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1 Eigenvalues and Eigenvectors

1.1 Characteristic Functions

Associated with each square matrix A = ((aij)) of order n is a function

f(λ) = |A− λI| =

∣∣∣∣∣∣∣∣
a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n

. . . . . . . . . . . .
an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣ (1)

called the characteristic function of A. The equation

f(λ) = |A− λI| = 0 (2)

can be expressed in the polynomial form

c0λ
n + c1λ

n−1 + · · ·+ cn−1λ+ cn = 0 (3)

and is called the characteristic equation of matrix A.

Example 1. Find the characteristic equation of matrix A where

A =

1 2 0
2 2 2
0 2 3


The characteristic equation of A is∣∣∣∣∣∣

1− λ 2 0
2 2− λ 2
0 2 3− λ

∣∣∣∣∣∣ = 0

that is,

(1− λ)
∣∣∣∣1− λ 2

2 2− λ

∣∣∣∣− 2
∣∣∣∣2 2
0 3− λ

∣∣∣∣ = 0

(1− λ)(λ2 − 5λ+ 2)− 2(6− 2λ) = 0

λ3 − 6λ2 + 3λ+ 10 = 0



In some instances the task of expressing the characteristic equation of a
matrix in polynomial form may be simpli�ed considerably by introducing the
concept of the trace of a matrix. The sum of the diagonal elements of a matrix
A is denoted by tr(A) For example, the trace of matrix A in Example 1 is 1+2+3;
that is, 6. Let t1 = tr(A), t2 = tr(A2), . . . , tn = tr(An). It can be shown that
the coe�cients of the characteristic equation are given by the equations:



c0 = 1,
c0 = −t1,
c0 = − 1

2 (c1t1 + t2),
c0 = − 1

3 (c2t1 + c1t2 + t3),
· · · · · ·
c0 = − 1

n (cn−1t1 + cn−2t2 + · · ·+ c1tn−1 + tn).

(4)

Equation 4 make it possible to calculate the coe�cients of the characteristic
equation of a matrix A by assuming the diagonal elements of the matrices of the
form An. This numerical process is easily programmed on a large-scale digital
computer, or for small values of n may be computed manually without di�culty.

The n roots λ1, λ2, . . . , λn of the characteristic equation 3 of a matrix A are
called the eigenvalues of A.

The trace of a matrix A of order n is equal to the sum of the n eigenvalues
of A.

Many applications of matrix algebra in mathematics, physics, and engineer-
ing involve the concept of a set of nonzero vectors being mapped onto the zero
vector by means of the matrix A− λiI, where λi, is an eigenvalue of matrix A.
Any nonzero column vector, denoted by Xi, such that

(A− λiI)Xi = 0 (5)

is called eigenvector of matrix A. It is guaranteed that at least one eigenvec-
tor exists for each λi since equation 5 represents a system of n linear homogeneous
equations which has a nontrivial solution Xi 6= 0 if and only if |A−λiI| = 0; that
is, if and only if λi is an eigenvalue of A. Furthermore, note that any nonzero
scalar multiple of an eigenvector associated with an eigenvalue is also an eigen-
vector associated with that eigenvalue.

The eigenvalues of a matrix are also called the proper values, the latent
values, and the characteristic values of the matrix. The eigenvectors of a
matrix are also called the proper vectors, the latent vectors, and the char-
acteristic vectors of the matrix.

Example 2. Determine a set of eigenvectors of the matrix A =
(

3 1
2 2

)
.

Associated with λ1 = 1 are the eigenvectors
(
x1 x2

)T
for which

(A− I)
(
x1 x2

)T = 0



that is, (
2 1
2 1

)(
x1

x2

)
=
(

0
0

)
It follows that −2x1 = x2. If x1 is chosen as some convenient arbitrary

scalar, say 1, x2 becomes −2. Hence,
(

1 −2
)T

is an eigenvector associated with
the eigenvalue 1.

Similarly, associated with λ2 = 4 are the eigenvectors
(
x1 x2

)T
for which

(A− 4I)
(
x1 x2

)T = 0

that is, (
−1 1
2 −2

)(
x1

x2

)
=
(

0
0

)
Hence, x1 = x2, and

(
1 1
)T

is an eigenvector associated with the eigenvalue

4. Therefore, one set of eigenvectors of the matrix A is {
(

1 −2
)T
,
(

1 1
)T }.

It should be noted that
(
k −2k

)T
and

(
k k
)T

, where k is any nonzero scalar,
represent the general forms of the eigenvectors of A.

