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Abstract—A novel co-regularization framework for active
learning is proposed for hyperspectral image classification. The
first regularizer explores the intrinsic multi-view information em-
bedded in the hyperspectral data. By adaptively and quantitatively
measuring the disagreement level, it focuses only on samples with
high uncertainty and builds a contention pool which is a small
subset of the overall unlabeled data pool, thereby mitigating the
computational cost. The second regularizer is based on the “consis-
tency assumption” and designed on a spatial or the spectral based
manifold space. It serves to further focus on the most informative
samples within the contention pool by penalizing rapid changes in
the classification function evaluated on proximally close samples in
a local region. Such changes may be due to the lack of capability of
the current learner to describe the unlabeled data. Incorporating
manifold learning into the active learning process enforces the
clustering assumption and avoids the degradation of the distance
measure associated with the original high-dimensional spectral
features. One spatial and two local spectral embedding methods
are considered in this study, in conjunction with the support
vector machine (SVM) classifier implemented with a radial basis
function (RBF) kernel. Experiments show excellent performance
on AVIRIS and Hyperion hyperspectral data as compared to
random sampling and the state-of-the-art SVM������.

Index Terms—Active learning, classification, data regulariza-
tion, hyperspectral data, multi-view learning.

I. INTRODUCTION

S UPERVISED classification requires labeled data, which
can be costly and difficult to acquire. This problem is exac-

erbated by high-dimensional hyperspectral data. Active learning
(AL) integrates the classifier with training set design by ranking
the unlabeled data iteratively and only selecting samples with
the highest training utility [7], [9], [14]. In a human–machine in-
teraction scenario, it can provide advice to the human annotator
for the next query, which aims to select the most representa-
tive samples for the chosen learner by examining the properties
of the classifier through both the labeled and unlabeled data.
Thus, it leads to greater information exploitation for the data
and explores the maximum potential of the learner toward the
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given data. Also, by focusing on a much smaller but most useful
sample set for the classification problem, active learning signif-
icantly reduces the cost of data collection. For existing labeled
sample sets, active learning also provides capability to select the
most informative subset for a given classifier.

Although active learning has been widely studied in doc-
ument retrieval and natural language learning [8]–[11], [14],
related work has been quite limited in remote sensing [1]–[7].
Methods employ different query strategies, such as margin
sampling [2], [4], [6], uncertainty sampling [3], [4], cost sen-
sitive sampling [5], and the query-by-committee (QBC)-based
method [4], [7]. The key is to select samples with higher
uncertainty or which cause greater ambiguity for the classifier.

The query-by-committee based method, which is a popular
strategy in AL, utilizes the lack of consensus between a group
of diverse classifier committee members [4], [7], whereby
samples for which there is greatest disagreement among the
committee are selected. For a discriminative classifier, another
effective strategy is to select boundary samples, which often
cause confusion to the classifier and are also key to building the
classification hyperplane. A straightforward way for identifying
boundary samples is to search for samples that are close to the
current classification hyperplane [2], [4], [6], [8], e.g., margin
sampling. Other strategies can also be applied, such as querying
“nearby” samples that have greater inconsistency relative to the
given sample by investigating local variation (such as using the
local Laplacian graph [6]). Those samples often contain more
uncertainty information and often lie near the hyperplane.

All of those approaches are closely related to the concept of
data regularization, which has recently received much attention
in machine learning. It is based on the important “consistency”
assumption [18], [20], [21]. Usually, a regularization setting,
which is often designed to represent the assumed smoothness
on the intrinsic data structure associated with both the labeled
and unlabeled points, is incorporated into the overall learning
framework to implicitly or explicitly exploit the link between
the marginal density over the sample space and the condi-
tional probability . The goal is to improve the conditional
probability to benefit the supervised classification problem.

In this paper, we incorporate the idea of data regularization
into the active learning framework and propose a novel se-
quential co-regularizer from two perspectives for hyperspectral
image classification: 1) consistency between multiple classifiers
generated from multi-view feature subsets; and 2) consistency
between similar samples.

The aforementioned query-by-committee method can be re-
garded as seeking samples that violate the “consistency assump-
tion.” The key lies in the “value of agreement” [13]. However,
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most of the QBC strategy depends on the quality of the com-
mittee which is often generated by bagging from the sample
space or hypothesis space. To avoid the problem of under-rep-
resentation, the number of committee members may be huge,
thus resulting in the need to search and prune. Also, given that
only limited labeled samples are available at the early learning
stage, each subsample space may be too weak to provide a re-
liable representation of the data. In addition, with the high di-
mensionality of hyperspectral data, the “curse of dimensionality
problem” might be exaggerated.

