Integrating information extraction agents into a tourism recommender system

Sergio Esparcia

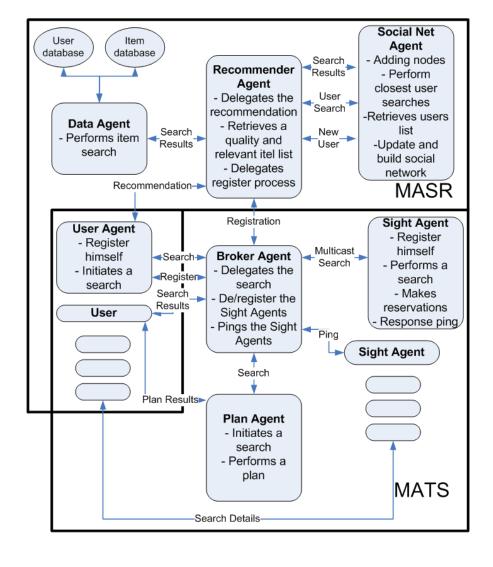
Víctor Sánchez-Anguix Estefanía Argente Ana García-Fornes Vicente Julián

Grupo de Tecnología Informática Inteligencia Artificial

- Introduction
- Social-Net Tourism Recommender System
- Information agents add-on
 - Information extraction agents
 - Information classification agents
- Experiments
- Conclusions

- Introduction
- Social-Net Tourism Recommender System
- Information agents add-on
 - Information extraction agents
 - Information classification agents
- Experiments
- Conclusions

INTRODUCTION


- Recommender systems: Tourism industry
 - Social-Net Recommender System (STRS)
- Problems
 - Keeping information up-to-date
 - Third parties are also offering services (enhance recommendations)
- Goals: Add-on for STRS
 - Keeping system user information up-to-date
 - Extract information from third parties to enhance recommendations

- Introduction
- Social-Net Tourism Recommender System
- Information agents add-on
 - Information extraction agents
 - Information classification agents
- Experiments
- Conclusions

SOCIAL-NET RECOMMENDER SYSTEM

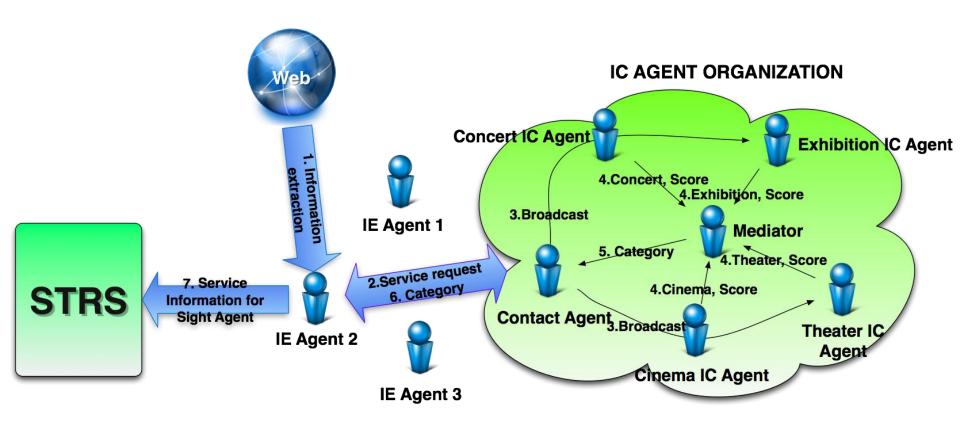
- Introduction
- Social-Net Tourism Recommender System
- Information agents add-on
 - Information extraction agents
 - Information classification agents
- Experiments
- Conclusions

INFORMATION AGENTS ADD-ON

- Two different kinds of agents:
 - Information extraction agents
 - Information classification agents
- Information found on the Web
- Natural Language Processing (NLP) as classification mechanism

- Information extraction agents (IE):
 - Wrapper architecture
 - HTML request
 - Analyze HTML structure: look for specific patterns
 - Extract relevant information of the event
 - Some information (category) needs to be inferred
 - Send events description to information classification (IC) agents
 - Wait for IC agents response

- Information classification agents (IC):
 - Each IC agent is specialized in classifying one event category
 - Use NLP to categorize event descriptions
 - Rule based system:
 - Term Strength rules
 - Hyperonym rules $\longrightarrow SC_H(w_i) = \frac{|S(w_i)| (i-1)}{\sum_{k=1}^{|S(w_i)|} k}$



- Information classification agents (IC):
 - Score for a word w_i = score of the matching rule that maximizes the score vote for w_i
 - Final score vote for a service description = sum of the final scores produced by all the words

- Information classification agents (IC):
 - All IC agents form a mediated agent organization
 - Contact agents: Classification service
 - Mediator agent:
 - Decides final category
 - Adjusts voting power (vp) (e.g. past experiences)
 - $Category(W) = Expertise(argmax_{a_i \in ICS} vp_{a_i} * SC_{a_i}(W))$

- Introduction
- Social-Net Tourism Recommender System
- Information agents add-on
 - Information extraction agents
 - Information classification agents
- Experiments
- Conclusions

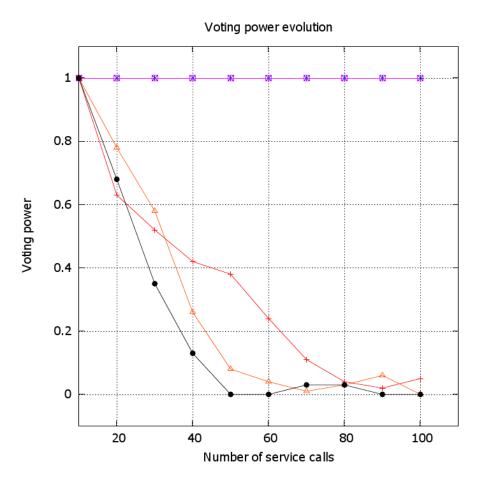
EXPERIMENTS

- First experiment:
 - Test classification accuracy
 - Three categories: Music, theater, exhibition
 - 600 balanced service description
 - 30% test, 70% training
 - $vp_{a_i} = 1$
 - Baseline: Term Strength

Method	Classification error (test)	Classification error (tranining)
Proposed method	11,11%	11,79%
Term Strength	16,67%	17,65%

EXPERIMENTS

- Second experiment:
 - Test voting power:
 - 3 bad designed agents and the 3 previous agents
 - Voting power adjustment based on past classifications (updated each 10 service calls)
 - Adjustment rule:


•
$$vp_{a_i}^{t+1} = vp_{a_i}^t - \frac{FP_{ai}}{|N_{other}|} + \frac{TP_{ai}}{|N|}$$

where:

- $vp_{a_i}^{t+1}$ is the new voting power
- $vp_{a_i}^t$ is the voting power of agent a_i in the last check
- $\neg FP_{ai}$ is the number of false positives given by a_i
- $^{\Box}$ TP_{ai} is the number of true positives given by a_i
- |N| is the total number (10) of service calls
- $\mid N_{other} \mid$ is the total number of service calls whose associated service category is not the one that a_i represents

EXPERIMENTS

- Introduction
- Social-Net Tourism Recommender System
- Information agents add-on
 - Information extraction agents
 - Information classification agents
- Experiments
- Conclusions

CONCLUSIONS

- An add-on for STRS was presented
 - Keeps information up-to-date
 - Retrieves information from third-parties
- Information extraction agents employ NLP to extract and classify information
- Bad designed agents can be neutralized by means of mediated voting processeses

THANKS FOR YOUR ATTENTION

Any questions?

