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Combinatorial Optimization

Combinatorial optimization is a fascinating topic.
Combinatorial optimization is a branch of optimization. Its domain
is optimization problems where the set of feasible solutions is
discrete or can be reduced to a discrete one, and the goal is to
find the best possible solution.
It is a branch of applied mathematics and computer science,
related to operations research, algorithm theory and
computational complexity theory that sits at the intersection of
several fields, including artificial intelligence, mathematics and
software engineering.
The combinatorial optimization problems may arise in a wide
variety of important fields such as transportation, computer
networking, telecommunications, location, planning, distribution
problems, etc.
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Generalized combinatorial optimization problems

Classical combinatorial optimization problems can be generalized
by considering a related problem relative to a given partition of the
nodes of a graph into sets of nodes (clusters).
In this way, it is introduced the class of generalized combinatorial
optimization problems:

I generalized traveling salesman problem,
I generalized vehicle routing problem,
I generalized minimum spanning tree problem,
I generalized minimum edge-biconnected network problem,
I generalized fixed-charge network design problem, etc.

Applications of the generalized combinatorial optimization
problems: location problems, regional connection of local area
networks (LAN), irrigation, telecommunications, designing
networks, irrigation, energy distribution, logistics and distribution
problems, railway optimization, etc.
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The Generalized Vehicle Routing Problem (GVRP)

The GVRP was introduced by Ghiani and Improta [1].
The goal of the problem is to design the optimal delivery or
collection routes, subject to capacity restrictions, from a given
depot to a number of predefined, mutually exclusive and
exhaustive node-sets (clusters).
Kara and Bektas [2] proposed an integer programming formulation
for GVRP with a polynomially increasing number of binary
variables and constraints.
The GVRP reduces to the classical VRP when all the clusters are
singletons and to the GTSP when m = 1 and Q =∞. The GVRP
is NP-hard because it includes the GTSP as a special case when
m = 1 and Q =∞.
An illustrative scheme of the GVRP and a feasible tour is shown in
the next figure.
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The Generalized Vehicle Routing Problem (GVRP)
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Definition of the Generalized Vehicle Routing Problem

Let G = (V ,A) be a directed graph with V = {0,1,2, ....,n} as the
set of vertices and the set of arcs A = {(i , j) | i , j ∈ V , i 6= j}. A
nonnegative cost cij associated with each arc (i , j) ∈ A. The set of
vertices is partitioned into k + 1 mutually exclusive nonempty
subsets, called clusters, V0,V1, ...,Vk .
Each customer has a certain amount of demand and the total
demand of each cluster can be satisfied via any of its nodes.
There exist m identical vehicles, each with a capacity Q.
The GVRP consists in finding the minimum total cost tours of
starting and ending at the depot, such that each cluster should be
visited exactly once, the entering and leaving nodes of each
cluster is the same and the sum of all the demands of any tour
(route) does not exceed the capacity of the vehicle Q.
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Solving the Generalized Vehicle Routing Problem

an efficient transformation of the GVRP into a Capacitated Arc
Routing Problem (CARP) (Ghiani and Improta [1]);
an ant colony based algorithm (Pop et al. [4]), sensitive ant
models (Pintea et al. [3]);
an efficient transformation of the generalized vehicle routing
problem into the vehicle routing problem (Pop [5]);
heuristic and metaheuristic algorithms:

I constructive heuristics: Nearest Neighbour and a Clarke-Wright
based heuristic;

I improvement heuristics: String Cross (SC), String Exchange (SE),
String Relocation (SR) and String Mix (SM);

I a local-global heuristic;
I a genetic algorithm.
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Heuristic algorithms for solving the GVRP

Nearest Neighbor

In this algorithm the rule is always to go next to the nearest unvisited
customer subject to the following restrictions:

we start from the depot,
from each cluster is visited exactly one vertex (customer) and
the sum of all the demands of the current tour (route) does not
exceed the capacity of the vehicle Q.

If the sum of all the demands of a current tour (route) exceeds the
capacity of the vehicle then we start again from the depot and visit next
the nearest customer from an unvisited yet cluster.
If all the clusters are visited, then the algorithm terminates.
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Heuristic algorithms for solving the GVRP
A Clarke-Wright based heuristic algorithm

Step 1 (Savings computation). For each i ∈ Vl and j ∈ Vp,
where l 6= p and l ,p ∈ {1, ..., k} compute the savings:

sij = ci0 + c0j − cij

At the beginning we create k routes denoted (0, il ,0), l ∈ {1, ..., k}
as follows for each cluster Vl we define

c0il = min{c0j | j ∈ Vl}.

