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@ They introduce the patch alignment framework to linearly
combine multiple features in the optimal way and obtain a
unified low-dimensional representation of these multiple
features for subsequent classification.

@ The proposed multiple feature combining (MFC) is based on
manifold learning and a patch alignment framework.
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Two main components:
@ In the first step, three kinds of features of HSI are introduced.

@ Then, the MFC algorithm, which finds the particular
contribution of each feature to the unified representation, is
employed to obtain the final lowdimensional representation.
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Three kinds of features are introduced to the MFC. Each feature is
represented as a single vector v € RL.

o Spectral Feature:
USpectral = [U1, V24 .. -i.‘g}T e R
in which v, denotes the DN in band .

Texture Feature: Method to extract the texture feature based
on 3D Gabor filters:

- . 5 e gz? -
Gadalr.y) =GE(T) = [l e - [c”"x —e T

=
€]

(2)

Foalz,y) = Geale,y) = I(x,y).

The texture feature of a pixel (z, y) is obtained by
- C
° UTexture = {Fl.l(j'-"f!)- [ERE F«‘.:E(fn- "U)] e R (!-
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@ Shape Feature: the pixel shape index method (PSI):

o Step 1) Extension of direction lines: We define the pixel

I = )]2
homogeneity of the ith direction by “* ="~ *II" \here vc

and vs are the spectral features of the central and surrounding
pixels, respectively.

The ith direction line is extended from the central
pixel if the following statements are true:

1) PHi is less than T1,

2) the total number of pixels in this direction is
less than T2.

T1 is the threshold for homogeneity and pertains

to the spectral variability in a local area. T2 is @
related to the average size of a shape area.

Lefei Zhang, Student Member, IEEE, Liangpei Zhang, Seni On Combining Multiple Features for Hyperspectral Remote



Multiple Feature Extraction
MFC
Computational Complexity of MFC

MFC Framework

Multiple Feature Extraction Il

o Step 2) Length of direction line: The PSl in the ith direction is
calculated by the length of the direction line d;. Then, the

0 . . = i T P
shape feature is achieved by “shape [d.da,... dy]" € R
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In this framework, the proposed MFC algorithm finds a
low-dimensional representation Y = [y1, ¥, ..., yy] € RN
of features {V(;) = [v(i)1. (2.~ ven] € RENIL, L in
which m is the number of features (m = 3; e.g., spectral,
texture, and shape features) and IV is the number of samples.
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@ Single Feature-Based Dimensional Reduction:

W (i. j) = exp (| 1*/t)

vy — Uy

argmin [ = tr(YMYT)
>

stYYT =1
where M € RV*V is the alignment matrix of input samples,
which could be computed by

M=D-W (9)
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N
Dy; :Zuv("-ﬂ-
i=1

@ Formulation of MFC;

argmin f = Z witr (Y-U(i)YT)
Y. i—1
SLYYT =1 w0 3w =1

i=1
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@ An alternating optimization is adopted to acquire a local
optimal solution by iteratively updating Y and w.

a) Fix w to update Y. Optimization (13) is equivalent to

argmintr(Y MY ) st YYT =1 (14)
v
in which

m

U_Zw’ M. (15)
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b) Fix Y toupdate w. The Lagrangian function for optimiza-
tion (13) is

(w, \) = Zwtr VMuv™) - (ZMl) (16)
with multiplier A. Then, we obtain the partial derivative
of L{w, A)

OL/0w; =0 = rw) = tr (YM(Z-)YT) —A=0

OL/ON =0 w;—1=0. (17)
i=1

Then, we find the global optimal w by the solution of (17)

w; = (]_.’,ftr (Yﬂ[(i)y’r))1_;‘(7._1)

= . (18)
P S N ! E
L (e (VA )
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Algorithm 1. The procedure of the MFC framework.

Input: A hyperspectral remote sensing image.
Method:
a) Extract multiple features V' = {V{;) € RF>N}m,
from HST by (1), (4), and (6).
b) Construct the feature matrix X = {Xm S
REnym | using a subset of samples,
¢) Calculate an alignment matrix M for each feature
by (9) based on X;).
d) Initialize o = [1/m.1/m... .. 1/m).
e) Repeat
Compute Y by optimization (14):
Compute w by equation (18);

Until convergence.

f) Compute linear projection matrix U/ by (21).

g) Compute a low-dimensional feature representation of
HSL Vigpe = UMV,

Output: A low-dimensional MFC of the input HSI. ﬁl
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@ The computational complexity of the proposed approach is

0o(n%).