1.2 A Geometric Interpretation of Eigenvectors

Consider a magni�cation of the plane represented by the matrix A where

A =
(

3 0
0 2

)
The eigenvalues of A are λ1 = 3 and λ2 = 2. Every eigenvector associated

with λ1 is of the form
(
k 0
)T

, where k is any nonzero scalar, since(
3− 3 0

0 2− 3

)(
k
0

)
=
(

0
0

)
Furthermore, the set of vectors of the form

(
k 0
)T

is such that

A
(
k 0
)T = λ1

(
k 0
)T

that is (
3 0
0 2

)(
k
0

)
= 3

(
k
0

)
Hence, the set of eigenvectors associated with λ1 = 3 is mapped onto itself

under the transformation represented by A, and the image of each eigenvector
is a �xed scalar multiple of hat eigenvector. The �xed scalar multiple is equal to
the eigenvalue with which the set of eigenvectors is associated.



Fig. 1.

Similarly, every eigenvector associated with λ2 is of the form
(

0 k
)T

, where

k is any nonzero scalar. The set of vectors of the form
(

0 k
)T

is such that

A
(

0 k
)T = λ1

(
0 k
)T

that is, (
3 0
0 2

)(
0
k

)
= 2

(
0
k

)
Hence the set of eigenvectors associated with λ2 = 2 is mapped onto itself

under the transformation represented by A, and the image of each eigenvector
is a �xed scalar multiple of the eigenvalue. The �xed scalar multiple is λ2; that
is, 2.

Note that the sets of vectors of the forms
(
k 0
)T

and
(

0 k
)T

lie along the
x -axis and y-axis, respectively 1.2. Under the magni�cation of the plane repre-
sented by the matrix

A =
(

3 0
0 2

)
the one-dimensional vector spaces containing the sets of vectors of the forms(

k 0
)T

and
(

0 k
)T

are mapped onto themselves, respectively, and are called
invariant vector spaces. The invariant vector spaces help characterize or de-
scribe a particular transformation of the plane.

1.3 Some Theorems

In this section several theorems concerning the eigenvalues and eigenvectors of
matrices in general and of symmetric matrices in particular will be proved.



These theorems are important for an understanding of the remaining sections
of this text.

Notice that in Example 2 the eigenvector associated with the distinct eigen-
values of matrix A are linearly independent; that is,

k1

(
1
−2

)
+ k2

(
1
1

)
=
(

0
0

)
implies k1 = k2 = 0. This is not a coincidence. The following theorem states

a su�cient condition for eigenvector associated with the eigenvalues of a matrix
to be linearly independent.

Theorem 1. If the eigenvalues of a matrix are distinct, then the associated

eigenvectors are linearly independent.

Proof. LetA be a square matrix of order n with distinct eigenvalues λ1, λ2, . . . , λn

and associated eigenvectors X1, X2, . . . , Xn, respectively. Assume that the set of
eigenvectors are linearly dependent. Then there exists scalars k1, k2, . . . , kn, not
all zero, such that

k1X1 + k2X2 + · · ·+ knXn = 0 (6)

Consider premultiplying both sides of 6 by

(A− λ2I)(A− λ3I) · · · (A− knI)

By use of equation 5, obtain

k1(A− λ2I)(A− λ3I) · · · (A− knI)X1 = 0 (7)

Since (A−λiI)Xi = 0, then AX1 = λ1X1. Hence, equation 7 may be written
as

k1(λ1 − λ2)(λ1 − λ3) · · · (λ1 − λn)X1 = 0

which implies k1 = 0. Similarly, it can be shown that k1 = k2 = · · · = kn = 0,
which is contrary to the hypothesis. Therefore, the set of eigenvectors are linearly
independent.

It should be noted that if the eigenvalues of a matrix are not distinct, the
associated eigenvectors may or may not be linearly independent. For example,
consider the matrices

A =
(

3 0
0 3

)
and B =

(
3 1
0 3

)
Both matrices have λ1 = λ2 = 3; that is, an eigenvalue of multiplicity two.

Any nonzero vector of the form
(
x1 x2

)T
is an eigenvector of A for λ1 and

λ2. Hence, it is possible to choose any two linearly independent vectors such as(
1 0
)T

and
(

0 1
)T

as eigenvectors of A that are associated with λ1 and λ2,

respectively. Only a vector of the form
(
x1 0

)T
is, however, an eigenvector of B

for λ1 and λ2. Any two vectors of this form are linearly dependent; that is, one
is a linear function of the other.



Hermitian Matrices A complex matrix is a matrix whose elements are
complex numbers. Since every real number is a complex number, every real
matrix is a complex matrix, but not every complex matrix is a real matrix.

If A is a complex matrix, then Ā denotes the matrix obtained from A by
replacing each element z = a + bi with its conjugate ¯z = a− bi. The matrix Ā
is called the conjugate of matrix A.

Note that matrix A is a real matrix if and only if A = Ā. The transpose

of the conjugate of a matrix A will be denoted by A∗; that is, A∗ =
(
Ā
)T

.

