{
x′t

y′t

}
=

{
2p1x

′y′ + p2

(
r2 + 2x′2

)
p1

(
r² + 2y′2

)
+ 2p2x

′y′

}
(3.4)

where r =
√
x′2 + y′2. The expression 3.3 is the so called radial distor-

tion, whereas 3.4 is the tangential distortion. Putting everything together,

we can build the complete expression relating the 2D coordinates as:

{
x

y

}
=

{
fx
(
x′ + x′r + x′t

)
fy
(
y′ + y′r + y′t

) }+

{
x0

y0

}
=⇒

=⇒

{
x

y

}
= D

({
x′

y′

})
(3.5)

As a whole, these expressions link the 3D real coordinates of a point P

with its 2D counterpart version on each camera provided we know the nu-

meric value of its spatial position. Additionally, we need the numeric value

of the position and orientation of the camera R,P0, as well as a de�nite

value for f , k1,k2,... kn, p1,p2 x0 y y0. The former �R y P0� are known

as extrinsic parameters, for that they de�ne the position of the camera in

the space. The latter, are the intrinsic parameters, which depend only on

physical characteristics of the lens and remain unchanged no matter where

the camera is placed. As explained later, the whole set of camera parame-

ters {H} are estimated for a camera by a process named calibration. One

particular camera is said to be calibrated if we know the right values for {H}.
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Projection Written in a compact way, we got the following equalities:

xai = gx (Xi, Yi, Zi, {Ha})
yai = gy (Xi, Yi, Zi, {Ha})

}
⇒

⇒

{
xai
yai

}
= G (Xi, Yi, Zi, {Ha})⇒

⇒ pai = G (Pi, H
a) (3.6)

where gx and gy are functions whose symbolic expression is known and

explicit on pai , the projection in pixel units of Pi on camera a, for which

its calibration is encoded in H. These expressions yield the values of the

projection, without the need to solve any system of equations. However,

they can play the role of equalities too, involving all the mentioned variables,

which in turn have to meet them any time:

{
xai = gx (Xi, Yi, Zi, {Ha})
yai = gy (Xi, Yi, Zi, {Ha})

⇒

{
xai − gx (Xi, Yi, Zi, {Ha}) = 0

yai − gy (Xi, Yi, Zi, {Ha}) = 0
(3.7)

Composition The inverse operation to projection is the composition, that

is to say, the reconstruction of the 3D coordinates of a point starting from its

known projections {xai , yai } and a valid set of calibration parameters {Ha}.
The unknowns in this case are spatial coordinates (Xi, Yi, Zi) what in balance

with the number of equations results in 1 dimension against (indeed, such

dimension is the position along the projection line itself). So as to limit

the solution to a unique point, we need to look for more constraints and

consequently we turn to a second camera b:

pai = G (Pi, H
a)

pbi = G
(
Pi, H

b
) =⇒


xai − gx (Xi, Yi, Zi, {Ha}) = 0

yai − gy (Xi, Yi, Zi, {Ha}) = 0

xbi − gx
(
Xi, Yi, Zi,

{
Hb
})

= 0

ybi − gy
(
Xi, Yi, Zi,

{
Hb
})

= 0

=⇒
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Figure 3.8: Synthesis of 3D coordinates from 2D projections.

=⇒
{
Q
(
pai , p

b
i , Pi, H

a, Hb
)}

= {0} (3.8)

These constraints build up a overdetermined system of 4 equations and

3 unknowns and certainly might not have a valid solution. If not the case,

its resolution would yield a speci�c value for the position of the point in

3D. Due to the non-linear nature of the expressions, we have to draw on to

numeric iterative solving methods such as Newton-Raphson or Levenberg�

Marquardt.

From a geometric point of view, the projection equations in 3.8 corre-

spond to the equations of a line in the space, throughout which the point is

projected into the camera. The intersection, if they meet, of to lines uniquely

determines the position of the point (�gure 3.8). Otherwise, the lines skew

and de�nitely pai and p
b
i do not belong to the same real 3D point (certain 2D

mismatch, see �gure 3.9).

The ful�lment of the equations is a necessary but not su�cient condition

to take the validity of the match between pai as pbi as granted. If two 3D

points lie in the same plane simultaneously with two camera centres P ao ,

P bo , it is possible to compute up to 4 algebraic solutions for 3.8 by just the
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Figure 3.9: Non intersecting projection lines.

combination of all the four projections pai , p
b
i , p

a
j , p

b
j :

pai , p
b
i =⇒ Pi,i ⇐⇒ Q(. . .) = 0

pai , p
b
j =⇒ Pi,j ⇐⇒ Q(. . .) = 0

paj , p
b
i =⇒ Pj,i ⇐⇒ Q(. . .) = 0

paj , p
b
i =⇒ Pj,j ⇐⇒ Q(. . .) = 0

(3.9)

Among the four solutions only two are legitimate real points. The re-

maining two, despite being algebraically correct, are not real but spurious

and are also known as ghost markers (�gure 3.10). The prospect of the ap-

pearance of ghost markers de�nitely entangles the labelling task being that

it has to be able to rule them out. Consequently, the assumption that all

the point candidates match an actual maker must be dropped out.

Calibration The interest of camera calibration is born out from the need

to know in advance the numerical value of calibration parameters H, which

makes possible to carry out further projection and composition operations.

The estimation of such parameters is known as calibration and a system is

said calibrated if so are all its cameras.
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Figure 3.10: Ghost markers synthesis as result of geometric coplanarity be-
tween two cameras and two real markers.

The camera calibration is a topic widely covered by the literature in the

�eld. Zhang [66] makes an excellent introduction to the epipolar geometry

and the fundamental matrix and provides a detailed review on the numerical

techniques to estimate them from 2D point correspondences even in the pres-

ence of outliers due to bad locations or false matches. The topics of a�ne

transformation and projective reconstruction are discussed as well, but the

lens distortion correction is marginally mentioned. In [64], the same author

introduces a brand new calibration procedure requiring just the observation

of a simple planar pattern at di�erent viewing positions instead of using

expensive equipment, being this time the radial lens distortion taken into

account. In [23], a complete camera mathematical model including an ac-

curate lens distortion e�ect is discussed. In addition, a method is proposed

to estimate the undistorted coordinates from the natural ones. Just in ex-

change of a little but pro�table preprocessing, the authors show that it is

possible to build explicit symbolic expressions to do so, thus avoiding the

need of solving non linear equations.

In the end, the key when it comes to pick one method over other is the

kind of available data:
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� do we count on 2D point and/or axis correspondences?

� can those correspondences contain outliers? If so, how often?

� which is the numeric condition of the data for which the numerical

methods are sensitive to? Are the samples evenly distributed or too

close?

� do we count on metric information? (known point positions, distance

between points/lines, ...)

All in all, the calibration process needs to be fed with input data coming

from the camera system itself. When it comes to motion capture cameras,

the most universally adopted solution is the use of a narrow wand stick with

three markers on it as the calibration object. These three markers U , V and

W , remain aligned and at an invariable, known distance between them. The

stick is recorded roaming around the capture area covered by the sight of the

cameras. At each i-th frame a set of 2D projections are captured and, by

means of a plain identi�cation, their correspondences can be matched across

the cameras.

After that, the 2D projections can be put into the equations 3.7, adding

up more equations restricting the known distances and forcing the unknowns

to keep in a straight line:

for each i-th frame −→



Q
(
paU,i, p

b
U,i, PU,i, H

a, Hb
)

= 0

Q
(
paV,i, p

b
V,i, PV,i, H

a, Hb
)

= 0

Q
(
paW,i, p

b
W,i, PW,i, H

a, Hb
)

= 0

‖PU,i − PV,i‖ − dU,V = 0

‖PV,i − PW,i‖ − dV,W = 0

‖PW,i − PU,i‖ − dW,U = 0

‖(PU − PV )× (PW − PV )‖ = 0

(3.10)

Again, numerical optimization methods are used to solve this set of equa-

tions. However, conversely to the case of the 3D composition the main chal-
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lenge here is a) the handling of a high number of equations (16 per recorded

frame) and unknowns (13 + 9 per recorded frame) and b) the guarantee of

convergence of the numerical iterative process itself.

To deal with a), the symbolic manipulation of 3.10 manages the elimi-

nation of PU , PV , PW from the stage, following a �xed number of unknowns

that wont grow with the number of samples. When it comes to b), a good

estimation for the position and orientation of the cameras can be calculated

from the fundamental matrix, which in turn can be reliably estimated from

just 2D point correspondences even in the case of outliers (see [66]).

Accuracy and sensitivity. Repeatability. As it happens with any mea-

surement tool �and indeed a optical capture system is�, it is possible to

wonder about the specs about it. What accuracy level can be achieved?

