

From dynamic classifier selection to dynamic ensemble selection Nikunj C. Oza, Kagan Tumer

Eider Sánchez

Contenidos

- 1. Objective of the article
- 2. Introduction to classifier ensembles
- 3. Classifier ensemble methods
- 4. Real-World applications
- 5. Conclusions

Objective of the article

- Introduce classifier ensembles
 - Definitions
 - Classifier ensembles
 - Bias/Variance tradeoff
 - Bayesian interpretation

□ Summarize leading ensemble methods

- Simple averaging
- Weighted averaging
- Stacking
- Bagging
- Boosting
- Order statistics

Show real-word applications, in 4 different domains:

- □ Remote sensing
- Person recognition
- □ One vs. all recognition
- Medicine

Classifier ensembles

- Classification task:
 - Requires the construction of a statistical model that represents a mapping from input data to the appropriate outputs.
 - Model: intended to approximate the true mapping from the inputs to the outputs
 - □ Purpose: generate predictions of outputs for new, previously unseen inputs.
- Single classifier to make predictions for new examples.
 - □ BUT: many decisions affect the performance of that classifier.
 - □ Option A: selecting the best available classifier
 - BUT: distribution over new examples that the classifier may encounter during operation may vary
 - BUT: many classifiers are generally tried before a single classifier is selected. Therefore, valuable information discarded by ignoring the performance of all the other classifiers.
 - Option B: Classifier ensembles

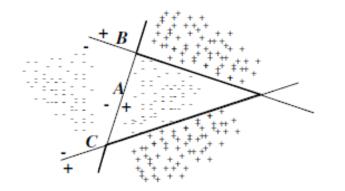
Classifier ensembles

Classifier ensembles (combiners or committees)

* Aggregations of several classifiers whose individual predictions are combined in some manner (e.g., averaging or voting) to form a final prediction.

Use all the available classifier information

□ Generally provide better and/or more robust solutions in most applications



Example:

An ensemble of linear classifiers (boldface line). Each line A, B, and C is a linear classifier.

Classifier ensemble methods

- Simple averaging
- Weighted averaging
- Stacking
- ★ Bagging
- ✤ Boosting
- Order statistics

Classifier ensemble methods - Simple averaging

If *M* classifiers $(h_i^m(x), m$

 $\in \{1, 2, ..., M\}$) are available, the class C_i output of the averaging combiner is:

$$h_i^{\text{ave}}(x) = \frac{1}{N} \sum_{m=1}^M h_i^m(x)$$
(1)

Benefits

□ Reduces the variance of the estimate of the output class posteriors

□ Simple: widely applied to real-world problems

□ Effective ensemble method, particularly in large complex data

- Problems
 - Reduces model error

$$E_{\text{model}}^{\text{ensemble}} = \frac{1 + \rho (M - 1)}{M} E_{\text{model}}$$

 ρ : Average correlation among the errors of the different classifiers

Classifier ensemble methods - Weighted averaging

Different classifier weight

$$h_i^{\text{ave}}(x) = \frac{1}{M} \sum_{m=1}^M w_m h_i^m(x)$$

- * Added degrees of freedom \rightarrow better solutions
- But in practice
 - □ failed to provide improvement to justify its added complexity
 - When there is limited training data with which the weights can be properly estimated

Classifier ensemble methods - Stacking

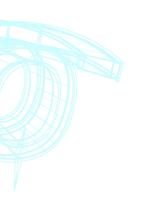
- ★ Actively seeks to improve the performance of the ensemble by correcting the errors
- Stacked generalization addresses the issue of classifier bias with respect to a training set, and aims at learning and using these biases to improve classification
- The main concept is to use a new classifier to correct the errors of a previous classifier

Classifier ensemble methods - Bagging

- Bootstrapped Aggregating (Bagging)
 - Combines voting with a method for generating the classifiers that provide the votes
 - □ Allow each base classifier to be trained with a different random subset of the patterns with the goal of bringing about diversity in the base classifiers.
- improve upon their base models more if the base model learning algorithms are unstable (ej. Decision trees)
 - □ differences in their training sets tend to induce significant differences in the models

Classifier ensemble methods - Bagging

Bootstrapped Aggregating (Bagging)



Bagging(T,M)For each m = 1, 2, ..., M, $T_m = Sample_With_Replacement(T, |T|)$ $h_m = L_b(T_m)$ Return $h_{fin}(x) = \operatorname{argmax}_{y \in Y} \sum_{m=1}^M I(h_m(x) = y)$

```
\begin{split} \mathbf{Sample_With_Replacement}(T,N) \\ S &= \emptyset \\ \text{For } i &= 1, 2, \dots, N, \\ r &= random\_integer(1,N) \\ \text{Add } T[r] \text{ to } S. \\ \text{Return } S. \end{split}
```


Classifier ensemble methods - Boosting

AdaBoost algoritm

Generates a sequence of base models with different weight distributions over the training set

