Statistical Learning Theory

Consistency and bounds on the rate of convergence for ERM methods

Miguel A. Veganzones

Grupo Inteligencia Computacional Universidad del País Vasco

Outline

- Introduction
- Consistency
 - Introduction
 - VC entropy
 - Necessary and sufficient conditions for uniform convergence
- Theory of non-falsiability
 - Kant's problem of demarcation and Popper's theory of non-falsiability
 - Theorems of nonfalsiability
- 4 Bounds on the rate of convergence

Consistency of learning processes

- Consistency: convergence in probability to the best possible result.
- Consistency of learning processes:
 - To explain when a learning machine that minimizes empirical risk can achive a small value of actual risk (to generalize) and when it can not.
 - Equivalently, to describe necessary and sufficient conditions for the consistency of learning processes that minimize the empirical risk.
- This guarantees that the constructed theory is general and cannot be improved from the conceptual point of view.

Theory of non-falsiability

- Kant's problem of demarcation (s. XVIII): is there a formal way to distinguish true theories from false theories?
 - One of the main questions of modern philosophy.
- Popper's theory of non-falsiability (s. XX): criterion for demarcation between true and false theories.
- Strongly related to what happens if the ERM method is not consistent.

Bounds on the rate of convergence

- It is required for any machine minimizing empirical risk to satisfy consistency conditions.
- But, consistency conditions say nothing about the rate of convergence of the obtained risk $R(\alpha_l)$ to the minimal one $R(\alpha_0)$.
- It is possible to construct examples where the ERM principle is consistent, but where the risks have an arbitrary slow asymptotic rate of convergence.
- The theory of bounds on the rate of convergence tries to answer the following question:
 - Under what conditions is the asymptotic rate of convergence fast?

Outline

- Introduction
- 2 Consistency
 - Introduction
 - VC entropy
 - Necessary and sufficient conditions for uniform convergence
- Theory of non-falsiability
 - Kant's problem of demarcation and Popper's theory of non-falsiability
- Theorems of nonfalsiability
- Bounds on the rate of convergence

Notation

ullet Let $Q(\mathbf{z}, lpha_l)$ be a function that minimizes the empirical risk functional

$$R_{emp} = \frac{1}{l} \sum_{i=1}^{l} Q(\mathbf{z_i}, \alpha)$$

for a given set of i.i.d. observations z_1, \ldots, z_l .

Classical definition of consistency

• The ERM principle is consistent for the set of functions $Q(\mathbf{z}, \alpha), \alpha \in \Lambda$, and for the p.d.f. $F(\mathbf{z})$ if the following two sequences converge in probability to the same limit:

$$R(\alpha_l) \xrightarrow[l \to \infty]{P} \inf_{\alpha \in \Lambda} R(\alpha) \tag{1}$$

$$R_{emp}(\alpha_l) \xrightarrow[l \to \infty]{P} \inf_{\alpha \in \Lambda} R(\alpha)$$
 (2)

- Equation (1) asserts that the values of achieved risks converge to the best possible.
- Equation (2) asserts that one can estimate on the basis of the values of empirical risk the minimal possible value of the risk.

Classical definition of consistency

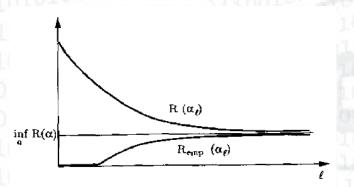


Figure: The learning process is consistent if both the expected risks $R(\alpha_l)$ and the empirical risks $R_{emp}(\alpha_l)$ converge to the minimal possible value of the risk $\inf_{\alpha \in \Lambda} R(\alpha)$.

中国人 (国际) (基本) (基

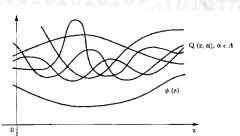
Goal

- To obtain conditions of consistency for the ERM method in terms of general characteristics of the set of functions and the probability measure.
- This is an impossible task because the classical definition of consistency includes cases of trivial consistency.