If A = ((aij)) , then AT = ((aji)), Ā = ((āij)) and
(
Ā
)T = ((āji)) =

(
AT
)
.

Hence, the transpose of the conjugate of a matrix is equal to the conjugate of
the transpose of the matrix.

A matrix A such that A = A∗ is called a Hermitian matrix; that is, a
matrix A = ((aij)) is a Hermitian matrix if and only if aij = aij for all pairs
(i, j). Since aii = aii only if aii is a real number, the diagonal elements of
a Hermitian matrix are real numbers. If A is a real symmetric matrix, then
aij = aji, and aij = aji for all pairs (i, j). Every real skew-symmetric matrix is
a skew-Hermitian matrix.

A matrix A such that A = −A∗ is called a skew-Hermitian matrix; that
is, a matrix A = ((aij)) is a skew-Hermitian matrix if and only if aij = −aij for
all pairs (i, j). Every real skew-symmetric matrix is a skew-Hermitian matrix.

Theorem 2. If A is a Hermitian matrix, then the eigenvalues of A are real.

Proof. Let A be a Hermitian matrix, λi be any eigenvalue of A, and Xi be an
eigenvector associated with λi. Then

(A− λiI)Xi = 0
AXi − λiXi = 0

X∗
i AXi − λiX

∗
i Xi = 0

Since every eigenvector is a nonzero vector, X∗
i Xi is a nonzero real number

and

λi =
X∗

i AXi

X∗
i Xi

Furthermore,
X∗

i AXi = X∗
i A

∗Xi since A
∗ = A

X∗
i AXi = (X∗

i AXi)∗

X∗
i AXi = X∗

i AXi since X
∗
i AXi is a matrix of one element;

that is, X∗
i AXi equals its own conjugate, and hence is real. Therefore, λi is

equal to the quotient of two real numbers, and is real.

Theorem 3. If A is a real symmetric matrix, then the eigenvalues of A are real.

Proof. Since every real symmetric matrix is a Hermitian matrix, the proof follows
from Theorem 2.



Before presenting the next theorem it is necessary to consider the following
de�nition: two complex eigenvectors X1 and X2 are de�ned as orthogonal if

X∗
1X2 = 0. For example, if X1 =

(
−i 2

)T
and X2 =

(
2i 1

)T
, then X∗

1X2 =(
i 2
) (

2i 1
)T = 0. Hence, X1 and X2 are orthogonal.

Theorem 4. If A is a Hermitian matrix, then the eigenvectors of A associated

with distinct eigenvalues are mutually orthogonal vectors.

Proof. Let A be a Hermitian matrix, and let X1 and X2 be eigenvectors associ-
ated with any two distinct eigenvalues λ1 and λ2, respectively. Then

(A− λ1I)X1 = 0 and (A− λ2I)X2 = 0

...

Theorem 5. If A is a real symmetric matrix, then the eigenvectors of A asso-

ciated with distinct eigenvalues are mutually orthogonal vectors.

Inverse of a Matrix This section will be concerned with the problem of �nding
a multiplicative inverse, if it exists, for any given square matrix. A left mul-

tiplicative inverse of a matrix A is a matrix B such that BA = I; a right

multiplicative inverse of a matrix A is a matrix C such that AC = I. If a left
and a right multiplicative inverse of a matrix A are equal, the the left (right)
inverse is called, simply, a multiplicative inverse of A and is denoted by A−1.

Theorem 6. A left multiplicative inverse of a square matrix A is a multiplica-

tive inverse of A.

Proof. Suppose BA = I, then
....

Theorem 7. A right multiplicative inverse of a square matrix A is a multiplica-

tive inverse of A.

Theorem 8. The multiplicative inverse, if it exists, of a square matrix A is

unique

Proof. Let A−1 and B be any of two multiplicative inverses of the square matrix
A. Since A−1A = I and BA = I, then

....
Not every square matrix has a multiplicative inverse. In fact, the necessary

and su�cient condition for the multiplicative inverse of a matrix A to exist is
that detA 6= 0. A square matrix A is said to be nonsingular if detA 6= 0, and
singular if detA = 0.

It should be mentioned that if A is not a square matrix, then it is possible
for A to have a left or a right multiplicative inverse, but not both.



