Using diversity measures for generating error-correcting output codes in classifier ensembles Pattern Recognition Letters 26 (2005) 83–90

Ludmila I. Kuncheva

February 3, 2012



Ludmila I. Kuncheva (

Using diversity measures for generating e

February 3, 2012 1 / 29

Using diversity measures for generating error-correcting output codes in classifier ensembles Ludmila I. Kuncheva Pattern Recognition Letters 26 (2005) 83–90

## Models

- Error-correcting output codes
- ECOC generation methods
- Proposal
  - Diversity measures on classifier ensembles
- Demonstration
  - Hamming distance is insuffecient for ECOC classifier ensembles.
- Methods
  - Evolutionary algorithm to construct ECOC.

• Experiments

- Classification accuracies of 2 ensembles, using Hamming distance and Diversity measures.
- Conclusions
  - More diverse classifiers make a better ensemble than less diverse classifiers.

### Introduction

- Error-correcting output codes (ECOC)
  - The code matrix
  - ECOC generation methods
- 3 Why is minimum Hamming distance insufficient for ECOC classifier ensembles?
- Using diversity measures for ECOC
- 5 Generating ECOC by an evolutionary algorithm (EA)
- Conclusions



### Introduction 1

- Error-correcting output codes (ECOC) using idea: to avoid solving the multiclass problem directly and to break it into dichotomies instead.
- Example:
  - $\Omega = \omega_1, ..., \omega_{10}$  is the set of class labels.
  - ▶ We can break  $\Omega$  into  $\Omega = \Omega^{(1)}, \Omega^{(0)}$  where  $\Omega^{(1)} = \omega_1, ..., \omega_5$  and  $\Omega^{(0)} = \omega_6, ..., \omega_{10}$ , called a dichotomy.
  - Discriminating between  $\Omega^{(1)}$  and  $\Omega^{(0)}$  will be the task of one of the classifiers in the ensemble. Each classifier is assigned a different dichotomy.
- Pressumption: diverse classifiers are obtained from diverse dichotomies.
- We propose to use diversity measures originally devised for classifiers outputs.



#### Introduction

### Error-correcting output codes (ECOC)

- The code matrix
- ECOC generation methods

3 Why is minimum Hamming distance insufficient for ECOC classifier ensembles?

- Using diversity measures for ECOC
- 5 Generating ECOC by an evolutionary algorithm (EA)
- Conclusions



## Error-correcting output codes (ECOC) |

- Let  $\Omega=\omega_1,...,\omega_c$  be a set of class labels .
- Suppose that each classifier codes the respective compound class  $\Omega^{(1)}$  as 1 and compound class  $\Omega^{(0)}$  as 0.
- Then every class  $\omega_j, j=1,...,c$ , will have a binary "profile" or a codeword.



- Each dichotomy is a binary vector of length c with 1's for the classes in  $\Omega^{(1)}$  and 0's for the classes in  $\Omega^{(0)}$ .
- Hamming distance between  $[0, 1, 1, 0, 1]^T$  and  $[1, 0, 0, 1, 0]^T$  is the maximum but they are identical.
- $2^{c}$  splits  $\rightarrow 2^{c-1}$ -1 splits ({0,  $\Omega$ } is not used).



### The code matrix

- Let L be the chosen number of classifiers in the ensemble.
- Class assignements: binary code matrix C of size c x L.
- The (i,j)th entry of C, denoted C(i,j) is 1 if class  $\omega_j$  is in  $\Omega_j^{(1)}$  or 0, if class  $\omega_j$  is in  $\Omega_j^{(0)}$ .
- Each row of the code matrix is a codeword and each column is a classifier assignement.



- Let  $[s_1, ..., s_L]$ ,  $s \in \{0, 1\}$  be the binary output of the *L* classifiers in the ensemble for a given input *x*.
- The Hamming distance between the classifier outputs and the codewords for the classes is calculated as  $\sum_{i=1}^{L} |s_i C(j,i)|$ .
- In the standard set-up the input is labeled in the class with the smallest distance (decoding phase).