 $\begin{aligned} \mathbf{AdaBoost}(\{(x_1, y_1), \dots, (x_N, y_N)\}, L_b, M) \\ \text{Initialize } D_1(n) &= 1/N \text{ for all } n \in \{1, 2, \dots, N\}. \\ \text{For } m &= 1, 2, \dots, M: \\ h_m &= L_b(\{(x_1, y_1), \dots, (x_N, y_N)\}, D_m). \\ \text{Calculate the error of } h_m : \epsilon_m &= \sum_{n:h_m(x_n) \neq y_n} D_m(n). \\ \text{If } \epsilon_m &\geq 1/2 \text{ then,} \\ &\text{set } M = m-1 \text{ and abort this loop.} \\ \text{Update distribution } D_m: \end{aligned}$

$$D_{m+1}(n) = D_m(n) \times \begin{cases} \frac{1}{2(1-\epsilon_m)} & \text{if } h_m(x_n) = y_n \\ \frac{1}{2\epsilon_m} & \text{otherwise} \end{cases}$$

Output the final model:

 $h_{fin}(x) = \operatorname{argmax}_{y \in Y} \sum_{m:h_m(x)=y} \log \frac{1-\epsilon_m}{\epsilon_m}.$

Classifier ensemble methods – Order statistics

- Order statistics combiners that selectively pick a classifier on a per sample basis
- Model error

 $E_{\text{model}}^{\text{ensemble}} = \alpha E_{\text{model}}$

□ Alpha is a factor that depends on the number of classifiers M and the order statistic chosen and the error model

Error reduction factors α , for the min, max and med combiners (Gaussian Error Model)

М	OS combiners	
	min/max	med
1	1.000	1.000
2	0.682	0.532
3	0.560	0.449
4	0.492	0.305
5	0.448	0.287
10	0.344	0.139
15	0.301	0.102
20	0.276	0.074

Real-world applications

- Remote sensing
- Person recognition
- ✤ One vs. all recognition
- Medicine

Real-world applications – Remote sensing

- Classification algorithms needs
 - □ large number of inputs
 - patterns collected repeatedly for large spaces

□ large number of features

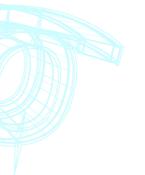
• data is collected across hundreds of bands

□ large number of outputs

 classes cover many types of terrain (forest, agricultural area, water) and manmade objects (houses, streets)

missing or corrupted data

- different bands or satellites may fail to collect data at certain times
- poorly labeled (or unlabeled) data
 - data needs to be post-processed and assigned to classes

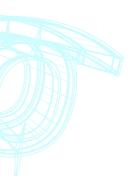


Real-world applications – Remote sensing

- Example applications
 - □ Random forests and mountainous terrain
 - □ Majority voting for agricultural land
 - Hierarchical classification of wetlands
 - □ Information fusion for Urban areas

Real-world applications – Person recognition

- Person recognition is the problem of verifying the identity of a person using characteristics of that person, typically for security applications
 - □ Iris recognition
 - □ fingerprint recognition
 - □ face recognition
 - behavior recognition
 - such as speech and handwriting
 - recognizing characteristics of a person, as opposed to depending upon specific knowledge that the person may have (such as usernames and passwords for computer account access)
- Problems
 - □ Involve multiple types of features
 - □ Difficulty in collecting good data
 - Different misclassification costs
 - Example, denying system access to a legitimate user vs. allowing access to an illegitimate user



Real-world applications – Person recognition

- Example applications
 - □ Unobtrusive person identification
 - □ Face recognition
 - □ Multi-modal person recognition
 - □ User-specific speech recognition

Real-world applications – One vs. all recognition

Different types

Anomaly detection

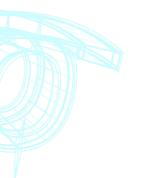
- problem of detecting unusual patterns
- i.e. what does not fit into the set of identified patterns

□ Target recognition

• finding what fits into an identified pattern

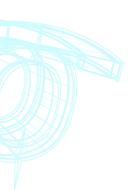
Intrusion detection

- solved both ways:
- A. target recognition: look for one of a set of known types of attacks
- B. anomaly detection : look for anomalies in the usage patterns



Real-world applications – One vs. all recognition

- Example applications
 - □ Modular intrusion detection
 - □ Hierarchical intrusion detection
 - □ Intrusion detection in mobile ad-hoc networks



Real-world applications – Medicine

- Different applications:
 - analyzing X-ray images, human genome analysis, and examining sets of medical test data to look for anomalies.
 - □ Root of all these problems: assessing the health of human beings

Characteristics

limited training and test examples

• i.e., few training examples due to the nature of problem and privacy concerns

imbalanced datasets

• ie., very few anomalies or examples of patients with a disease

too many attributes

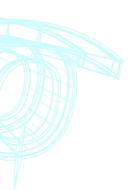
• i.e., often many more than the number of training and test examples

different misclassification costs

• i.e., false negatives significantly worse than false positives.

Real-world applications – Medicine

- Example applications
 - Pharmaceutical molecule classification
 - □ MRI classification
 - □ ECG classification



Conclusions

 Each ensemble method has different properties that make it better suited to particular types of classifiers and applications

- New applications, domains with complex and rich data
- Research areas:
 - □ Ensemble methods oriented at handling large amounts of diverse data
 - □ Clustering algorithms
 - □ Distributed classifier ensembles using active/agent-based methods