1.4 Diagonalization of Matrices

It has been noted that an eigenvector Xi such that (A − λiI)Xi = 0, for i =
1, 2, . . . , n, may be associated with each eigenvalue λi. This relationship may be
expressed in the alternate form

AXi = λiXi for i = 1, 2, . . . , n (8)

If a square matrix of order n whose columns are eigenvectors Xi of A is
constructed and denoted by X, then the equations of 8 may be expressed in the
form

AX = XΛ (9)

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues of
A; that is

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λn

 (10)

It has been proved that the eigenvectors associated with distinct eigenvalues
are linearly independent (Theorem 1. Hence, the matrix X will be nonsingular
if the λi's are distinct. If both sides of equation 9 are multiplied by X−1

i , the
result is

X−1AX = Λ (11)

Thus, by use of a matrix of eigenvectors and its inverse, it is possible to
transform any matrix A with distinct eigenvalues to a diagonal matrix whose
diagonal elements are the eigenvalues of A. The transformation expressed by
11 is referred to as the diagonalization of matrix A. If the eigenvalues are not
distinct, the diagonalization of matrix A may not be possible. For example, the
matrix

A =
(

3 1
0 3

)
cannot be diagonalized as in 11.
A matrix such as matrix A in equation 11 sometimes is spoken of as being

similar to the diagonal matrix. In general, if there exists a nonsingular matrix C
such that C−1AC = B for any two square matrices A and B of the same order,
the A and B are called similar matrices, and the transformation of A to B
is called a similarity transformation. Furthermore, if B is a diagonal matrix
whose diagonal elements are the eigenvalues of A, the B is called the classical
canonical form of matrix A. It is a unique matrix except for the order in which
the eigenvalues appear along the principal diagonal.



The matrix X of 11 whose columns are eigenvectors of matrix A often is
called a modal matrix of A. Recall that each eigenvector may be multiplied by
any nonzer scalar.

Theorem 9. Every real symmetric matrix can be orthogonally transformed to

the classical canonical form.

Theorem 9 is sometimes called the Principal Axes Theorem.

1.5 The Hamilton-Cayley Theorem

An important and interesting theorem of the theory of matrices is theHamilton-

Cayley Theorem:

Theorem 10. Every square matrix A satis�es its own characteristic equation

|A− λI| = 0.

More precisely, if λ is replaced by the matrix A of order n and each real number
cn is replaced by the scalar multiple cnI where I is the identity matrix of order
n, then the characteristic equation of matrix A becomes a valid matrix equation;
that is,

c0A
n + c1A

n−1 + · · ·+ cn−1A+ cnI = 0 (12)

A heuristic argument may be used to prove the Hamilton-Cayley Theorem
for a matrix A with distinct eigenvalues. Replace the variable λ by the square
matrix A and cn by cnI in expression for the characteristic function of A and
obtain

f(A) = c0A
n + c1A

n−1 + · · ·+ cn−1A+ cnI (13)

Postmultiply both sides of equation 15 by an eigenvector Xi of A associated
with λi and obtain

f(A)Xi = (c0λn
i + c1λ

n−1
i + · · ·+ cn−1λi + cn)Xi (14)

since AkXi = λk
iXi. Since

c0λ
n
i + c1λ

n−1
i + · · ·+ cn−1λi + cn = 0 for i = 1, 2, . . . , n (15)

then

f(A)Xi = 0 for i = 1, 2, . . . , n

Hence,

f(A)X = 0 (16)

where X is a matrix of eiegnvectors. Since the eigenvectors are linearly in-
dependent by Theorem 1, the matrix of eigenvectors has a unique inverse X−1.



If both sides of equation 16 are postmultiplied by X−1, the result is f(A) = 0,
and the theorem is proved.

Proofs of the Hamilton-Cayley Theorem for the general case without restric-
tions on the eigenvalues of A may be found in most advanced texts on linear
algebra.

The Hamilton-Cayley Theorem may be applied to the problem of determining
the inverse of a nonsingular matrix A. Let

c0λ
n + c1λ

n−1 + · · ·+ cn−1λ+ cn = 0

be the characteristic equation of A. Note that since A is a nonsingular matrix,
λi 6= 0; that is, every eigenvalue is nonzero, and cn 6= 0. By the Hamilton-Cayley
Theorem,

c0A
n + c1A

n−1 + · · ·+ cn−1A+ cnI = 0

and

I = − 1
cn

(c0An + c1A
n−1 + · · ·+ cn−1A) (17)

If both sides of 18 are multiplied by A−1, the result is

A−1 = − 1
cn

(c0An−1 + c1A
n−2 + · · ·+ cn−1I) (18)

Note that the calculation of an inverse by use of equation 18 is quite adaptable
to high-speed digital computers and is not di�cult to compute manually for small
values of n. In calculating the powers of matrix A necessary in equation 18, the
necessary information concerning tr(Ak) for calculating the c's is also obtained.

A−k, where k is positive integer, is de�ned to be equal to
(
A−1

)k
. By use

of equation 18, it is now possible to express any negative integral power of a
nonsingular matrix A of order n in terms of a linear function of the �rst (n− 1)
powers of A.
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