• The code matrix should be built according to two main criteria:

- Row separation: the codewords should be as far apart from one another as possible.
- Column separation: dichotomies given as the assignments to the ensemble members should be as different from each other as possible too.



### The code matrix

- *Row separation:* A measure of the quality of an error-correcting code is the minimum Hamming distance, *H<sub>c</sub>*, between any pair of codewords.
- **Column separation**: The distance between the columns must be maximized keeping in mind that the complement of a column gives the same split of the set of classes.
- Maximize:

$$H_{L} = \min_{i,j,i\neq j} \min\left\{ \sum_{k=1}^{c} |C(k,i) - C(k,j)|, \sum_{k=1}^{c} |1 - C(k,i)| - C(k,j)| \right\}, \quad i,j \in \{1,2,\dots,L\}.$$
(1)



Ludmila I. Kuncheva ()

Using diversity measures for generating e

February 3, 2012

## ECOC generation methods I

### • One-per-class:

- It is used as the target output for training neural network classifiers for multiple classes.
- The target output for class ω<sub>j</sub> is a codeword with c elements, containing 1 at position j and 0's elsewhere.
- The code matrix is the identity matrix of size c and we only build L = c classifiers.

### • All pairs:

- every pair of classes is taken as  $\Omega^{(1)}$  and the remaining *c*-2 classes form  $\Omega^{(0)}$ .
- There are L = c(c-1)/2 classifiers.
- ► The minimum Hamming distance across the whole code is 2(c-2). The power of the all pairs code is  $\left|\frac{2(c-2)-1}{2}\right| = c-3$ .



## ECOC generation methods I

- Exhaustive codes:
  - Generating all possible  $2^{(c-1)}$  different classifier assignements (for  $3 \leq c \leq 7$ ).
  - Row 1 is all ones.
  - 2 Row 2 consists of  $2^{(c-2)}$  zeros followed by  $2^{(c-1)} 1$  ones.
  - Row 3 consists of 2<sup>(c-3)</sup> zeros, followed by 2<sup>(c-3)</sup> ones, followed by 2<sup>(c-3)</sup> zeros, followed by 2<sup>(c-3)</sup> 1 ones.
  - In row i, there are alternating  $2^{(c-i)}$  zeros and ones.
  - The last row is 0, 1, 0, 1, 0, 1, . . ., 0.
- Random Generation.

### ECOC generation methods I

### • Exhaustive code for c = 4

|            | $D_1$ | $D_2$ | $D_3$ | $D_4$ | $D_5$ | $D_6$ | $D_7$ |
|------------|-------|-------|-------|-------|-------|-------|-------|
| $\omega_1$ | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| $\omega_2$ | 0     | 0     | 0     | 0     | 1     | 1     | 1     |
| $\omega_3$ | 0     | 0     | 1     | 1     | 0     | 0     | 1     |
| $\omega_4$ | 0     | 1     | 0     | 1     | 0     | 1     | 0     |

Exhaustive ECOC for c = 4 classes (L = 7 classifiers)



Ludmila I. Kuncheva (

Using diversity measures for generating e

February 3, 2012



- Error-correcting output codes (ECOC)
  - The code matrix
  - ECOC generation methods

Why is minimum Hamming distance insufficient for ECOC classifier ensembles?

- Using diversity measures for ECOC
- 5 Generating ECOC by an evolutionary algorithm (EA)
- Conclusions



Why is minimum Hamming distance insufficient for ECOC classifier ensembles?

- High minimum distance between any pair of codewords implies a reduced bound on the generalization error.
- We may wish to design a code which is allowed to fail occasionally in recovering the true class label for a small number of objects but which on average will perform better than a code with a larger minimum Hamming distance.