How sensitive is it? To answer these questions, and as a side result of the

calibration process carried out over actual data, we can get an indication for

them just by means of little extra calculation. These values will be of special

interest in some of the next stages.

The accuracy quality answers the question `how exact is the measurement

of a 3D coordinate?' Once the calibration process is �nished, we can take the

calculated values for the calibration points and assess their computed dis-

tances against the actual wand stick lengths. Normally they wont perfectly

match, and the di�erence is a trusty indicator of the accuracy. Moreover, as

the calibration wand stick has been recorded ideally roaming all the �eld of

view, we can compute an estimation of the accuracy for each spatial location.

The less the mean error, the higher the accuracy:

mean error =
1

3n

n∑
i=1

 ∑
<j,k>=U,V,W

|‖Pj,i − Pk,i‖ − dj,k|


On the other hand, the sensitivity stands for the least shift in the mea-

surement that is noticeable by the measurement tool. In our case, we are

interested for the least 3D displacement of a marker that we can detect as

an actual change in the 3D composition for a given camera setup. Actually,
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sensitivity is closely related with ∇f , the gradient of a scalar function f with

respect to its variables, being in our case f any of fx, fy or fz, the ones who

computes each one of the components of a 3D point depending on its local

projections in two cameras pa, pb.

f = f (pa, pb) =⇒ ∇f =

{
∂f

∂pax
,
∂f

∂pay
,
∂f

∂pbx
,
∂f

∂pby

}

In order to numerically estimate it, we can use the one-factor-at-a-time

(OAT) method to measure the e�ect on the output of moving an input

variable while keeping the others unchanged. The amount ∆p we move an

input variable is in turn the sensitivity of the system to the measurement of

local 2D coordinates, which either can be found as part of the cameras specs

or can be experimentally estimated. Thereby, sensitivity S of fxto pax is:

Sp
a
x
x = |fx (pax +∆pax, . . .)− fx (pax −∆pax, . . .)|

Up to 12 sensitivity scalar values can be computed (3 axis on 4 local

coordinates), being its average the e�ective sensitivity of the system at the

particular point XY Z in space, composed by the projections pa, pb:

S = S (X,Y, Z)

Finally, repeatability is and indicator of how stable is the output of the

measuring tool along successive measurements of the same measurand while

keeping all surrounding conditions unchanged. In the case of an optical

system its estimation is rather trivial: we proceed by just taking several

snapshots of a marker at a stationary position and calculating the mean

di�erence of its composition respect to the average. In can be estimated

for di�erent positions inside the capture sight, but in practice it remains

far below the accuracy and sensitivity as long as the lightning is even and

constant.
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Figure 3.11: Process stages overview.

3.4 Process stages

In this section the basic pipeline (outlined in �gure 3.11) of a motion capture

process is described, pointing out the role played by each stage in the whole

system as well as the way they link between them.

Camera settings and control Normally the hardware �namely the

cameras� o�ers a bunch of settings to govern its behaviour (see 3.1.2).

These settings can be controlled by means of the SDK run by the software

on a host controlling computer according to the user needs or wishes. Above

them is the dispatch of start/stop acquisition commands that brings the pro-

cess into play and the monitoring of potential faults in the data transfer and

hardware performance.
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Acquisition Once commanded, the acquisition stage is in charge of col-

lecting the images captured from the cameras. The input data is the light

coming through the lenses, and the output are raw digitised images. In addi-

tion, capture cameras may have the functionality of processing the images to

extract the 2D marker centroids right out from them by means of an thresh-

old followed by a connectivity analysis. Being that the case, the output data

is right way a list of 2D coordinates per frame, which de�nitely eases the

communication with the next stage. Sometimes, the output includes further

information such as sync data with external devices (force platforms, elec-

tromyography, ...) as well as a report regarding the healthy status of the

hardware.

3D massive composition This stage is the responsible of building all the

3D points covered by the cameras sight. The input data is the 2D local

coordinates coming from each camera at each frame, as well as the current

camera calibration parameters and system accuracy and sensitivity. The

output data is the set of geometrically feasible points seen by the cameras.

Since the input 2D points are unmatched across the cameras, it is manda-

tory to compute all feasible combinations (see 3.3) to check whether they

are geometrically correct or not. In a �rst screen, many wrong mismatches

are ruled out but indeed some ghost points can drain to the next stage, as

well a set of spurious compositions built from non-markers spot detection

(sunlight, shiny parts, ...).

3D Clustering and merging Just two 2D Projection are enough to build

a 3D coordinate. But very often �particularly in systems composed by many

cameras� it happens that the same marker is simultaneously seen by more

than two, let's say n, cameras. If that the case, that real point is repeatedly

composed up to

(
n

2

)
= n(n−1)

2 times. For instance, in a system of 6

cameras, up to 15 XYZ versions of the same point can be recovered.

So, the goal of this stage is to merge all the occurrences of the same point

into a single one so that there can be only one. To do so, two conditions
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Algorithm 3.1 3D massive point composition algorithm
Input data:

� set of calibration parameter for each of a total of nc cameras H =
{H1, H2, . . . ,Hnc};

� the set of 2D local coordinate points list per camera{
pa1, p

a
2, . . . , p

a
nma

}
,
{
pbi
}
, . . . ;

� accuracy calibration info;

Output data:

� {Praw}, the set of 3D global coordinate points coherent according to
photogrametry equations up to the given tolerance;

Algorithm:

1. for each camera pair < a, b >:

(a) for each point pair < pai , p
b
j >:

i. synthesise corresponding 3D point P a,bi,j ;

ii. compute synthesis equations residue ra,bi,j ;

iii. is ra,bi,j below the calibration sensitivity? If so, add P a,bi,j to
{Praw};
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Algorithm 3.2 3D clustering and merging algorithm
Input data:

� {Praw}, the set of 3D synthesised points;

� sensitivity calibration info;

Output data:

� {C}, the set of 3D merged candidate points;

Algorithm:

1. for each raw point pair < P a,bi,j , P
c,d
k,l >:

(a) compute new point Pfuss as
(
Pa,b
i,j +P c,d

k,l

)
/2;

(b) is
∥∥∥P a,bi,j − P

c,d
k,l

∥∥∥ < S (Pfuss) ? If not so, continue to the next loop

cycle;

(c) if a=c and i6=k, continue to the next loop cycle;

(d) if b=d and j6=l, continue to the next loop cycle;

(e) add Pfuss to {C};

2. add the remaining points from {Praw} to {C}:

have to be met:

1. the distance between the merged points is below a given limit, set

according to the sensitivity of the system, playing here its starring

role;

2. the merged points are not permitted to use di�erent 2D projections

belonging to the same camera;

Labelling The mission of this stage is to map each marker to be tracked

to either a observed point or to a null (hidden) label with a certain level of

certainty. The input data is the set of merged points, from now on denoted

as candidates, among which can be included spurious points (those that
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shouldn't be assigned to any label). It may happen as well that some real

markers be missing, due to occlusions or just because they fall out of the

sight of the cameras. The output is the labelling of each candidate point

belonging to {C}, stating either:

� it doesn't con�dently match with any of the markers to be tracked;

� which marker does it match, together with a con�dence index;

The development of a labelling algorithm is the core research topic and main

contribution of this work and is thoroughly discussed in chapter 4.

Biomechanics The job is not �nished with the marker labelling. The

�nal purpose of a optical capture system is the analysis of the movement

rather that the capture itself. The �nal user is looking for particular data

depending on the on �eld it is being applied: clinical analysis, sportive per-

formance, entertainment, character animation ... In the case of the tracking

of human bodies, a marker trajectory post-processing is carried out to turn

them into values for the joint angles (degrees of freedom �DOFs) attached

to an underlying skeleton model. Such skeleton is a set of joints and bones

that emulates that of its anatomical counterpart.

This stage is performed by the biomechanics calculation, being its input

data the raw marker trajectories and the output a consistent skeleton move-

ment, given as a set of bone lengths and the evolution of DOFs along the

time. Further processing of the skeleton movement yields more sophisticated

parameters of the movement depending on the application:

� gait analysis: cadence, step length, step width, walking speed, angular

knee ranges ...

� golf analysis: club speed, kinematic chain curves, hip rotational speed,

...

� bike �tting analysis: max and min knee angles, knee over pedal spindle

(KOPS), saddle height, ...
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� workplace ergonomics risk assessment: repetitive tasks, angular range

of movements, ...

The goal of this paragraph is to give a sense of the tasks covered by this

stage. Among them is the need for trajectory cleaning and gap �lling. As

a result of the labelling of each marker along the time, we get a 3D tra-

jectory that may contain a certain level of noise due to several sources.

