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Introduction

@ We work on a Bayesian approach to the estimation of the
specular component of a color image, based on the
Dichromatic Reflection Model.

@ The separation of diffuse and specular components is
important for color image segmentation.

@ In this work we postulate a prior and likelihood energies that
model the reflectance estimation process.

@ Minimization of the posterior energy gives the desired
reflectance estimation.

@ The approach includes the illumination color normalization and
the computation of a specular free image to test the pure
diffuse reflection hypothesis.
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Reflection Modelling

This sketch represent the Dichromatic Reflection Model (DRM). |

was introducer by Safer
@ The perception of a surface point can be expressed as the sum

of two components
o The first one represent the diffuse component. It has a

direcction and a weigthing factor
e The other one represent the specular component. It has a

direcction and a weigthing factor too
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Reflection Modelling

100 = wa(x) [ SALOER)a(R)dA+mw () [ER)a(A)dr (1)
Q Q

I(x) = wa(x)B(x) + ws(x)G, (2)

e I={I,,1,,1,} is the color of an image pixel obtained through a
camera sensor

e x = {x,y} are the two dimensional coordinates of the pixel in
the image

® q=1{9r,95,9»} is the three element vector of sensor sensitivity

@ wy(x) and wy(x) are the weighting factors for diffuse and
specular components, respectively

@ S(A,x) is the diffuse spectral reflectance

@ E(A) is the illumination spectral power distribution function

@ The integration is done over the visible light spectrum Q
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Reflection Modelling. Chromatic terms

Image written in terms of diffuse an specular chromaticity

1(x) = ma(x)A(x) +m;(x)T (6)

The illumination normalized image is computed as

') = r’(f&) (7)

where T'® is the estimation of the illumination color.

The normalized image can be expressed as
I'(x) = my(x)N'(x) +mg(x) /3 (8)

where A’ is the normalized diffuse chromaticity.
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I'(x) = my(x)A' (x) +my(x) /3
I(x) = min{I;(x), I (x), I (x)}

A(x) = min{Aj (x), Ay (x), Aj, (x)}

Tx) = my()AG) + 7 (©)
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Reflection Modelling. Separation Method

@ Our goal is look for a diffuse image. That is, we are going to
remove the specular component

@ Then we are going to explore the mathetical properties of the
Specular Free image

@ We rely on the derivative of the logarithm to formulate an
equation for the energy function of a bayesian model
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Reflection Modelling. Separation Method

A diffuse pixel in a normalized image _

I'(x) = mq(x)A'(x) +mi(x) /3 I (x) = mig (x)A (x)

I'(x) = m(x)A' (x) I (x) = my(x) A

log(I* (x)) = log(miy(x) +log(AY))

log(I'(x)) = log(my(x) +log(A)) - -
alog(lsf()c)) = 5 1og(my(x))

aaxlog(ll(x)) = ;xlog(mé(x))

y
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A (x) = dlog(I' (x)) — dlog(I*/ (x))
if A(x)= 0, then is a diffuse pixel

(11)

With this strategy we can detect diffuse pixels.
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Bayesian Modelling

Given an image f and a desired unknown response of a
computational process d, Bayesian reasoning gives, as the estimate
of d, the image wich maximizes the A Posteriori distribution

P(d|f) oc e~V

where P(d|f) is equivalent to ¢~V (@lf)
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Bayesian Modelling

@ We assume a Gibbisian distribution for the potential energy.

@ Besides the A Posteriori energy U (d|f) can be decomposed in
to the A Priori U(d) and Likelihood (Conditional) U(f|d)

energies
Ud|f) =U(fld)+U(d)

The Maximum A Posteriori (MAP) estimate is equivalent
minimize the posterior energy function

d* :argrrgnU(d|f) (12)
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Bayesian Modelling

A Posteriory Energy = A Priory Energy + Likelihood Energy

Likelihood

The Likelihood energy U(f|d) measures the cost caused by the
discrepancy between the input image f and the solution d.

Prior
The A Priori energy U(d) is a model of the desired solution.
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Bayesian Modelling. Likelihood Energy

We will assume a Gaussian Likelihood distribution plus a
Chromaticity preservation constraint, therefore the Likelihood
energy will have the following expression:

m " )\2
uisia) =y Vo d

m
=1 =

(w/ —wt)’ (13)

where f; and d; are the RGB pixel values a the i-th pixel position

for the observed and desired image, respectively. Also, ‘Pf and ‘Pf’
denote the chromaticity pixels of the observed and desired image,
respectively.

http://www.ehu.es/ccwintco Reflectance Analysis KES 2009 14 / 22



Introduction Reflection Modelling Bayesian Modelling Experimental Results Conclusions

Bayesian Modelling. A Priori Energy

The A Priori energy is built up from two components.

U(d) =Ux(d)+ Uy (d) (14)
The first one models the Chromaticity continuity:
S d E Vi
ULI"(d) = Z Z Z (lpi,c - ‘Pj,c)
i=1 jEN; ce{rg,b}

This equation is necesary, because we are assuming that two
neighboring pixels have the same chromaticity. It oblied us to
detect and reject noise pixels and color discontinuity pixels
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Bayesian Modelling. A Priori Energy

The second term models the estimation of the derivatives as the
cliques of the RMF. That is, we assume that the local energy at
pixel d; is defined as

s (dy) = (dlog(d) —diog(d;")

where dff is the i-th specular free pixel.
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Bayesian Modelling. A Priori Energy

@ The second term of A Priori energy is derived as:

d;ed\?
UA(di):<Z ) log a I’C>

sf
JEN; ce{rg,b} di7cdj7c

@ The derivative component of the A Priori energy is, therefore,
the addition of these local energies:

@ And the A Priori energy is given by the addition.

U(d)=Un(d)+Uy(d) (15)
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Experimental Results

@ The starting value for the energy minimization process is set to
f=d(0)=T.

@ Each iteration step of the energy minization involves the
computation of the specular free image d*/ (¢) of the current
hypothesis d (¢) of the optimal estimation d*.

@ We have employed a simple heuristic to determine the new
hypothesis d (1 + 1), consisting in the reduction of the intensity
of the pixels preserving their chromacity components relative
ratios.
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Experimental Results

From left to right:
© The original image
© The estimated diffuse image
© The estimated specular image
@ The energy behavoir
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Experimental Results

From left to right:
© The original image
© The estimated diffuse image
© The estimated specular image
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Conclusions

@ We have presented a Bayesian approach to the problem of
reflection component separation

@ Our approach needs only one image

@ We compute the specular free image, which can be done on
the fly for each hypothesis

@ The problem of diverse color illumination sources will be dealt
with in further works.
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