To avoid these problems, we develop the first regularizer by
instead manipulating the spectral feature space to explore the
intrinsic multi-view information embedded in the hyperspectral
image to construct the committee. Multi-view learning, which
was first proposed by de Sa [15], is shown to learn the target
concept faster by exploring complementary information from
disjoint sub-sets of features (views) [10], [14]. The disagree-
ment (inconsistency) among different views bootstraps learners
from each view to converge quickly to the target concept by
learning from mistakes [7], [9], [10], [12]–[15]. Hyperspectral
image data contain hundreds of narrow bands over an interval
of the electromagnetic spectrum, providing enough comple-
mentary information to launch an effective multi-view learning
strategy. Intervals of the electromagnetic spectrum differ in
their discriminative ability towards classes, while naturally
providing the necessary diversity for constructing the classifier
committee. Generating views by segmenting the high-dimen-
sional data in the spectral domain can mitigate the impact of
small numbers of labeled samples with respect to the high
dimensionality of the data. Moreover, by querying samples
with higher disagreement between views, candidate samples
are restricted by this regularizer within the contention pool,
which is a subset of the unlabeled data. Thus, computational
complexity is reduced.

Further, in order to concentrate on the most informative sam-
ples within this pool, we explore sample consistency by the clus-
tering assumption [20], [21]:

Similar samples (or points on the same data structure
such as the cluster or manifold) are likely to have the same
label; and samples which lie in the low density region of
a class, where the classification boundary may cross, also
tend to show greater inconsistency toward nearby samples.

Querying those samples could help refine the classification hy-
perplane, especially for discriminative classifiers such as SVM
[35], whose performance heavily relies on the quality of the sup-
port vectors around the decision boundary. Also, by avoiding
queries of samples from high-density regions where labels are
more likely to be consistent, we can avoid inclusion of non-in-
formative/redundant samples into the training pool, thereby re-
ducing the overall sample size required to train a good learner.

Two types of intrinsic data structure spaces are investigated
in this study: the image spatial space and the low-dimensional
spectral manifold space. High-dimensional hyperspectral data
usually lie on certain low-dimensional manifold structures [22],
[23]. Remote sensing data of a given class typically occur in spa-
tially contiguous clusters; thus, the image spatial space can be
viewed as the most natural “low-dimensional manifold space.”
If points exhibit less consistency toward spatially neighboring

samples, the current learner may lack ability to correctly dis-
criminate those data.

Further, in the spectral domain, we apply manifold learning
to search for intrinsic low-dimensional structures of hyperspec-
tral data [19], [22]–[27]. The high-dimensional data are param-
eterized by seeking a smooth low-dimensional surface, whereby
local pairwise distances are preserved, and similar samples are
moved into closer proximity. This reinforces the “clustering
assumption” [18], [20], [21] and improves the quality of the
distance measure, which is key to identifying “nearby” sam-
ples [30], [31]. Because we focus on local structure, we investi-
gate two local manifold learning methods which have performed
well in our previous studies: locally linear embedding (LLE)
[24] and local tangent space alignment (LTSA) [25].

Finally, a co-regularizer, which jointly combines view-dis-
agreement and local inconsistency, is developed. The concept
of “locality” in the second regularizer is defined on a spatial or
spectral manifold space, which seeks to represent the intrinsic
structure of hyperspectral image data from the spatial or spec-
tral perspectives, respectively.

The remainder of the paper is organized as follows. The ac-
tive learning framework based on multi-view disagreement and
local proximity data regularization is presented in Section II.
Section III illustrates the multi-view disagreement based regu-
larizer; the local proximity regularizer, which is based on the
spatial/spectral manifold space, is described in Section IV. Ex-
periments and analysis are presented in Section V, and a sum-
mary is provided in Section VI.

II. DATA REGULARIZATION BASED ACTIVE LEARING

Denote each sample as drawn from an instance
space , and as the label set containing

classes. is the dimension of the sample space. The pur-
pose of classification is to learn a hypothesis to find
the correct label

(1)

where is the classification function under hypothesis .
is the labeled data pool that contains samples, and data
is the unlabeled data pool with samples, where in general

. In the transductive framework, the sample to be
classified is from , and in the inductive case, it is from the
unseen data set . Incorporating information
from the unlabeled data in learning can often lead to better
generalization ability of the trained classifier [15], [21].

Consistency, which implies that the label of a data point can
potentially be well estimated based on its neighbors, is com-
monly assumed for learning a classification mapping [18], [20],
[21]. Under this assumption, the classification function can be
obtained by reinforcing a regularizer , which
usually penalizes lack of smoothness of the classification func-
tion evaluated by both the labeled and unlabeled samples.