Trivial consistency

- Suppose that for some set of functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, the ERM method is not consistent.
- Consider an extended set of functions including this set of functions and the additinal function $\phi(\mathbf{z})$ that satisfies the following inequality

$$\inf_{\alpha\in\Lambda}Q\left(\mathbf{z},\alpha\right)>\phi\left(\mathbf{z}\right),\qquad\forall\mathbf{z}$$



Trivial consistency

- For the extended set of functions (containing $\phi(\mathbf{z})$) the ERM method will be consistent.
- For any distribution function and number of observations, the minimum of the empirical risk will be attained on the function $\phi(\mathbf{z})$ that also gives the minimum of the expected risk.
- This example shows that there exist trivial cases of consistency that depend on wether the given set of functions contains a minorizing function.

• In order to create a theory of consistency of the ERM method depending only on the general properties (capacity) of the set of functions, a consistency definition excluding trivial consistency cases is needed.

Theory of non-falsiability

• This is done by non-trivial (strict) consistency definition. 0110010011011111010001

Non-trivial consistency

• The ERM principle is nontrivially consistent for the set of functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, and the probability distribution function $F(\mathbf{z})$ if for any nonempty subset $\Lambda(c)$, $c \in (-\infty, \infty)$ defined as

$$\Lambda(c) = \left\{ \alpha : \int Q(\mathbf{z}, \alpha) dF(\mathbf{z}) > c, \quad \alpha \in \Lambda \right\}$$

the convergence

$$\inf_{\alpha \in \Lambda(c)} R_{emp}(\alpha) \xrightarrow[l \to \infty]{P} \inf_{\alpha \in \Lambda(c)} R(\alpha)$$
 (3)

is valid.

Key theorem of learning theory

• Vapnik and Chervonenkins, 1989.

Theorem

Let $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, be a set of functions that satisfy the condition

$$A \le \int Q(\mathbf{z}, \alpha) dF(\mathbf{z}) \le B \quad (A \le R(\alpha) \le B)$$

then for the ERM principle to be consistent, it is necessary and sufficient that the empirical risk $R_{emp}(\alpha)$ converges uniformly to the actual risk $R(\alpha)$ over the set $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, in the following sense:

$$\lim_{l\to\infty} P\left\{\sup_{\alpha\in\Lambda} \left(R\left(\alpha\right) - R_{emp}\left(\alpha\right)\right) > \varepsilon\right\} = 0, \quad \forall \varepsilon > 0$$
 (4)

- ◀ □ ▶ ◀@ ▶ ◀ 분 ▶ 4 분 ▶ 분 | 독 | ♥ 9 0

Consistency of the ERM principle

- According to the key theorem, the uniform one-sided convergence (4) is a necessary and sufficient condition for (non-trivial) consistency of the ERM method.
- Conceptually, the conditions for consistency of the ERM principle are necessarily and sufficiently determined by the "worst" function of the set of functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$.

Outline

- Introduction
- 2 Consistency
 - Introduction
 - VC entropy
 - Necessary and sufficient conditions for uniform convergence
- Theory of non-falsiability
 - Kant's problem of demarcation and Popper's theory of non-falsiability
 - Theorems of nonfalsiability
- Bounds on the rate of convergence

• The key theorem expresses that consistency of the ERM principle is equivalent to existence of uniform one-sided convergence.

Theory of non-falsiability

- Conditions for uniform two-sided convergence play an important role in constructing conditions for uniform two-sided convergence.
- Necessary and suffficient conditions for both uniform one-sided and two-sided convergence are obtained on the basis of the VC entropy concept.

Empirical process

 An empirical process is an stochastic process in the form of a sequence of random variables

$$\xi^{l} = \sup_{\alpha \in \Lambda} \left| \int Q(\mathbf{z}, \alpha) dF(\mathbf{z}) - \frac{1}{l} \sum_{i=1}^{l} Q(\mathbf{z}_{i}, \alpha) \right|, \quad l = 1, 2, \dots (5)$$

that depend on both, the probability measure $F(\mathbf{z})$ and the set of functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$.

 The problem is to describe conditions under which this empirical process converges in probability to zero.