Those sources are disturbances in the 2D marker detection, the lack of ac-

curacy/sensitivity/repeatability in the 3D measurement, not to mention the

obvious fact that the markers are placed over the skin instead of being di-

rectly attached to the bones. The random movement of the �esh contribute

with unwanted artefacts that must be removed prior to the analysis. On the

other hand, the presence of marker occlusions or the inability of the labelling

stage to identify them (drop-outs) result in fragmented trajectory intervals.

The missing intervals must be �lled by means of some ad-hoc interpolation,

so that the existing trajectory segments be sewn together coherently with

the whole set. Biomechanics is in charge of tackling these issues, adjusting

the data in order to get a movement in accordance to a real dynamic human

movement.

There is a number of paper covering this topic. Feng et al. [16], propose a

data-driven-based robust denoising approach by mining the spatial-temporal

patterns and the structural sparsity embedded in motion data. They explore

the abundant local body part posture and movement similarities to learn

motion dictionaries reformulating the human motion denoising problem as

a robust structured sparse coding problem where the temporal smoothness

property has been reinforced. C. H. Tan et al. [53], use of an alternative

matrix representation for completion is proposed to recover missing data in

mocap sequences. Similarly, G. Xia et al. [60] propose a tailored non-linear

low-rank matrix completion model for human motion recovery where at some

point kinematic constraints are added to preserve the kinematics property

of human motion.

Another task with biomechanical implications is the character mapping.

When it comes to animation applications, very often the goal is to translate
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a real actor movement into a fantasy character. Normally their body mea-

surements and particularly their proportions do not match, meaning that

the DOFs can not just be applied right out from the former to the latter. A

suitable adjustment must be carried out to produce a convincing movement,

avoiding feet slips of break through solid objects (walls, scenery objects,

tools, ...).

Biomechanical event detection. Any movement have particular instants

of time it is worth to detect. For instance, the gait analysis pays especial

attention to the identi�cation of heel strike, midstance and heel and toe

take-o� times. The analysis of a golf swing relies on the identi�cation of the

swing phases: back swing, forward swing and follow-through. The automatic

detection of these events and gestures, made possible by means of the DOF

analysis, allows to enrich the report analysis which is de�nitely appreciated

by the �nal user.

Output data display The movement analysis results must be conveyed

by means of some human interface device:

� on-screen 3D rendering: with a variable level of detail, it is interesting

for the shake of qualitative analysis that the skeleton movement can be

playback forwards, backwards or paused, everything dressed up with a

scenery, lightning, and appealing surface materials;

� 2D graphs: the plotting of 2D curves with biomechanical parameters

along the time, with the basic zoom/pan features;

� reports: printable reports with a summarise of the main movements

parameters;

� real time feedback: visual/acoustic signals produced in real time and

synced with the movement, so that the person being captured is re-

ported with the detection of an event � useful for rehab and training

purposes;



Chapter 4

Labelling Algorithm

Marker labelling �very often referred as marker tracking� is a key step in

the mocap pipeline. The task is to link the Cartesian coordinates of the same

physical marker along the time, avoiding swaps between marker IDs due to

noise and temporary ambiguities. An apparently easy to deal with task (by

means of continuity ensuring-like methods), however the fuzzy nature of the

real world input data (occlusions, too close markers, ghost markers, random

artefacts, ...) makes it a problem hard to solve e�cient and optimally. This

Chapter is devoted to the develoment of a brand new labelling algorithm

which is the core research e�ort of this Thesis.

4.1 Problem Statement

Optical motion capture systems using passive markers require to place a

set of n re�ective points �markers� over the object whose movement

intend to track. Each marker has a prede�ned (and approximately con-

stant) position over the body and a unique ID, usually according to its

anatomical position. Let's denote the set of markers composing the model

as {M}={M1,M2, ...,Mn}, where each element Mi holds descriptive names

such as 'right-shoulder ', 'left-knee' or 'left-humerus-lateral-epicondyle'. Fig-

ure 4.1 shows an actor wearing markers and suitable clothes for a motion

capture session.

61
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Figure 4.1: Actor wearing re�ective markers and corresponding digital model

At a particular stage of the motion capture process (see 3.4), a set of

unlabelled 3D points is provided to the system. We call these points candi-

dates. They are denoted by {Ct}=
{
Ct1, C

t
2, ..., C

t
m

}
, where t = {0, 1, 2, ..., T}

is the time index of the frame from where they were extracted. When m 6= n

we have one of two anomalous situations, either some marker is hidden from

the cameras (occlusion) or ghost points make their appearance on the scene

(a ghost is a 3D point built from a wrong 2D image correspondence match-

ing, so that it does not correspond to a real marker). The challenge at this

stage is to correctly match the elements fromM and C using only the points

Cartesian coordinates: i.e. we do not use an a priori structural model or

the time dependences between frames. No colour codes, neither surrounding

image descriptor or �ducial patterns come in assistance.

A labelling of a given frame cloud of candidate points {Ct} is a one-to-one
correspondence, as shown in �gure 4.2, into the cloud of the model points

{M}. We code the labelling as the integer vector Lt =
{
lt1, l

t
2, ..., l

t
n

}
where:

lti ∈ {N, 0} , 0 ≤ lti ≤ m (4.1)

(
lti 6= 0

)
⇒
(
lti 6= ltj ∀j ∈ {1, . . . , n} − {i}

)
(4.2)

That is to say a numeric non-zero value of lti connects the marker Mi with

candidate point Ct
lti
, whereas a zero value means that marker Mi has no
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Figure 4.2: Example of a humanoid model labelling L.
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match among the candidate points (i.e. it has been occluded). Aside that, no

two elements of L contain the same non-zero integer value, since a candidate

point cannot be simultaneously assigned to two model points. Thus, the

labelling problem can be formulated as follows: given a set of candidates

and a marker model, �gure out the right value for Lt.

4.2 Outline of our Approach

In contrast to the methods described in the section 2.2.4, the marker labelling

approach presented in this Thesis is completely original in that it disregards

the temporal information and works on each frame independently, stopping

the propagation of isolated mistakes. In addition, it gets rid of the traditional

rigid-body kinematic constraints, which are hard to �t to the real data due to

the uncertainty of the artefacts introduced by the almost random movements

of clothing or �esh.

As pointed out in section 2.2.4, the underlying problem arises from a lack

of individual discriminating features identifying the markers. However, as we

show in this Chapter, it is still possible to identify feature descriptors over

sets of markers whose value falls in a range narrow enough to tell whether a

labelling is feasible or de�nitively wrong. Each such feature together with its

expected range forms a weak classi�er, which cannot guarantee the rightness

of a labelling by itself. For instance, the distance between a marker standing

in the toe and another in the ankle should be fall in a `reasonable' range,

let's say no smaller than a cms and no bigger than b cms. Hence, if a given

labelling breaks this range, the corresponding weak classi�er will signal it as

incorrect.

The concept of geometric feature allows the problem to be handled as

a classi�cation task, therefore allowing it to be solved using machine learn-

ing algorithms. Indeed, counting on a ground truth of correctly labelling

samples and a pool of descriptors, we learn the relevant geometric relations

between the markers, selecting by an AdaBoost approach (�gure 4.3) the op-

timal collection of weak classi�ers that build a strong classi�er. The strong

classi�er proves to be reliable enough to assess whether a given labelling is
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Figure 4.3: Overall strong classi�er builder process

correct with a high con�dence rate.

The strong classi�er tells whether a labelling is correct or not, acting

as a sort of constraint to be satis�ed. However, the unknown is a vector

of integers, which it is not di�erentiable and therefore no steepest gradi-

ent descent-like methods can be applied. Instead, a tree-search algorithm

is adopted to look for the feasible labelling satisfying the strong classi�er

constraint. This way, the pair strong classi�er-search algorithm (see �gure

4.4) together with some attributes �as the hit ratio� compose a solver , the

basic labelling algorithm, able to generate feasible labelling from scratch.

The proposed solver may fail to yield a feasible labelling in the case that

one marker is missing. To overcome this possibility, the concept of partial

solver is introduced in a divide-and-conquer strategy. Instead of working over

the whole marker model, a strong classi�er can be trained over a subset of

markers, so that the partial solver built upon it can generate partial labelling.

The partial labellings contributed by each partial solver are assembled (�gure

4.4) in the complete unknown vector. Thereby, in case of occlusions, partial

solvers not working over the occluded marker are still able to provide feasible

links between the not-occluded makers and the candidates.

The number of partial solvers that can be de�ned for a given marker
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Figure 4.4: Overall labelling generation process

Figure 4.5: Overall solver ensemble aggregation
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model is huge. Among them, we are interesting in those that, being small in

terms of the number of markers they work with, still show high hit ratios.