There will be as many routes as the number of clusters and total
distance of the routes is:

d = c0i1 + c0i2 + ...+ c0ik .
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Heuristic algorithms for solving the GVRP

A Clarke-Wright based heuristic algorithm

Step 2 (Route extension).
I Consider in turn each route (0, i , ..., j ,0).
I Determine the first saving sui or sjv that can feasibly be used to

merge the current route with another route ending with (u,0) or
starting with (0, v), for any u ∈ Vl and v ∈ Vp, where l 6= p and
l ,p ∈ {1, ..., k} and Vl and Vp are clusters not visited by the route
(0, i , ..., j ,0).

I Because at a given moment there can exist more feasible route
extensions, the priority will have that one that produces the biggest
reduction of the total distance of the route.

I We implement the merge and repeat this operation to the current
route. If no feasible merge exists, consider the next route and
reapply the same operations.

Stop when no route merge is feasible.
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Heuristic algorithms for solving the GVRP

Improvement heuristics
The improvement heuristics algorithms for the GVRP are based on
simple routes modifications and may operate on each vehicle route
taken separately, or on a several routes at a time.

String cross (SC): two strings of vertices are exchanged by
crossing two edges of two different routes.
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Heuristic algorithms for solving the GVRP
Improvement heuristics

String exchange (SE): two strings of at most r vertices are
exchanged between two routes.

String relocation (SR): a string of at most k vertices is moved from
one route to another (k = 1 or k = 2).
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A Genetic Algorithm for Solving the GVRP
The idea behind GA is to model the natural evolution by using genetic
inheritance together with Darwins theory.
In GA, the population consists of a set of solutions or individuals
instead of chromosomes. A crossover operator plays the role of
reproduction and a mutation operator is assigned to make random
changes in the solutions.

P.C. Pop et al. (North University of Baia Mare) Genetic algorithm for GVRP 23 June 2010 14 / 25



A Genetic Algorithm for Solving the GVRP
Representation

We represent a chromosome by an array so that the gene values
correspond to the nodes selected to form the collection of
generalized routes.
In previous figure, we plot an individual representing a possible
solution for a GVRP instance with 13 customers partitioned into 5
clusters using 3 vehicles at most. The values {1, ...,13} represent
the customers while {0} is the route splitter. Route 1 begins at the
depot then visits customers 3 and 5 belonging to the clusters V1,
respectively V2 and returns to the depot. Route 2 starts at the
depot and visits the customers 6-7-11 belonging to the clusters
V3 − V4 − V5. Finally, in route 3 only customer 13 from the cluster
V6 is visited.
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A Genetic Algorithm for Solving the GVRP

Initial population

The construction of the initial population is of great importance to
the performance of GA, since it contains most of the material the
final best solution is made of.
In our algorithm, we have produced 20 initial solutions generated
randomly: by selecting randomly the nodes from each clusters
and the collection of generalized routes, but they can also be
results of some construction methods.

The fitness value

Every solution has a fitness value assigned to it, which measures
its quality. In our case the, the fitness value of a GVRP is given by
the total cost of travelling for all the vehicles, i.e. the objective
function of the following integer programming model.
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A Genetic Algorithm for Solving the GVRP
An integer programming formulation

minimize
∑
v∈M

∑
(i,j)∈A

cijxv
ij

subject to
∑
i∈Vl

zi = 1, for l = 1, ..., k

∑
v∈M

∑
j∈V

xv
ij = zi , ∀i ∈ {1, ...,n}∑

i∈V\{0}

di
∑
j∈V

xv
ij ≤ Q, ∀v ∈ M

∑
i∈V\{0}

xv
0j = 1, ∀v ∈ M

∑
i∈V

xv
ik −

∑
j∈V

xv
kj = 0, ∀k ∈ V \ {0} and ∀v ∈ M

xv
ij , zi ∈ {0,1}, ∀i ∈ V ∀(i , j) ∈ A, v ∈ M
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A Genetic Algorithm for Solving the GVRP
Crossover operator

Two parents are selected from the population by the binary
tournament method, i.e. the individuals are chosen from the
population at random.
Offspring are produced from two parent solutions using the
following 2-point order crossover procedure: it creates offspring
which preserve the order and position of symbols in a
subsequence of one parent while preserving the relative order of
the remaining symbols from the other parent.
It is implemented by selecting two random cut points which define
the boundaries for a series of copying operations. First, the
symbols between the cut points are copied from the first parent
into the offspring. Then, starting just after the second cut-point,
the symbols are copied from the second parent into the offspring,
omitting any symbols that were copied from the first parent.
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A Genetic Algorithm for Solving the GVRP