Consistency of an empirical process

 The necessary and sufficient conditions for an empirical process to converge in probability to zero imply that the equality

$$\lim_{l\to\infty} P\left\{\sup_{\alpha\in\Lambda}\left|\int Q\left(\mathbf{z},\alpha\right)dF\left(\mathbf{z}\right) - \frac{1}{l}\sum_{i=1}^{l}Q\left(\mathbf{z_{i}},\alpha\right)\right| > \varepsilon\right\} = 0, \quad \forall \varepsilon > 0 \tag{6}$$

holds true.

<ロ > < 即 > < 重 > < 重 > 至 ≥ 1 = り Q G

Law of large numbers and its generalization

- If the set of functions contains only one element, then the sequence of random variables ξ^l always converges in probability to zero: law of large numbers.
- Generalization of the law of large numbers for the case where a set of functions has a finite number of elements:

Definition

The sequence of random variables ξ^l converges in probability to zero if the set of functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, contains a finite number N of elements.

Law of large numbers and its generalization

- When $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, has an infinite number of elements, the sequence of random variables ξ^l does not necessarily converges in probability to zero.
- Problem of the existence of a law of large numbers in functional space (uniform two-sided convergence of the means to their probabilities): generalization of the classical law of large numbers.

VC Entropy

• Necessary and sufficient conditions for both uniform one-sided convergence and uniform two-sided convergence are obtained on the basis of a concept called the VC entropy of a set of functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, for a sample of size l.

• Lets characterize the *diversity* of a set of indicator functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, on the given set of data by the quantity $N^{\hat{}}(\mathbf{z_1}, \ldots, \mathbf{z_l})$ that evaluates how many different separations of the given sample can be clone using functions from the set of indicator functions.

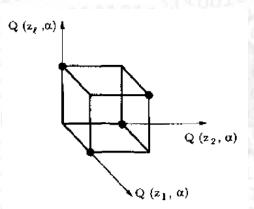
Theory of non-falsiability

• Consider the set of *l*-dimensional binary vectors:

$$q(\alpha) = (Q(\mathbf{z_1}, \alpha), \dots, Q(\mathbf{z_l}, \alpha)), \quad \alpha \in \Lambda$$

Geometrically, the diversity is the number of different vertices of the l-dimensional cube that can be obtained on the basis of the sample z_1, \ldots, z_l and the set of functions.

◆ロト ◆個ト ◆注ト ◆注ト 注目 りぬ



Theory of non-falsiability

Figure: The set of l-dimensional binary vectors $q(lpha),\ lpha\in\Lambda,$ is a subset of the set of vertices of the *l*-dimensional unit cube.

The random entropy

$$H^{\hat{}}(\mathbf{z}_1,\ldots,\mathbf{z}_l) = \ln N^{\hat{}}(\mathbf{z}_1,\ldots,\mathbf{z}_l)$$

Theory of non-falsiability

describes the diversity of the set of functions on the given data.

• The expectation of the random entropy over the joint distribution function $F(\mathbf{z_1}, \dots, \mathbf{z_l})$:

$$H^{\hat{}}(l) = E\left[\ln N^{\hat{}}(\mathbf{z}_1, \dots, \mathbf{z}_l)\right] \tag{7}$$

is the VC entropy of the set or indicator functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, on samples of size l.

• Let $A \leq Q(\mathbf{z}, \alpha) \leq B$, $\alpha \in \Lambda$, a set of bounded loss functions.

Theory of non-falsiability

• Considering this set of functions and the training set $z_1, ..., z_l$ one can construct the following set of l-dimensional vectors:

$$q(\alpha) = (Q(\mathbf{z_1}, \alpha), \dots, Q(\mathbf{z_l}, \alpha)), \quad \alpha \in \Lambda$$

• The diversity, $N=N^{\hat{}}(\varepsilon,\mathbf{z_1},\ldots,\mathbf{z_l})$, indicates the number of elements of the minimal ε -net of this set of vectors $q(\alpha)$, $\alpha\in\Lambda$.