Finding such partial solvers can be seen as a mining process. We depict

three di�erent methods are depicted below. The worthiest partial solvers

are aggregated in a solver ensemble whose union covers all the markers,

where partial solver contributes with the feasible solution to a part of L.

Acting as a whole, the ensemble of partial solvers can produce a reliable

marker labelling even in the presence of occlusions, accomplishing the �nal

goal of the research.

4.3 Geometric Features and Weak Classi�ers

Correct labelling detection Given a marker model and a set of can-

didate points, a basic required competence is to decide whether a given

labelling L is correct or not as a whole, i.e. if one component of the vector

is wrong the whole labelling is declared incorrect. The answer is granted by

a two class classi�er, where class 1 stands for the correct labelling.

φ (M,Ct, Lt) =

{
Lt is correct−→1

is not correct −→ 0
(4.3)

Anticipating the shape of the �nal algorithm, our strategy is to generate

the correct labelling among all the possible ones according to Eq. 4.3, using

such classi�er for the detection of correct labelling. In this approach, the

correct labelling decision is made independently for each point, so we can

have an incomplete labelling (with some terms equal to zero). It is assumed

that the cloud of points corresponds to the same class of objects upon which

the classi�er has been trained, for example gait analysis sequences as the one

used for validation in this work.

Weak classi�ers Given the candidate points, it is possible to de�ne scalar

valued geometric functions {gk : Dk → R}, where Dk is the speci�c domain

of the function de�ned by the required number of points. A few examples of

geometric functions are listed in the table 4.1, but many other can be for-
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Geometric property g # points points expression

Angle between consecutive

angles

g1 3 A, B, C arccos
(

AB·AC
|AB|·|AC|

)
Distance between points g2 2 A, B |AB|
Similarity ratio between

segments

g3 4 A, B, C, D 2 |AB|−|CD||AB|+|CD|

Height di�erence between

two points

g4 2 A, B Ay −By

Distance ratio between

consecutive segments

g5 3 A, B, C
|AB|
|AC|

Angle between two

segments

g6 4 A, B, C, D arccos
(

AB·CD
|AB|·|CD|

)
Angle between a segment

and the vertical

g7 2 A, B arccos
(
AB·Y
|AB|

)
Triangle area g8 3 A, B, C 1

2 |AB ×AC|
Y component of cross

vector

g9 3 A, B, C |AB ×AC| ·{0,1,0}

Table 4.1: Several geometric operations

mulated, corresponding each one to a geometric property (distances, areas,

angles, ratios, ...) de�ned over subsets of the candidate points. For instance,

if we consider the set {left_elbow, left_wrist, right_elbow, right_wrist} =

{M7,M10,M8,M11} from �gure 4.2, a particular geometric function can

be the measurement of the length similarity of forearms, formulated as

g3(M7,M10,M8,M11) = |M7−M10|−|M8−M11|
|M7−M10|+|M8−M11| .

The scalar value yielded by a geometric function can be seen as a feature

associated to the points it operates, and therefore can be used to feed a weak

classi�er. In this approach, similar to the one adopted in [57], each feature

is considered to be inside a range of real values [α, β] when the labelling

of the cloud of points is correct. For instance g3(M7,M10,M8,M11) de�ned

above should have a value near zero, meaning that both forearms should have

similar lengths, so that [α, β] = [−0.25, 0.25] might be a feasible interval. In

other words, a weak classi�er checks if its feature value is within the speci�ed
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interval, i.e.

h
(
fSk (M,Lt, Ct) , α, β

)
=

{
1 if α < fSk (M,Lt, Ct) < β

0 otherwise
, (4.4)

where fSk is a feature computed by applying geometric function gk (.) to a

subset of points S ⊂M selected from the candidate points cloud Ct, whereas[
αSk , β

S
k

]
are the interval of values where the value of the feature falls when

the labelling is correct. The class 1 denotes the correctness of the labelling

of the cloud of points, 0 otherwise.

Each geometric function allows to build a collection of features from the

cloud of candidate points by just applying it to all possible combinations of

points that �t into the domain Dk . Thus we can be compute, over a given

cloud of points, as many features as combinations admitted by the de�ned

geometric functions. This number of features grows combinatorially with the

size of the cloud of candidate points, being of the order of

(
n

k

)
= n!

k!(n−k)! ,

where n is the total number of points in the cloud, and k the number of

input points accepted by the feature. In the example given above, we get up

to

(
20

4

)
= 4845 possible weak classi�ers when the size of candidate points

is 20. Consequently their total number might be huge, hard to handle and

highly costly to compute. It is desirable that only the most e�ective ones

are selected from the pool of all potential features.

Building a strong classi�er has the following steps:

1. Generate all the possible features produced by applications of all geo-

metric functions to subsets of the cloud of points;

2. Determine the natural interval of values for each feature, thus de�ning

the weak classi�ers, as αSk = min
C
fSk (C) and βSk = max

C
fSk (C), where

all clouds C are correctly labelled;

3. Select the minimal collection of features that ensures a given accuracy

level of the ensemble of weak classi�ers. Since the weak classi�ers are

trained on the correct labelling, it is easy to see that any collection of
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them will provide very high sensitivity (accuracy on the target class

relative to all examples of the target class) but very likely a large

number of false positives, i.e. a very low speci�city. Hence, this process

is a greedy selection of the weak classi�er providing the biggest increase

of accuracy by decreasing the number of false positives.

4.4 Labelling Without Presence of Occlusions. En-

semble of Weak Classi�ers

4.4.1 Training a set of weak classi�ers

Let's denote O = {Oi} the set of learning observations Oi = {Ci, Li, bi}
corresponding to a common model M . Each observation has a cloud of

points Ci and the labelling Li that maps it into the model. The vector bi
encodes the correctness of the mapping, so that bij = 0 if the label of the j-th

cloud point is incorrect, and equals 1 if it is right. The training algorithm can

easily generate incorrect labelled observations by permutation of the labels

of a correctly labelled observation. The number of permuted elements (from

2 to n, the number of markers) is an index of the severity of the simulated

labelling error. Let's denote O∗ = {O∗i } the incorrect samples, retaining

O = {Oi} for the correct ground truth observations.

The ensemble of classi�ers consists of a collection of features whose cor-

responding weak classi�er is weighted by its accuracy gain relative to the

remaining weak classi�ers. The output of the ensembles is computed as:

φJ (M,C,L) =

J∑
j=1

wjhj(f
S
k (C) , αSk , β

S
k )

J∑
j=1

wj

, (4.5)

where the index j refers to the order of selection of the feature for inclusion

in the ensemble, and J is the size of the ensemble.

The method follows the Adaboost strategy, as done in [57], of greedy

selection of the weak classi�er that maximises the accuracy, in this case the
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number of wrong labelling detection. Initially, all weights are set to zero

and the set of selected weak classi�ers is empty. In a loop all classi�ers are

fed with observations of di�erent error severity obtained by permutations

of labels in the correct observations. If the current version of φJ (M,C,L)

does reject the incorrect sample no further process is done. Otherwise, the

weights of unselected weak classi�ers that reject it are updated according

to the error severity. After a number of incorrect observations is processed,

the ensemble is engrossed with the weak classi�er having the greatest weight.

The whole process eventually ends up when a given threshold on the accuracy

of the strong classi�er is reached. At the end, the elite of classi�ers is stored

together with the weight they got during the learning process scoring them.

4.4.2 Generating labels exploiting the ensemble of weak clas-

si�ers

Previous sections dealt with the answer to the question of whether a given

labelling is correct or not. In this section the aim is to generate the labels

for the cloud points using the previously trained weak classi�ers and the

strong ensemble classi�er. Given an ensemble of weak classi�ers φJ (M,C,L)

trained as described above, the number of weak classi�ers giving positive

outcome can be interpreted as a measure of how well the vector of integers

L speci�es the matching of the model points M and the candidate points

C. Therefore, the labelling of a cloud of points can be stated as looking for

the value of L that maximises the number of positive weak classi�cations,

where the global maxima are equivalent to the positive φJ (M,C,L) = 1.

For the sake of simplicity and without loss of generality, let's assume that

the number of point n ofM and C is the same. In other words, no marker is

occluded and no points other than the ones to be labelled are present in the

input data. In this scenario L can be any of the permutations of the integers

between 1 and n and therefore the number of possible con�gurations for L

is n! . Fortunately, we can exploit the structure of the strong classi�er as

follows:

� The ensemble classi�er φ can be evaluated over a partial solution where
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only a subset of elements of L has meaningful labels. Weak classi�ers

using unassigned labels are simply ignored;

� A single weak classi�er rejecting a permutation of labels de�nitively

rules it out, so that not all the weak classi�ers composing of φ must be

computed, hence the approach takes the shape of a tree-search process;

� A single weak classi�er can be computed from a handful of points

(usually from 2 to 6) which represents a subset of the vector L.