Ludmila I. Kuncheva ()

Using diversity measures for generating e

February 3, 2012 15 / 29

# Why is minimum Hamming distance insufficient for ECOC classifier ensembles?

|                                        | Codematrix 1                                 |                                              |                                    |                               |                  | Codematrix 2                           |                                                               |                                         |                                    |                              |                  |
|----------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------|-------------------------------|------------------|----------------------------------------|---------------------------------------------------------------|-----------------------------------------|------------------------------------|------------------------------|------------------|
|                                        | $D_1$                                        | $D_2$                                        | $D_3$                              | $D_4$                         | $D_5$            |                                        | $D_1$                                                         | $D_2$                                   | $D_3$                              | $D_4$                        | $D_5$            |
| $\omega_1$                             | 1                                            | 0                                            | 0                                  | 0                             | 0                | $\omega_1$                             | 1                                                             | 0                                       | 0                                  | 0                            | 0                |
| $\omega_2$                             | 0                                            | 1                                            | 0                                  | 0                             | 0                | $\omega_2$                             | 1                                                             | 1                                       | 1                                  | 1                            | 0                |
| $\omega_3$                             | 0                                            | 0                                            | 1                                  | 0                             | 0                | $\omega_3$                             | 1                                                             | 0                                       | 1                                  | 1                            | 1                |
| $\omega_4$                             | 0                                            | 0                                            | 0                                  | 1                             | 0                | $\omega_4$                             | 0                                                             | 0                                       | 0                                  | 0                            | 0                |
| $\omega_5$                             | 0                                            | 0                                            | 0                                  | 0                             | 1                | $\omega_5$                             | 0                                                             | 1                                       | 0                                  | 1                            | 1                |
|                                        |                                              |                                              |                                    |                               |                  |                                        |                                                               |                                         |                                    |                              |                  |
|                                        |                                              |                                              |                                    |                               |                  |                                        |                                                               |                                         |                                    |                              |                  |
|                                        | $H_c$                                        | (mir                                         | h H <sub>c</sub> =                 | = 2)                          |                  |                                        | $H_{c}$                                                       | (min                                    | $H_c =$                            | = 1)                         |                  |
|                                        | $H_c$<br>$\omega_1$                          | (mir<br>$\omega_2$                           | $H_c = \omega_3$                   | = 2)<br>ω <sub>4</sub>        | $\omega_5$       |                                        | $H_c$<br>$\omega_1$                                           | $(\min_{\omega_2}$                      | $H_c = \omega_3$                   | = 1)<br>ω <sub>4</sub>       | $\omega_5$       |
| $\omega_1$                             |                                              |                                              |                                    |                               | $\omega_5$       | $\omega_1$                             |                                                               |                                         |                                    |                              | $\omega_5$ 4     |
| $\omega_1$<br>$\omega_2$               | $\omega_1$                                   | $\omega_2$                                   | $\omega_3$                         | $\omega_4$                    | -                | $\omega_1$<br>$\omega_2$               | $\omega_1$                                                    | $\omega_2$                              | $\omega_3$                         | $\omega_4$                   |                  |
|                                        | $\omega_1$<br>0                              | $\omega_2$<br>2                              | $\omega_3$<br>2                    | $\omega_4$<br>2               | 2                | -                                      | $\omega_1$<br>0                                               | $\omega_2$<br>3                         | $\omega_3$                         | $\omega_4$                   | 4                |
| $\omega_2$                             | $\omega_1$<br>0<br>2                         | $\omega_2$<br>2<br>0                         | ω <sub>3</sub><br>2<br>2           | ω <sub>4</sub><br>2<br>2      | 2<br>2           | $\omega_2$                             | $\frac{\omega_1}{0}$                                          | ω <sub>2</sub><br>3<br>0                | $\omega_3$<br>3<br>2               | $\frac{\omega_4}{1}$         | 4<br>3           |
| $\omega_2$<br>$\omega_3$               |                                              | ω <sub>2</sub><br>2<br>0<br>2                | ω <sub>3</sub><br>2<br>2<br>0      | ω <sub>4</sub><br>2<br>2<br>2 | 2<br>2<br>2      | $\omega_2$<br>$\omega_3$               | ω <sub>1</sub><br>0<br>3<br>3                                 | ω <sub>2</sub><br>3<br>0<br>2           | $\frac{\omega_3}{2}$               | $\frac{\omega_4}{1}$ 4 4     | 4<br>3<br>3      |
| $\omega_2$<br>$\omega_3$<br>$\omega_4$ | ω <sub>1</sub><br>0<br>2<br>2<br>2<br>2<br>2 | ω <sub>2</sub><br>2<br>0<br>2<br>2<br>2<br>2 | ω <sub>3</sub><br>2<br>2<br>0<br>2 | ω <sub>4</sub> 2 2 2 0 2      | 2<br>2<br>2<br>2 | $\omega_2$<br>$\omega_3$<br>$\omega_4$ | $ \begin{array}{c} \omega_1 \\ 0 \\ 3 \\ 1 \\ 4 \end{array} $ | ω <sub>2</sub><br>3<br>0<br>2<br>4<br>3 | ω <sub>3</sub><br>3<br>2<br>0<br>4 | $\frac{\omega_4}{1}$ 4 4 0 3 | 4<br>3<br>3<br>3 |