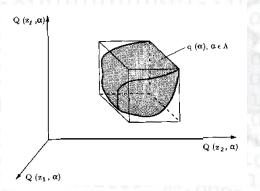
Introduction

VC Entropy of the set of real functions Minimal ε -net

- The set of vectors $q(\alpha),\ \alpha\in\Lambda$, has a minimal arepsilon-net $q(\alpha_1),\ldots,q(\alpha_N)$ if:
 - **1** There exist $N = N^{\hat{}}(\varepsilon, \mathbf{z_1}, ..., \mathbf{z_l})$ vectors $q(\alpha_1), ..., q(\alpha_N)$ such that for any vector $q(\alpha^*)$, $\alpha^* \in \Lambda$, one can find among these N vectors one $q(\alpha_r)$ that is ε -close to $q(\alpha^*)$ in a given metric.
- \bigcirc N is the minimum number of vectors that posseses this property. 011111000001111001011

Theory of non-falsiability

VC Entropy of the set of real functions Diversity (geometrics)



Theory of non-falsiability

Figure: The set of *l*-dimensional vectors $q(\alpha)$, $\alpha \in \Lambda$, belongs to an *l*-dimensional cube.

VC Entropy of the set of real functions Random entropy and VC entropy

• The random VC entropy of the set of functions $A \leq Q(\mathbf{z}, \alpha) \leq B, \ \alpha \in \Lambda$, on the sample $\mathbf{z_1}, \dots, \mathbf{z_l}$ is given by:

Theory of non-falsiability

$$H^{\hat{}}(\varepsilon; \mathbf{z}_1, \dots, \mathbf{z}_l) = \ln N^{\hat{}}(\varepsilon; \mathbf{z}_1, \dots, \mathbf{z}_l)$$

• The expectation of the random VC entropy over the joint distribution function $F(\mathbf{z_1}, \dots, \mathbf{z_l})$:

$$H^{\hat{}}(\varepsilon;l) = E [\ln N^{\hat{}}(\varepsilon;\mathbf{z_1},\ldots,\mathbf{z_l})]$$

is the VC entropy of the set of real functions $A \leq Q(\mathbf{z}, \alpha) \leq B$, $\alpha \in \Lambda$, on samples of size l.

Outline

- Introduction
- 2 Consistency
 - Introduction
 - VC entropy
 - Necessary and sufficient conditions for uniform convergence
- Theory of non-falsiability
 - Kant's problem of demarcation and Popper's theory of non-falsiability
 - Theorems of nonfalsiability
- Bounds on the rate of convergence

Conditions for uniform two-sided convergence

Theorem

Under some conditions of measurability on the set of real bounded functions $A \leq Q(\mathbf{z}, \alpha) \leq B$, $\alpha \in \Lambda$, for uniform two-sided convergence it is necessary and sufficient that the equality

Theory of non-falsiability

$$\lim_{l \to \infty} \frac{H^{\hat{}}(\varepsilon; l)}{l} = 0, \quad \forall \varepsilon > 0$$
 (8)

be valid.

Conditions for uniform two-sided convergence Corollary

Corollary

Under some conditions of measurability on the set of indicator functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, for uniform two-sided convergence it is necessary and sufficient that

Theory of non-falsiability

$$\lim_{l\to\infty}\frac{H^{\,\hat{}}(l)}{l}=0$$

which is a particular case of (8).

Uniform one-sided convergence

• Uniform two-sided convergence can be described as

Theory of non-falsiability

$$\lim_{l\to\infty} P\left\{ \left[\sup_{\alpha} \left(R(\alpha) - R_{emp}(\alpha) \right) \right] \vee \left[\sup_{\alpha} \left(R_{emp}(\alpha) - R(\alpha) \right) \right] \right\} = 0$$
(9)

which includes uniform one-sided convergence, and it's sufficient condition for ERM consistency.

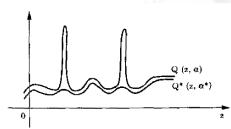
 But for consistency of ERM principle, left-hand side of (9) can be violated.