The huge number of possible solutions is explored following a search tree

structure. At each node (here a particular component of the vector L) a

guess l̂i is generated on the assignment of a label li that was previously

unassigned, and the value of φ is computed over the partial labelling solution

L. If the answer is false, all the descending branches are pruned from the

search tree. More particularly, if a branch is cut o� at level i of the vector

L, we avoid exploring (n− i)! labelling permutations appearing downwards

the tree. Else, if the answer to the partial labelling is true, the guess l̂i is

accepted, and the process goes ahead with the next node in the tree. If no

correct guess is found, the process goes a step back to explore alternative

branches. The algorithm eventually terminates when all the branches have

been explored. Every branch reaching the �nal node yields a feasible solution

for L. It may happen that more than one solution for L be found despite

only one is the correct, being the rest are false positives.

Figure 4.6 illustrates the algorithm process for n = 5. At level 2 the

guesses 1 and 2 are rejected by φ but accepted for 4 and 5. At level 3 the

branch corresponding to partial solution {L} = {3, 5, ...} is cut o� since

none of the {3, 5, 1, ...}, {3, 5, 2, ...}, {3, 5, 3, ...} partial solutions are valid.

However, the algorithm eventually �nds a complete valid solution through

the branch coded as 3, 4, 2, 5, 1.

This algorithm is designed to work under the assumption that no marker

is occluded, being this fact its main �aw. If at some level a marker can't be

assigned to a candidate because it is actually hidden, there is no way to con-

tinue down to the next level. Many features can't be evaluated and therefore
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Figure 4.6: An example of the labelling process tree. Squares denote positive
label guess and circles rejected labelling. Rejection is due to the the ensemble
classi�er giving a negative output on the partial labelling.

the ensemble of weak classi�er just can't assess the labelling. The process

abruptly stops, voiding the whole labelling and not providing any assignment

at all. However, this shortcoming is torn down in the next section.

4.5 Ensemble of Partial Solvers

4.5.1 The solver

A labelling L (t) of the observation at time t is the mapping of markers of

the given model M into the candidate points C (t). It is encoded as a set

of integers L (t) = {l1, l2, ..., lnm}, where li denotes the map mi → cli , i.e.

li is the index in the set C (t) of the candidate points to be assigned to the

i-th marker mi. Under the presence of occlusions, the markers not assigned

to any candidate are encoded as an assignment to a virtual null candidate

'0', so that li = 0 means that the i-th marker is considered as occluded.

The labelling L (t) does not have non-zero repeated values (meaning that
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the same candidate point cannot be labelled twice). The weak classi�ers

h(Ms, C (t) , LMs (t)) = T ∈ {0, 1}, are decision functions whose output is

whether the partial labelling LMs (t) is correct (1) or not (0). From now on,

we assume that each data capture frame is treated independently, therefore

the time parameter t is dropped out.

We have shown in the previous section that it is possible to build up a

strong classi�er as an ensemble of weak classi�ers φ = {h1, h2, ...} looking
for the minimal set of weak classi�ers able to decide whether a labelling is

correct (true) or not (false): φ(M,C,L) = T ∈ {1, 0}. To achieve so, the

set of weak classi�ers is trained by means of a tailored version of AdaBoost

over a set of labelled samples extracted from a large number of frames whose

labelling relative to a given marker set has been manually veri�ed.

The result of the algorithm discussed in 4.4.2, is a solver S (C,M, φ)

that �nds the set of feasible labelling maps L = {L¹, L², ...}, such that

φ(M,C,Li) = true. The solver S (C,M, φ) makes use of the strong classi�er

φ and an e�cient tree exploration method to �nd all the feasible marker

labellings of the candidate points. Despite its e�ciency in terms of compu-

tation time, its main �aw is that it cannot handle null labels. Hence, for

each labelling found Li ∈ L all of its components lj ∈ Li are positive lj > 0.

The set of labellings found by S might be the empty set L = ∅, meaning that

the solver S (C,M, φ) could not �nd any feasible solution. The algorithm

of S (C,M, φ) is therefore unable to deal with occlusions: it either assigns a

candidate to each marker or to no one.

On the other hand given a solver S we can assess, by its exposition to

random samples coming from the ground truth, the hit rate P (S,mi) =

Pi(S) ∈ [0, 1] of the solver assigning any marker mi to its right candidate.

This information is precomputed and stored as an attribute of the solver S

for further usage.

4.5.2 Partial solvers

De�nition A solver S = S(C,Ms, φs) is not forced to �nd corresponding

candidate points to all markers of the model M . Actually, its associated
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strong ensemble classi�er φs can be trained to generate a partial labelling

Ls ⊆ L for a subset of markers Ms ⊆ M . Is such case, we deal with a

partial solver . Obviously, the strong ensemble classi�er φs only can be used

to generate labelling over the markers belonging to Ms. We designate the

dimension of the solver Ss as the number of markers that it operates upon:

dim(Ss(Ms)) = dim(Ms). The de�nition of hit rate per marker Pi applies

also to partial solvers, provided they can be assessed against the ground

truth.

Properties We can state several interesting properties of the hit rates of

a partial solver. Some of them were born out from experiments conducted

on the computational simulations and may be object of theoretical research

in future works.

1. If a marker mi doesn't belong to the subset Ms of the partial solver,

its hit rate remains unde�ned: if mi /∈Ms ⇒ Pi(Ss,mi) = NaN ;

2. The hit rate for a marker mi is strictly increasing with the size of the

marker subset: if mi ∈MA ⊂MB, |MB| > |MA| ⇒ Pi(SB) ≥ Pi(SA);

3. Because the hit rates grow with with solver size, we would expect that

only big solvers may provide high hit rates. However, the empirical

�nding reveals that there are also small solvers showing up high hit

rates;

4. A marker model is considered optimally designed if its labelling is fea-

sible with a 100% con�dent rate in absence of occlusions. In other

words, there is at least a solver whose hit rates are 100% for each

one of the markers when working over the whole set: if Ms ≡ M →
∃S \ Pi(Ss(C,Ms, φs)) = Pi(S(C,M, φ)) = 1;

5. Such solver does exist for the marker set used in the experimental

tests of this work, hence the Hellen-Hayes set of markers was optimally

designed.
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4.5.3 Training an ensemble of partial solvers

A partial solver ensemble is de�ned as a set of partial solvers such that the

union of their marker subsets covers the complete model: Ω = {S1, S2, ..., SN} s.t.Ms1∪
Ms2 ∪ ... ∪MsN = M . The aim of de�ning the ensemble is to overcome the

limitation of an individual solver to give an answer when there is an occlu-

sion. If such thing happens, the una�ected partial solvers (i.e. those de�ned

over a subset of not occluded markers) may still provide the labelling of the

unoccluded markers. More formally, let's denote M∗ the set of not occluded

markers, then we can �nd a set of partial solvers Ω∗ = {S∗1 , S∗2 , ..., S∗N∗} ∈ Ω

such that M∗S1
∪M∗S2

∪ ...∪M∗SN
⊆M∗. Given that a deterministic learning

algorithm is used for the construction of the strong classi�ers, two partial

solvers are di�erent only if they are de�ned over di�erent marker subsets:

SA(MA) 6= SB(MB) ⇐⇒ MA 6= MB. According to that criteria, the to-

tal number of partial solvers is the size of the markers power set P (M),

i.e.
∑nm

i=1

(
nm

i

)
, where nm = |M |.

The problem of generating marker labelling robust to occlusion is, thus,

formulated as the search for small sized partial solvers with high target rates

to compose a partial solver ensemble which can produce partial labellings

that give the best partial labelling solution when there are occlusions. The

emphasis on small sized partial solvers comes from the fact that if one is

a�ected by an occlusion, the solver it will not yield the labelling of its solver-

mates. The emphasis on high target rates is preferable, as that increases the

con�dence on the labelling. A brute force exhaustive search approach is, of

course, infeasible even for moderate sizes of the marker set. Therefore two

heuristic approaches have been explored.

Greedy search By taking advantage of the 2nd solver property stated

in the previous section �hit rates strictly increase with dimension�, we

can start with nm solvers of dimension 1 (one solver per marker), adding one

more extra marker at each step of the search. This is an incremental building

process that stops when the target hit rate is reached. This strategy avoids

unnecessarily big solvers, thus saving computation time. The searching al-
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Algorithm 4.1 Greedy bottom up partial solver search
� Input data: target hit rates τi for each marker mi of the full marker
model M , n = |M |.