Example Crossover operator

We assume two well-structured parents chosen randomly, with the
cutting points between nodes 2 and 3, respectively 5 and 6:
P1 = 13 0 | 3 5 0 | 11 7 6
P2 = 4 2 | 13 0 11 | 10 6

the cluster representation of the parents is as follows:
C1 = 6 0 | 1 2 0 | 5 4 3
C2 = 2 1 | 6 0 5 | 4 3

The sequences between the two cutting-points are copied into the two
offspring:
O1 = x x | 3 5 0 | x x x
O2 = x x | 13 0 11 | x x

The offspring generated using the proposed crossover operator are:
O1 = 13 0 | 3 5 0 | 11 10 6
O2 = 0 3 | 13 0 11 | 5 0 7 6
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A Genetic Algorithm for Solving the GVRP

Mutation operator

We use in our GA two random mutation operators:

the first one (intra-route mutation) selects randomly a cluster to be
modified and replaces its current node by another one randomly
selected from the same cluster
the second one (inter-route mutation) is a swap operator, it picks
two random locations in the solution vector and swaps their values.

The new chromosome is accepted if it results in a feasible GVRP.

The developed GA uses the steady-state approach, in which eligible
offspring enter the population as soon as they are produced, with
inferior individuals being removed at the same time, so that the size of
the population remains constant.
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A Genetic Algorithm for Solving the GVRP

Computational results

The performance of the proposed GA for GVRP was tested on
seven benchmark problems drawn from TSPLIB.
The testing machine was an Intel Dual-Core 1,6 GHz and 1 GB
RAM. The operating system was Windows XP Professional. The
algorithm was developed in Java.
In the genetic algorithm for GVRP, the values of the parameters
were chosen as follows: population size 20, the number of
offspring 40, the maximum number of generations 100, the
intra-route mutation rate 5% and the inter-route mutation rate 5%.
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A Genetic Algorithm for Solving the GVRP
Computational results
In the next tables are shown the computational results obtained for
solving the GVRP using the proposed GA algorithm comparing with
the ACS algorithm [5].

Table 1. Best Values and Times - ACS and GA algorithms for GVRP

Problem ACS Time ACS GA Time GA
11eil51 418.85 212 237.00 7

16eil76A 668.78 18 583.80 18
16eil76B 625.83 64 540.87 95
16eil76C 553.21 215.00 336.45 50
16eil76D 508.81 177.00 295.55 12
21eil101A 634.74 72 476.98 38
21eil101B 875.58 8.00 664.45 55
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Conclusions and future work

The aim of this paper was to present heuristic and metaheuristic
algorithms for solving the GVRP:

I constructive heuristics;
I improvement heuristics;
I a genetic algorithm.

Hybridizing exact methods and metaheuristics
I use exact algorithms to explore large neighborhoods in local search

algorithms
I use information from relaxations of integer programming problems

to guide local search or constructive algorithms
I use exact algorithms for specific procedures in hybrid

metaheuristics.

P.C. Pop et al. (North University of Baia Mare) Genetic algorithm for GVRP 23 June 2010 23 / 25



For Further Reading I

G.Ghiani, G. Improta, An efficient transformation of the
generalized vehicle routing problem, European Journal of
Operational Research, Vol. 122, pp. 11-17, 2000.

I. Kara and T. Bektas, Integer linear programming formulation of
the generalized vehicle routing problem, in Proc. of the 5-th
EURO/INFORMS Joint International Meeting, 2003.

C-M.Pintea, C.Chira, D.Dumitrescu and P.C. Pop, Sensitive Ants in
Solving the Generalized Vehicle Routing Problem, to appear in
International Journal of Computers, Communications & Control,
Vol. V, 2010.

P.C. Pop, C.M. Pintea, I. Zelina and D. Dumitrescu, Solving the
Generalized Vehicle Routing Problem with an ACS-based
Algorithm, American Institute of Physics (AIP), Conference
Proceedings: BICS 2008, Vol.1117, No.1, 157-162, 2009.

P.C. Pop et al. (North University of Baia Mare) Genetic algorithm for GVRP 23 June 2010 24 / 25



For Further Reading II

P.C. Pop, Efficient Transformations of the Generalized
Combinatorial Optimization Problems into Classical Variants, 9-th
Balkan Conference on Operational Research BALCOR 2009, 2-6
September, Constanta, Romania.

P.C. Pop et al. (North University of Baia Mare) Genetic algorithm for GVRP 23 June 2010 25 / 25


	Combinatorial Optimization
	Generalized combinatorial optimization problems
	The Generalized Vehicle Routing Problem (GVRP)
	Definition of the Generalized Vehicle Routing Problem
	Solving the Generalized Vehicle Routing Problem
	Heuristic algorithms for solving the GVRP
	A Genetic Algorithm for Solving the GVRP

	Conclusions and future work
	Appendix
	Appendix
	