Fig. 1. An example of two ECOC ensembles. Maximizing the minimum Hamming distance will give preference to ensemble 1 which is less accurate on average.



Ludmila I. Kuncheva (

Using diversity measures for generating e

February 3, 2012 16 / 29

Why is minimum Hamming distance insufficient for ECOC classifier ensembles? I

- According to the maximum min *H<sub>c</sub>* criterion, we will prefer ensemble 1 to ensemble 2.
- A simulation was run to estimate classification accuracies of the two ensembles under the following assumptions:
  - Each of the 5 classes comes with the same probability of 1/5.
  - Each classifier makes a mistake with probability p = 0.2. (A mistake here means that the 0's and the 1's in the column for the respective classifier are swapped.)



## Why is minimum Hamming distance insufficient for ECOC classifier ensembles? I

### • **PROCEDURE** (for 10000 objects simulated)

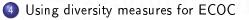
- Pick a class label with probability 1/5. Call it "the true label", and denote it by i, i ∈ 1, 2, 3, 4, 5.
- Opy the code matrix in another matrix, C.
  - For each classifier, decide with probability p = 0.2 whether it will make an error for this object.
  - ② If yes, swap the 0's and the 1's in the corresponding column of C.
- If there were no misclassifications, the codeword for this object would be row *i* of the original code matrix. With the misclassifications made by the classifiers, the codeword now is the ith row of *C*, denoted *C<sub>i</sub>*. We calculate the Hamming distances between *C<sub>i</sub>* and each row of the original code matrix.



Why is minimum Hamming distance insufficient for ECOC classifier ensembles? II

- The class label assigned by the ensemble is determined by the minimum of the five distances. In case of a tie, the assigned label is decided with equal probability between the tied labels. If the assigned label matches the true label, *i*, we increment the count for the correct classification.
- Ensemble 2 outperforms ensemble 1 by a large margin, showing that the minimum Hamming distance may not be the best criterion.




19 / 29

February 3, 2012



- Error-correcting output codes (ECOC)
  - The code matrix
  - ECOC generation methods

Why is minimum Hamming distance insufficient for ECOC classifier ensembles?



5 Generating ECOC by an evolutionary algorithm (EA)





### Using diversity measures for ECOC I

• Dissageement measure of diversity: between two codewords C<sub>i</sub> and C<sub>j</sub> is equivalent to the Hamming distance

$$D_{i,j} = \frac{N^{01} + N^{10}}{N^{00} + N^{11} + N^{01} + N^{10}} = \frac{N^{01} + N^{10}}{L},$$

 $N^{mn}$ :number of bits for which  $C_i = m$  and  $C_j = n, m, n \in \{0, 1\}$ L: length of the codeword



Ludmila I. Kuncheva (

Using diversity measures for generating e

### Using diversity measures for ECOC |

- If we measure column separation, the inverse of a binary vector present the same dichotomy.
- The diversity between D<sub>i</sub> and D<sub>j</sub> is:

$$D_{i,j} = \min\left\{\frac{N^{01} + N^{10}}{c}, \frac{N^{00} + N^{11}}{c}\right\}$$