� Output data: set of partial solvers Φ = {S} with hit rates higher than
the target at least in one of their markers.

1. Set up an initial set of n solvers of dimension 1, Ω = {S1, . . . , Sn}.
Initialise Φ = ∅;

2. For each solver in Ω, assess its hit rates; if higher that the goal,
it is removed from Ω and added to Φ;

3. Terminate if Ω is empty, or the dimension of its solvers equals n;

4. For each solver Si from Ω, a new marker is added to it, and thus
n− dim(Si) new solvers are generated, replacing Si in Ω;

5. Go back to 2.

gorithm is described in Algorithm 4.1 and depicted in the diagram shown in

Figure 4.7.

Conversely, it is possible to proceed in a top down way. Starting from

the full marker set solver S, dim(S) = n, which is assumed to meet the

highest target hit rate, it is possible to can generate new partial solvers of

lower dimension by progressively taking out markers in a recursive manner.

In this case, the process stops if the new generated solvers fall under the

target hit rates (see Algorithm 4.2 and the diagram in Figure 4.8).

Genetic algorithm search In order to look for good approximations to

global optima an ad-hoc genetic algorithm has been constructed as follows.

Regarding the encoding, a partial solver acting over a subset of markers

Ms ⊂ M can be encoded as an array of n boolean values {bi} such that

bi = 1 if mi ∈Ms and 0 otherwise. Such encoding is the chromosome of the

genetic algorithm. The optimal ensemble of partial solvers Ω is encoded by

the entire population at the end of the evolution process. The �tness function
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Figure 4.7: Greedy bottom up search diagram representation
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Figure 4.8: Greedy top down search diagram representation
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Algorithm 4.2 Greedy top down partial solver mining
� Input data: target hit rates τi for each marker mi of the full marker
model M , n = |M |.

� Output data: set of partial solvers Φ = {S} with hit rates higher than
the target at least in one of their markers.

1. Set up initial solver of dimension n, Ω = {S} and initialise Φ = ∅;
2. For each solver Si in Ω:

(a) remove it from Ω ;
(b) remove each of its marker once at a time, generating dim(Si)

new solvers stored in Ωi;
(c) for each solver of Ωi, its hit rates are assessed;
(d) if no solver from Ωi reaches the target rates, it is removed

from Ωi and joins Φ;
(e) the remaining solver from Ωi are added to Ω;

3. If Ω is not empty, go back to 2.

of each chromosome is the maximum of the hit rates of the corresponding

partial solver.

Starting from a randomly generated population composed by a number of

partial solvers encoded as chromosomes, the following genetic operators are

applied to improve the population �tness towards �nding the global optimal

collection of partial solvers:

� Crossover: two parent chromosomes (partial solvers) are selected ran-

domly from the population, the crossover operator generates a new

chromosome by picking randomly its genes from either one of parent

chromosomes.

� Mutation: a chromosome is randomly selected and a new one is gener-

ated either by random permutation, addition or subtraction of one of

the parent's genes;

� permutation: pick a pair of genes of di�erent values and permute
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them. The size of the child partial solver remains the same;

� addition: pick a random '0' gen and reverse its value. The size of

the child partial solver increases by one;

� subtraction: pick a random '1' and reverse its value. The size of

the child partial solver decreases by one. The subtraction opera-

tion is biased towards the search of small specimens;

� Selection: after application of genetic operators, the �tness of the chro-

mosomes in the population are evaluated selecting those that meet the

target hit rate, when there is equal hit rate, smaller solvers are pre-

ferred. After that, a massive die out removes the 25% worse specimens.

The survivors join the ensemble of partial solvers.

Several computational experiments have been conducted in which the al-

gorithm always managed to improve the initial population after a number

of generations. The resulting solver ensembles proved to be good enough to

meet the requirements of the labelling algorithm discussed later. In any case,

the e�ciency of the genetic search strongly depends on its tuning parame-

ters: initial population size, crossover and mutation frequencies, number of

operations between die outs and percentage of specimens to wipe out.

4.5.4 Generating labels exploiting the ensemble of partial

solvers

At this point, we count on an optimal ensemble of partial solvers Φ = {S},
whose hit rates meet the targets τi for each marker. Each partial solver

is de�ned over a subset of the complete marker model, and the merge of

all solvers covers the complete model M . The formulation of Φ is a time

consuming training process to be done before the online execution of the

complete labelling algorithm.

During the labelling process, every time a new frame is acquired, the

list of candidate 3D points extracted from the motion capture harware is

built and exposed to each solver of the ensemble Φ of partial solvers. Each

member of the ensemble S hands over none, one or several candidate points
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assigned to the markersMk within its scope. The contribution of each solver

is recorded in a labelling matrix that has as many rows as candidate points

(nc) and columns as model markers (nm), so that each matrix entry (i, j)

contains
{
Si,js
}
: the set of partials solvers belonging to the ensemble Φ who

suggested the i-th candidate to the j -th marker. This matrix, expected to

be sparse most of the times because the partial solvers are expected to agree

on the mappings, looks like this:

m1 m2 · · · mj · · · mnm

c1 ∅
{
S1,2
s

}
· · · ∅ · · · ∅

c2 ∅ ∅ · · · ∅ · · · ∅
...

...
...

...
...

ci ∅ ∅ · · ·
{
Si,js
}
· · · ∅

...
...

...
...

...

cnc ∅ ∅ · · · ∅ · · · {Snc,nm
s }

Each columns of this matrix represents the labelling of a single marker.

A non-empty row on a given column represents the application of candidate

to be labelled as the corresponding marker. We may have the following

situations regarding the cell contents:

� The most common scenario is given when the i-th row and j-th column

contain only one non-null entry. In that case a particular candidate is

assigned to j: lj = i.

� A column j is empty: no solver proposes a candidate to the corre-

sponding marker. Either it might be occluded or there is not enough

con�dence to suggest one. In any case, we set it as occluded: lj = 0;

� A column j has more than one non-null entry because two or more

solvers suggest di�erent candidates. Basically this means that there is

an ambiguous assignment and therefore, from a secure point of view,

the safe choice that to set it as occluded: lj = 0.

� A row has more than on non-null entry in columns j1, j2,..., which

means that a candidate point is assigned to more than one marker
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point. Again, we take a safe choice by setting all the involved marker

as occluded, i.e. lj1 = 0, lj2 = 0, ...
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Chapter 5

Results

The algorithms presented in chapter 4 are designed to be applied right away

to an actual real world mocap problem. Therefore, this Thesis would be

incomplete without an assessment of the methods, in terms of hit ratio and

e�ciency, against real world data. Aside that, a description on the gathering

of the ground truth of a set of genuine capture motion data is given.

5.1 Experimental Data

This section presents the experimental data set that has been employed

for the computational validation experiments reported later. This database

gathers a set of real optical marker-based motion capture tracking samples.

On it, each sample corresponds to a single acquisition containing the 3D tra-

jectories of a set of markers along a continuous interval of time. Regarding

the motion, several persons were asked to walk normally while recorded using

motion capture cameras. The cameras, previously calibrated, are designed

to detect the 2D pixel image position of the markers against the background

thanks to the IR lightning ring they are provided with. The Cartesian po-

sition was afterwards recovered by means of photogrammetric methods (see

3.4 to know more), whereas the tracking was kept across the frames using

a proprietary software (CLIMA1). The data set contains only the raw 3D

1http://www.stt-systems.com/products/3d-optical-motion-capture/clima/

85
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trajectories of the aforementioned markers along the time.

The whole experimental setup corresponds to an commercial mocap set-

ting for gait analysis measurement with a equipment of six synchronised

cameras model S250e from Optitrack 2 (see �gure 3.4). Their main specs

are: 800x800 pixel resolution up to 250Hz, with built in infrared lightning

and IR �lter and Ethernet connectivity. The set of markers is the layout

proposed by Kadaba, Ramakrishnan, and Wootten, from the Helen Hayes

Hospital (more details can be found in [12]). The experimental data has been

manually veri�ed, so that the collected data is guaranteed to no contain la-

belling mistakes. Altogether, the experimental data consists of 71 video

sequences recorded at 100Hz summing up to 14 di�erent people of diverse

ages and body shapes walking at random paces. The average duration of

the sequences is about three seconds, so that we count on more than 20.000

frames to extract the clouds of candidate points. This database has been

made publicly accessible at Zenodo [28].

Labelled cloud samples corresponding to a correct correspondence are

categorised as class '1' for classi�cation purposes. Point clouds with incor-

rect labelling corresponding to class '0' data samples are generated by just

applying random permutations on the labels of correct labelled data.