Conditions for uniform one-sided convergence

• Consider the set of bounded real functions $A \leq Q(\mathbf{z}, \alpha) \leq B$, $\alpha \in \Lambda$, together with a new set of functions $Q^*(\mathbf{z}, \alpha^*)$, $\alpha^* \in \Lambda^*$, such that

$$Q\left(\mathbf{z},\alpha\right)-Q^{*}\left(\mathbf{z},\alpha^{*}\right)\geq0,\quad\forall\mathbf{z}$$

$$\int \left(Q\left(\mathbf{z},\alpha\right) - Q^{*}\left(\mathbf{z},\alpha^{*}\right)\right) dF\left(\mathbf{z}\right) \leq \delta \tag{10}$$



4 □ ▶ 4 @ ▶ 4 분 ▶ 분 별 등 약 약

Conditions for uniform one-sided convergence

Theorem

Under some conditions of measurability on the set of real bounded functions $A \leq Q(\mathbf{z}, \alpha) \leq B$, $\alpha \in \Lambda$, for uniform one-sided convergence it is necessary and sufficient that for any positive δ , η and ε there exist a set of functions $Q^*(\mathbf{z}, \alpha^*)$, $\alpha^* \in \Lambda^*$, satisfying (10) such that the following holds:

$$\lim_{l \to \infty} \frac{H^{\hat{}}(\varepsilon; l)}{l} < \eta \tag{11}$$

Outline

- Introduction
- Consistency
 - Introduction
 - VC entropy
 - Necessary and sufficient conditions for uniform convergence
- Theory of non-falsiability
 - Kant's problem of demarcation and Popper's theory of non-falsiability
 - Theorems of nonfalsiability
- Bounds on the rate of convergence

Models of reasoning

- Deductive:
 - Moving from general to particular.
 - The ideal approach is to obtain corollaries (consequences) using a system of axioms and inference rules.
 - Guarantees that true consequences are obtained from true premises.
- Inductive:
 - Moving from particular to general.
 - Formation of general judgements from particular assertions.
 - Judgements obtained from particular assertions are not always true.

Demarcation problem

• Proposed by Kant, it is a central question of inductive theory.

Demarcation problem

What is the difference between the cases with a justified inductive step and those for which the inductive step is not justified?

Is there a formal way to distinguish between true theories and false theories?

Example

- Assume that metereology is a true theory and astrology is a false one.
- What is the formal difference between them?
 - The complexity of the models?
 - The predictive ability of their models?
 - Their use of mathematics?
 - The level of formality of inference?
- None of the above gives a clear advantadge to either of these theories.

Criterion for demarcation

- Suggested by Popper (1930), a necessary condition for justifiability of a theory is the feasibility of its falsification.
- By falsification, Popper means the existence of a collection of particular assertions that cannot be explained by the given theory although they fall into its domain.
- If the given theory can be falsified it satisfies the necessary conditions of a scientific theory.

Outline

- Introduction
- 2 Consistency
 - Introduction
 - VC entropy
 - Necessary and sufficient conditions for uniform convergence
- Theory of non-falsiability
 - Kant's problem of demarcation and Popper's theory of non-falsiability
 - Theorems of nonfalsiability
- Bounds on the rate of convergence

Nature of the ERM principle

- What happens if the condition of one-side convergence (theorem 11) is not valid?
- Why is the ERM method not consistent is this case?
- Answer: if uniform two-sided convergence does not take place, then the method of minimizing the empirical risk is non-falsifiable.

Complete (Popper's) non-falsiability

 According to the definition of VC entropy the following expressions are valid for a set of indicator functions:

$$H^{\hat{}}(l) = E[\ln N^{\hat{}}(\mathbf{z_1}, \dots, \mathbf{z_l})]$$
 and $N^{\hat{}}(\mathbf{z_1}, \dots, \mathbf{z_l}) \le 2^l$

• Suppose that for a set of indicator fuctions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, the following equality is true:

$$\lim_{l\to\infty}\frac{H^{\,\hat{}}\left(l\right)}{l}=\ln2$$

 It can be shown that the ratio of the entropy to the number of observations decreases monotonically as the number of observations l increases. Therefore for any finite number l the following equality holds true:

Vapnik

$$\frac{H^{\uparrow}(l)}{l} = \ln 2$$

Complete (Popper's) non-falsiability

ullet This means that for almost all samples z_1,\dots,z_l (all but a set of measure zero) the following equality is true:

$$N^{\hat{}}(\mathbf{z_1},\ldots,\mathbf{z_l})=2^l$$

- That is, the set of functions of this learning machine is such that almost any sample z_1, \ldots, z_l of arbitrary size l can be separated in all possible ways.
- This implies that the minimum of the empirical risk for this machine equals zero independently of the value of the actual risk.
- This learning machine is non-falsiable because it can give a general explanation (function) for almost any data.