#### • Total diversity between codewords:

$$D_c = \frac{2}{c(c-1)} \sum_{i < j} D_{i,j}, \quad i, \ j = 1, \dots, c.$$

### Using diversity measures for ECOC I

• Total diversity between dichotomies:

$$D_L = \frac{2}{L(L-1)} \sum_{i < j} M_{i,j}, \quad i, \ j = 1, \dots, L.$$



Ludmila I. Kuncheva () Using diversity measures for generating en February 3, 2012 23 / 29

### Using diversity measures for ECOC I

|                               | Row separation (codewords)                      | Column separation (dichotomies)                                                                                  |
|-------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| One-per-class (=Codematrix 1) | $H_c = 2$<br>$D_c = \frac{2}{c} (= 0.4)$        | $H_L = 2$<br>$D_L = \frac{2}{c} (= 0.4)$                                                                         |
| All-pairs                     | $H_c = 2(c-2)$<br>$D_c = \frac{4(c-2)}{c(c-1)}$ | $H_L = \min\{2, c - 4\}, c \ge 4$ $D_L = \frac{c^3 - 5c^2 + 22c - 32 -  c - 8 (c^2 - 5c + 6) }{2c(c^2 - c - 2)}$ |
| Codematrix 2                  | $D_c = \frac{1}{c(c-1)}$ $H_c = 1$              | $D_L = \frac{1}{2c(c^2-c-2)}$<br>$H_L = 1$                                                                       |
|                               | $D_c = 0.6$                                     | $D_L = 0.32$                                                                                                     |

H and D for ECOC generated by the one-per-class and all-pairs methods, and for the two code matrices from Fig. 1

- We have to combine the row and column separation measures to formulate one criterion function:
  - $D = \frac{1}{2}(D_C + D_L)$  and  $H = H_C + H_L$
- We will choose ensemble 2 because the sum is larger.





- Error-correcting output codes (ECOC)
  - The code matrix
  - ECOC generation methods
- 3 Why is minimum Hamming distance insufficient for ECOC classifier ensembles?
- 4 Using diversity measures for ECOC
- Generating ECOC by an evolutionary algorithm (EA)





## Generating ECOC by an evolutionary algorithm (EA)

- We use an Evolutionary algorithm to generate ECOC instead of random search.
- The chromosome is the code matrix, concatenating all rows (*Lxc*, classifiers x classes)

### Procedure

- Generate Population: *m* chromosomes.
- Duplicate into a offspring set.
- Mutate each set with a specified probability P<sub>mut</sub>.
- Evaluate each chromosome
  - ★ Breaking it, rearranging back the code matrix and calculating the chosen measure M (H or D).
- The population and the offspring sets are then pooled and the best m of the chromosomes survive to be the next population.
- Run these steps a number of generations.



### Generating ECOC by an evolutionary algorithm (EA)

• Calculating measure: c = 50, L = 15. Parameters m = 10,  $P_{mut} = 0.15$ , num. generations =100.







Ludmila I. Kuncheva (

Using diversity measures for generating e

February 3, 2012 27 / 29



- Error-correcting output codes (ECOC)
  - The code matrix
  - ECOC generation methods
- 3 Why is minimum Hamming distance insufficient for ECOC classifier ensembles?
- Using diversity measures for ECOC
- 5 Generating ECOC by an evolutionary algorithm (EA)





## Conclusions

- Maximizing the minimum H is not necessarily optimal with respect to the overall correctness of the ECOC.
- An evolutionary algorithm was implemented to design ECOCs using the measures as the fitness function.
- In general more diverse classifiers make a better ensemble than less diverse classifiers but the relationship is not straightforward.
- Having **diverse dichotomies** does not automatically mean that the classifiers built to solve these dichotomies will be diverse.
- The goal of this study is to devise a concrete structure (ECOC) which can then be used in training and testing classifier ensembles.