5.2 Partial Solver Performance

Despite a partial solver has been thought to work in an ensemble, there is

not objection to use an instance whose dimension matches that of the marker

model. It has the drawback of not providing any labelling at all if a single

marker is missing (see discussion in section 4.4.2). But in exchange for that,

the hit rate of the yielded labelling is the highest possible (2nd property of

the partial solvers, see section 4.5.2). In addition to that, the outstanding

e�ciency of the partial solver labelling algorithm �up to 10,000 frames per

second according to the experimental results� makes it very useful in real

time applications where occlusions are very unlikely.

2http://optitrack.com/
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A set of features have been built using just a handful geometrical func-

tions (we have selected g2, g4 and g9 from Table 4.1) and applied to the

marker set of the ground truth, composed by 15 markers. Thus, a total of

665 weak classi�ers have been trained building the weak classi�er pool. The

training algorithm determines an ensemble φ = {h1, h2, ...} with 40 out of

665 weak classi�ers as the most e�ective to tell the correctness of a given la-

belling. To prove its accuracy, the ensemble is asked to assess the correctness

of a sample of labellings with known ground truth. The experiment shows

that the classi�er achieves an accuracy over 99% after the presentation of

more than 107 negative samples with diverse error severity.

Table 5.1 summarises the best weak classi�ers achieving over 93% accu-

racy. Apparently, the strongest weak classi�er is the one that prevents the

triangle right asis - left asis - sacrum from standing far from a horizontal

plane. Indeed, the set of training data involves people walking: no bend-

ing over or lying on the �oor movements are being exposed to the learning

process so this restriction is full of meaning. After it, the strong classi�er

relies on distance features between consecutive markers. This is another way

of saying that the length of humans limbs �or consecutive joints� is more

limited than the distance among arbitrary parts such as the toes and the

hands. Classi�ers from 2 to 7 has an individual detection rate around 11%,

but, acting as a whole the classi�ers 1 to 7 are able to catch up with nearly

the bulk 90% of wrong labelling. This is quite remarkable, drafting a rough

idea of the strength of the approach. From the 8th classi�er on, the grow

of aggregated score speeds down yet being the weak classi�ers useful to rule

out marginal false positives.

Once a set of n weak classi�ers φn is built, the corresponding solver

S (C,M, φn) is assembled with it and ready to tested. In order to prove the

ensemble classi�er performance depending on the size of φ, multiple instances

of solver are fed with a number of candidate sets (unlabelled points) coming

from di�erent frames of our dataset of gait sequences with known ground

truth and are asked to label them.

An indicator of the e�ciency of the algorithm is the number of required

feature evaluations: the less the numbers of evaluations, the less is the num-
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Table 5.1: First selected weak classi�ers
Weak classi�er Score (%) Sum score (%)

1 TriangleNormal_Y(R_asis,L_asis,sacrum) 18.82 18.82

2 Dist(R_malleolus,R_heel) 12.91 31.74

3 Dist(L_malleolus,L_heel) 12.84 44.59

4 Dist(R_femoral_epicondyle,R_tibial_band) 11.85 56.45

5 Dist(L_femoral_wand,L_femoral_epicondyle) 11.51 67.96

6 Dist(L_tibial_wand,L_meta_h) 10.87 78.84

7 CoordDi�_Y(R_femoral_wand,R_meta_h) 10.43 89.28

8 TriangleNormal_Y(sacrum,R_meta_h,L_meta_h) 1.90 91.17

9 Dist(R_femoral_wand,R_femoral_epicondyle) 1.84 93.02

ber of branches to be explored and thus the faster the search. Figure 5.1

shows how the true positive ratio grows with the number of weak classi�ers

used for the test of the labelling. However, as mentioned before, all classi�ers

up to the 40th are enough to rule out nearly all the false positives. Regarding

the e�ciency, the number of node evaluations apparently gets stable around

the 30th classi�er, requiring a mean of 3500 evaluations before running into

the right labelling. This number is rather small compared with 15! > 1012

(one trillion), which is the required number of tests in a brute-force search.

The graph that relates the number of feature evaluations with the number

of classi�ers is using a logarithmic vertical axis: less than 14 classi�ers still

require more than 100,000 evaluations.

5.3 Solver Ensemble Performance

When it comes to the solver ensemble that can successfully handle clouds of

candidate points su�ering occlusions, the assessment its e�ciency is made

according to two main performance indices:

� False assignments rate (FA): number of wrong assignments of candidate

points to marker vs. total number of assignments. This is the rate of

incorrect labelling.

� False occlusions rate (FO) : number of wrong occlusion assignments
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Figure 5.1: Accuracy and e�ciency assessment depending on the number of
weak classi�ers.
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Test conditions

Number of markers 15

Target hit rate 99.99%

Target failure rate 0.01%

Occlusions per frame 4

Number of test frames 16384

Table 5.2: Experimental conditions summary

vs. total number of occlusion assignments

It is desirable to keep both rates low. Obviously it is desirable to avoid

wrong labelling, but not at the expense missing legitimate assignments of

not occluded markers. A good balance between both performance indices is

achieved tuning the algorithm settings.

To validate the whole process, a large set of frames are borrowed from our

dataset with known ground truth. The candidates for each frame are ran-

domly permuted to obtain wrong labelling. To simulate occlusions, between

1 to 5 candidate points are removed from the samples. The labelling gener-

ated by the approach presented above is compared with the correct labelling

and the validation statistics are continuously updated. Summary descrip-

tion of the experimental conditions is given in Table 5.2. The frames are

extracted from a gait measurement experiment, so that markers correspond

to the lower limbs of the human body.

In Table 5.3 the rates of false assignments and false occlusions are shown

for a training and validation instances where the target marker hit rate was

set to 99.99% and the number of occluded points per frame was set to 4 for a

model of 15 markers. While the false assignments stands around the 0.01%,

the rate of unassigned markers (despite being present in the candidate point

cloud) �uctuates from 4.20% to 45.13% with an average of 31.16%. Some

markers are harder to catch with high con�dence when the rate of actual

occlusions reaches the 25%.

Repeating the above test with di�erent target hit rates and di�erent

number of simulated occlusions, the variation of the e�ciency indicators is
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Marker ID FA # FA % FO # FO %

r_asis 2 0.02% 300 6.38%

l_asis 2 0.02% 254 5.55%

s2 0 0.00% 286 6.11%

r_l_thigh 0 0.00% 3564 45.03%

l_l_thigh 1 0.01% 220 4.85%

r_knee 0 0.00% 1912 30.03%

l_knee 1 0.01% 3532 44.58%

r_calf 1 0.01% 194 4.20%

l_calf 3 0.03% 218 4.71%

r_ankle 3 0.03% 2302 34.02%

l_ankle 1 0.01% 4348 49.30%

r_heel 4 0.05% 3195 42.14%

l_heel 1 0.01% 3579 45.06%

r_toe 4 0.04% 2332 34.67%

l_toe 4 0.05% 3627 45.13%

Average 1.8 0.02% 1991 31.16%

Table 5.3: False assignments (FA) and false occlusions (FO) results. Rows
correspond to model markers located over parts of the body.
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Table 5.4: False assignments sensitivity to target marker hit rate and number
of occlusions.

False assignments rate

Target marker hit rate 99.000% 99.900% 99.990% 99.999%

Number of true occlusions

per frame

1 8.13% 1.12% 0.09% 0.04%

2 8.89% 0.94% 0.09% 0.05%

3 7.04% 0.58% 0.07% 0.02%

4 4.28% 0.34% 0.02% 0.01%

5 2.35% 0.16% 0.01% 0.00%

Table 5.5: False occlusion sensitivity to target marker hit rate and number
of occlusions.

False occlusions rate

Target marker hit rate 99.000% 99.900% 99.990% 99.999%

Number of true occlusions

per frame

1 0.25% 0.52% 12.10% 16.40%

2 5.74% 14.30% 19.96% 21.76%

3 9.56% 19.76% 25.18% 26.20%

4 13.16% 24.35% 30.90% 32.17%

5 18.25% 33.39% 39.65% 40.67%

exposed. The sensitivity of the false assignments rate (see Table 5.4), for

a constant number of simulated occlusions (the rows), when the target hit

rate increases (along the columns) the algorithm reduces dramatically the

number of false assignments. Likewise, the rate of false occlusions gets bigger

(Table 5.5, right).

These numbers are plotted in Figure 5.2. Each line corresponds to the

same number of simulated occlusions, while the dot symbol corresponds to

a given target hit rate. Low false assignment rates (x axis) correspond to

high false occlusions rate. On the other hand, when the number of simulated

occlusions gets bigger, the rate of false occlusions increases as well.