Partial non-falsiability

 When entropy of a set of indicator functions over the number of observations tends to a nonzero limit, there exits some subspace of the original space Z where the learning machine is non-falsifiable.

Partial non-falsiability

• Given a set of indicator functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, for which the following convergence is valid:

$$\lim_{l \to \infty} \frac{H^{\hat{}}(l)}{l} = c > 0$$

then, there exists a subset Z^* of Z such that

$$P(Z^*) = c$$

and for the subset $\mathbf{z_1^*}, \dots, \mathbf{z_k^*} = (\mathbf{z_1}, \dots, \mathbf{z_l}) \cap Z^*$ and for any given sequence of the binary values $\delta_1, \ldots, \delta_k, \delta_i \in \{0, 1\}$, there exists a function $Q(\mathbf{z}, \alpha^*)$ for which the equalities $\delta_i = Q(\mathbf{z}^*_{\mathbf{i}}, \pmb{lpha}^*)$ holds true.

Potential non-falsiability

- Considering a set of uniformly bounded real functions $|Q(\mathbf{z}, \alpha)|, \ \alpha \in \Lambda.$
- A learning machine that has an admissible set of real functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, is potentially non-falsiable for a generator of inputs $F(\mathbf{z})$ if there exist two functions

$$\psi_{1}\left(\mathbf{z}\right) \geq \psi_{0}\left(\mathbf{z}\right)$$

such that:

- ② For almost any sample $\mathbf{z_1}, \dots, \mathbf{z_l}$, any sequence of binary values $\delta(1), \dots, \delta(l)$, $\delta(i) \in \{0,1\}$, and any $\varepsilon > 0$, one can find a function $Q(\mathbf{z}, \alpha^*)$ in the set of functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, for which the following inequality holds true:

$$\left|\psi_{\delta(i)}\left(\mathbf{z_i}\right) - Q\left(\mathbf{z_i}, \alpha^*\right)\right| < \varepsilon$$

Potential non-falsiability Graphical representation

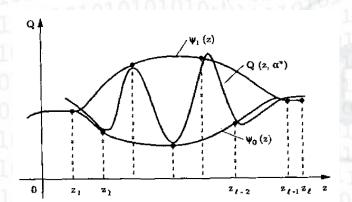


Figure: A potentially non-falsiable learning machine

Potential non-falsiability

- This definition of non-falsiability generalizes Popper's concept:
 - Of complete non-falsiability for a set of indicator functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, where $\psi_1(\mathbf{z}) = 1$ and $\psi_0(\mathbf{z}) = 0$.
 - Of partial non-falsiability for a set of indicator functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, where

$$\psi_{1}(\mathbf{z}) = \begin{cases} 1 & if \quad \mathbf{z} \in Z^{*} \\ Q(\mathbf{z}) & if \quad \mathbf{z} \notin Z^{*} \end{cases}$$

$$\psi_0(\mathbf{z}) = \begin{cases} 0 & if \quad \mathbf{z} \in Z^s \\ Q(\mathbf{z}) & if \quad \mathbf{z} \notin Z^s \end{cases}$$

Potential non-falsiability

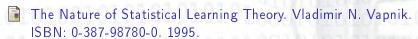
Theorem

Suppose that for the set of uniformly bounded real functions $Q(\mathbf{z}, \alpha)$, $\alpha \in \Lambda$, there exists an ε_0 such that the following convergence is valid:

$$\lim_{l\to\infty}\frac{H^{\hat{}}(\varepsilon_0,l)}{l}=c^*>0$$

Then, the learning machine with this set of functions is potentially non-falsiable.

For Further Reading



Statistical Learning Theory. Vladimir N. Vapnik. ISBN: 0-471-03003-1. 1998.

Questions?

Thank you very much for your attention.

- Contact:
 - Miguel Angel Veganzones
 - Grupo Inteligencia Computacional
 - Universidad del País Vasco UPV/EHU (Spain)
 - E-mail: miguelangel.veganzones@ehu.es
 - Web page: http://www.ehu.es/computationalintelligence