@ The adopted linearization of MFC is effective in achieving the
accuracy of the manifold learning and, at the same time, in
reducing the computational cost.
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Two hyperspectral data sets:

@ The hyperspectral digital imagery collection experiment
(HYDICE) airborne data over a Mall in Washington DC.

e 210 bands, 0.4-2.4-um. 1280 scan lines, with 307 pixels in
each scan line. subset of the whole set, 280 x 307 p.

@ Airborne data set by the Data Fusion Technical Committee of

the IEEE Geoscience and Remote Sensing Society.

o urban test area of Pavia. Size 1400x512, 1.3 m per pixel.
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Fig. 3. Multiple features of the DC data set. (First row) Spectral feature images in band 36, 52, and 65. (Second row) Gabor texture feature images, with d = 1
and s = 1. 3, and 5. respectively. (Third row) Shape feature images in 1, 8, and d16, respectively.
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ry properties of multiple features for different pixels in the DC data set
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To compare the effectiveness of the proposed MFC with the
conventional dimension reduction methods, we show the
performance of the supervised classification results of the following
methods:

1) best feature: the best performance of the singleview feature (in
this data set, it is the spectral feature);

2) all features: the conventional multifeature concatenation
method, which arranges the feature vectors together;

3) PC: implementing the PC transformation on all features
concatenation;

4) MNF: executing the minimum noise fraction rotation on all
features concatenation; using manifold-learning-based approaches
5) LLE, 6) LTSA, and 7) LE for all features concatenation; and 8)
adopting the proposed MFC.
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Fig. 5. (a)~(h) Classification maps of the DC data set obtained using features of the following: best feature, all features, PC, MNF, LLE, LTSA, LE. and MFC,

respectively.
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TABLE 11
CLASS-SPECIFIC ACCURACIES IN PERCENTAGE FOR VARIOUS FEATURES

BF AF PC MNF LLE LTSA LE MFC

Roof 82,88 83.60 8383 8474 8974 90.16 86.88 9110
Road 94.16 8476 9120 95.19 86.24 91.20 87.57 94.67
Trail  99.75 98.85 99.18 9877 96.63 97.70 96.55 99.26
Grass  99.08 9977 9822 9799 9937 0828 09.60 99.54
Shadow 97.66 98.04 9495 98.69 9785 98.79 9850 98.60
Tree 96.77 95.19 96.59 97.64 97.38 97.55 9729 97.38
OA 9315 9L.11 9253 9329 92.61 9391 91.72 9597

Kappa 0.9153 0.8901 0.9077 0.9170 0.9083 0.9244 0.8075 0.9499 EE
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1) Effect of Parameter r:
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Fig. 6. Relationship of (a) parameter r and weights in each feature and
(b) parameter  and OA.
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2) Effect of Parameter d:
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Fig. 7. () Al eigenvalues and (b) 30 smallest eigenvalues of M in the DC
data set, sorted in ascending order
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Fig. 8. Relationship of d and OA in the DC data set for six-dimensional EE

reduction approaches.
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Fig. 1. (a) RGB composite of the Pavia city data set (channels 102, 56, and EE

31 for RGB) and (b) reference data.
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« feature. (b) All features. (¢) PC. (&) MNF. (€) LLE. () LTSA. (g) LE. (h) MFC.

12, (a)-(h) Classification maps of the Pavia city data set. (@)
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Fig. 13, (a)~(h) Classification maps of a local region at the bridge. (a) Best feature. (b) All features. (¢) PC. (d) MNF. (¢) LLE. () LTSA. () LE. (h) MFC.
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Fig. 14. Classification accuracies of (a)~(f) all classes. (¢) OA, and (h) kappa for cight different feature-based classification results.
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Some of the advantages of our work are as follows.

o First, MFC considers the spectral, texture, and shape features
of a pixel to achieve a physically meaningful low-dimensional
representation for an effective and accurate classification.

@ Second, the weights for each feature are optimized in the
objective function of MFC simultaneously without using
cross-validation.
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