The reason behind this behaviour is the following. When it is not possible

to formulate assignments due a lack of information (occlusions), the weak

classi�ers can't be evaluated and consequently the strong classi�er loses its

strength. The intuitive interpretation is that the identi�cation of each single
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Figure 5.2: Graph: false assignments and false occlusions under di�erent
test conditions

marker depends on the identi�cation of the others. Indeed, the markers

themselves act as a community where the identity of a member is backed up

by its peers. If too many of them are missing, we just can't tell the identity

of the remaining ones.
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Chapter 6

Conclusions

In this �nal chapter we present the summary and conclusions of the Thesis,

including some comments on future lines of work. The core research e�ort

of this work is aimed to the solution of a practical problem and therefore the

conclusions are considered from a pragmatical point of view. The accom-

plished goals and some limitations of the work are discussed in section 6.1

and section 6.2, respectively. No conclusions chapter is complete without a

list of future work guidelines that see their place in section 6.3.

6.1 Achievements

The main contribution of this Thesis is the development of a complete maker

labelling algorithm ready to be embedded in the whole pipeline of an optical

mocap system. The most appreciated requirements in such an algorithm are,

namely, a high hit ratio (percentage of right assignments), robustness against

massive and long lasting occlusions and e�cient enough to be run at real time

speeds. According to the experimental results, all these requirements are met

with the set of methods here exposed.

In addition to that, the proposed solution is innovative as long as it dis-

sociates itself from the usual skeleton driven approaches followed in related

works. Instead, this work is built around the concept of weak classi�er as

plain geometrically based features that are evaluated over the cloud of can-

95
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didate points. This allows the problem to be tackled with the wide variety

of machine learning methods in an way who has never been explored so far.

In fact, the presented approach does not use any semantic prior structural

information, such as anatomical locations or graphs of expected relative po-

sitions. Not only does it so, but it also discards temporal information (i.e.

prior marker trajectories) that tend to mislead and break the tracking �ow

in the case of frames containing ambiguities. Thus, each frame in the video

sequence is independently analysed, preventing feasible labelling mistakes

from propagating in time and turning the recovery from occlusions to be

done almost immediately.

The problem of optical marker tracking is seldom dealt in the literature.

Partly because such stage is taken as granted. Indeed, when a human eye

come across a regular unlabelled point cloud produced from the cameras,

it doesn't �nd much trouble to make out who is who. In the end, our

brain is trained and used to recognise human movements. For instance,

one can easily guess who we are looking at by just the way he walks, or

even guess its mood state depending on its movement. Not to mention

the huge capacity of the brain to �ll the gaps with learnt patterns when a

lasting partly occlusion takes place. Somehow, the way our mind determines

who marker is who among a collection of messy point cloud is thanks to

a entangled set of fuzzy rules born out of experience. The markers are

normally attached to the skin at best �loose cloth at worst� and thus they

move random and non-deterministically with respect to the corresponding

segment. Trying to write down a code or set of rules by hand is a rather

impractical undertaking for a skilled technician, unthinkable for a newbie.

In contrast, the machine learning is a natural approach as for it perfectly �ts

under these circumstances, yielding decisions that mimic those of the human

brain.

A windfall obtained from the development of the algorithms is the sub-

stantiation of a slippery awareness: the markers can not be identi�ed in-

dividually, but in strong dependency with others. The concept for partial

solvers formalises the fact that groups of markers mutually back up their

labelling. Consequently, the occlusion of a few of them may follow in the
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failure to assure the tag of the remaining ones, whereas a low rate in the

number of occlusions greatly increases the labelling trust. The disclosure of

such groups and the con�dence level they share out drove to a noticeable

e�ort of this work.

Another side result closely related with the above, is the settlement of a

trade o� between the number of markers that can be labelled and the haz-

ard of the algorithm to make a mistake. In a cautious behaviour, the more

demanding is the hit ratio, the less the number of markers it dares to label

and vice verse. Finally, if low hit ratios are reached even in absence of occlu-

sions, we can judge a given marker model a non suitable to be tracked (for

instance it contains ambiguous symmetries or a too low number of markers

per limb). Bad designs lead to ambiguities in the labelling, therefore the

inability to achieve a robust labelling can be understood as a poor design of

marker placements. The developed methods can assist the optimal design of

marker placement as long as they are able to assess its capturability.

6.2 Limitations

In the downside, the most acute �aw comes from the fact that the supervised

learning algorithms requires a number (not small) of correctly labelled frame

samples to learn from. Still counting on a basic, faulty tracking algorithm, it

takes countless hours to gather and verify the correctness of the input data.

In addition, if a negligible mismatch slips away, the overall e�ciency can be

weakened without almost noticing it. And if some reasonable suspicion is

established, it turns out to be pretty hard to trace back the faulty data.

On the other hand, the learning algorithm faithfully sticks to the given

examples. If the ground truth is not diverse enough, the resulting algorithm

might refuse to label a point cloud, discarding correct labelling as not feasi-

ble. A diverse enough ground truth requires the recording of a variety of per-

sons regarding their height, shape, movements technique ... a �eld work that

becomes rather di�cult to compile when the goal is to teach the algorithm

to track uncommon actions such as classical dance or martial arts. More-

over, even counting on a profuse data base, there is always the risk to leave
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out singular cases. Such circumstances might occur with disabled people

(clubfoot, equine foot, ...) or persons showing atypical movement disorders

(ataxic/myopathic gait, abnormal posturing, etc.). This is a particularly

severe limitation for the practical application of the developed methods, as

long as the medical community is particularly interested in these cases.

Finally, it can be sensibly argued that ruling out temporal information

can be a too extreme and harsh choice. Indeed, certain constraints could be

settled down to reduce the feasible labelling if a kind of trajectory smooth-

ness/continuity is imposed along the time. Isn't it a waste of useful infor-

mation? Happily, the answer is there is no need to exclude it at all. The

trick to accommodate those constraints in the algorithms here developed is

to consider that the geometric features are not limited to be formulated over

Cartesian coordinates belonging to the same frame. Instead of regarding the

unknown labelling as a vector of integer values Lt =
{
lti
}
that associates the

i-th marker with the lti candidate at given �and only one� frame t (see

4.1), we could enlarge it to hold the labelling in additional frames:

LT =
{
Lt−∆t, Lt, Lt+∆t

}
(6.1)

This slight problem reframe gives the weak classi�ers the chance to take

into account temporal information whereas the labelling for more than one

frame is simultaneously solved. But even more: geometric features are not

even limited to Cartesian positions! Certainly, the smoothness in the marker

trajectories can be formulated as constrains in its derivatives respect to the

time. And nothing prevent us from formulating geometric functions over

partial derivatives:

gk = gk(Mi,Mj , ..., Ṁi, ..., M̈i, ...) (6.2)

being Ṁi = {ẋ, ẏ, ż} =
{
δx
δt , ...

}
the �rst derivative of the position of the

marker Mi respect to the time, M̈ithe second and so forth. From here on,

weak classi�ers are trained and strong classi�ers built with almost no change

over the original proposal. The only drawback is that the learning time can

grow signi�cantly, as long as the number of feasible weak classi�ers does alike.
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All in all, the methods here proposed are not forced to remain irreconcilable

with temporal constraints; instead they can be optionally embedded in the

whole formulation.

6.3 Future work

Future work guidelines come naturally from the limitations aforementioned

in the above section. To begin with, it would be really interesting �and

equally challenging� to feed the learning algorithms with raw, unlabelled

clouds of candidate points. Such solution would avoid the programmer the

excruciating task of gathering, verifying and cleaning the input ground truth.

A �rst approach to be explored might be the possibility of an incremental

assisted �human driven� learning process, in a kind of semi-supervised

pipeline. Starting from a few fully supervised examples, a �rst naive solver

ensemble could be trained. From that on, it is asked to label new samples and

the technician only has to manually correct its mistakes. The new labelled

samples are incorporated to the ground truth until the hit ratio reaches the

required goal.

Another path to explore is the use of weak classi�ers using temporal in-

formation. Undoubtedly, that should bring interesting results at the expense

of a more complex software implementation and larger learning computing

time. Only the latter halted this research work from engaging the issue that,

all in all, it is worth to be dealt.

The gait analysis is a paradigm in the interest for mocap and the reason

for what it was selected to build the experimental dataset and its ground

truth. Nevertheless, a remarkable entry in the to do list is the assessment of

the formulated methods with a variety of motion cases (jumping, dancing,

...). All things considered, once implemented it is just a matter of time to

carry out more trials to assess the algorithms �after probably an appropriate

sanding and varnishing.
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