We adopt this idea into the active learning framework and de-
fine the loss at the th query to reflect the overall inconsistency,
i.e., the degree to which the current classifier violates the consis-
tency assumption evaluated by all the unlabeled data

(2)



620 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 3, JUNE 2011

In AL, our purpose is to improve the learner by selecting
new samples for query each time to
maximally reduce the loss

(3)

Note that, with (batch-mode learning), an additional
diversity measurement should be applied to select the best
candidates to avoid inducing redundancy into the training set.
This criterion is equivalent to querying the next most diverse

samples that satisfy

(4)

where is the complement set of
with .

At each iteration, the classifier is updated by

(5)

where is the loss in the classification metric. In real applica-
tions with noisy data, sampling data with the highest inconsis-
tency value measured by can result in noise or outliers being
introduced into the training set. Thus, we introduce a relaxation
variable , and first query samples from the
current unlabeled data pool according to (4), and then further
randomly select samples from this subset.

The design of the regularizer is key to the success of the active
learning strategy. According to the consistency assumption, it
should favor the changes of in regions with lower values
of , where the decision boundary may be located. Samples
which are in close proximity, but violate the consistency as-
sumption, i.e., similar samples with higher confliction in terms
of the conditional probability and should be
queried first. Also, in the AL scenario, the information should be
incorporated from both the labeled and unlabeled data, as well
as the chosen classifier. Thus, we propose the following co-reg-
ularizer

(6)

The first factor is the multi-view adaptive maximum disagree-
ment (MV-AMD) regularizer , and the second is the local
inconsistency (LIC) regularizer which represents the lack
of smoothness measured on a local graph in the manifold space.
Both are defined in Sections III and IV, respectively.

III. MULTI-VIEW DISAGREEMENT BASED REGULARIZATION

A. Multi-View Generation for Hyperspectral Image Data

In a single-view scenario, a learner can access the entire set
of domain features. In the multi-view setting where there are

views, the available attributes are decomposed into disjoint
sets . An instance is therefore viewed

as . It is assumed that each view is suffi-
cient to learn the target concept (compatibility), which means
that the hypothesis from any view : corresponds
to the target hypothesis . Learning is conducted by utilizing
the complementary information between views [10]. It has been
shown that minimizing the disagreement between the outputs
from individual views is a sensible approximation to minimizing
the misclassifications in each view [7], [10], which ultimately
forces the learner group to learn the correct concept faster.

Two basic requirements for view generation are compatibility
and independence [10]. Compatibility ensures that learners can
ultimately converge to the same target concept, while indepen-
dence is key to generating disagreement information to boot-
strap each view. However, it has been shown that both are too
strong in real applications, and can be relaxed without sacri-
ficing the learning efficiency [17]. Muslea et al. [17] showed that
the active learner can still be effective when the compatibility
assumption is violated. By querying the true labels, unlike situa-
tions in semi-supervised multi-view learning [21], AL has more
stable convergence towards the target concept and can compen-
sate for correlation between views. It is shown that even with
weak correlation, the ratio of the number of contention points
(samples for which the evaluations from different views dis-
agree) to the unlabeled samples still represents an upper-bound
on the learning error for pair-wise views [12], [17].

To exploit the “value of disagreement” [13], diversity is a key
for view generation. This guarantees that additional information
can be provided by the other views to improve the learner, and it
is unlikely that the learners from different views agree on an in-
correct result [10], [13]. In our case, each view is obtained by the
subspace grouping method [28], [29], whereby the hyperspec-
tral data cube is segmented naturally into several disjoint con-
tiguous sub-band sets along the spectral dimension according to
the band correlation index. Each subspace has highly correlated
members, but low correlation with other sub-band sets. Due to
the intrinsically different spectral information contained in var-
ious spectral ranges of the data, diversity can be satisfied with
less redundancy (e.g., lower correlation) between views. Fur-
ther, since it is unnecessary to have label information to compute
the band correlation coefficients, both the labeled and unlabeled
data can be used, which ultimately improves the generalization
of the classifier.

Fig. 1 shows the correlation coefficient matrix generated by
the data used in the experiments [KSC (Kennedy Space Center
data)], where the brighter red color denotes higher correlation,
and the blue color denotes lower correlation. Blocks along the
diagonal of the matrix are detected by simple edge detection and
then used to generate different views.

B. Adaptive Maximum Disagreement Regularizer (AMD)

First, we define the disagreement between classification func-
tions from all views as the associated differences in the predicted
labels evaluated by unlabeled data

(7)
where is the classification function under hypothesis for
view . The value of indicates the distance
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Fig. 1. Correlation coefficient matrix of KSC data.

of current multi-view learner group towards the target hypoth-
esis. To evaluate the contribution of each sample , it is
decomposed into a sample based distance measure as:

(8)

This sample-wise distance represents individual uncertainty as it
contributes to the overall confusion. To incorporate global infor-
mation from the entire unlabeled data pool, we define the max-
imum disagreement as

(9)

Inconsistency by different views is then defined as

(10)

where is a monotonic decreasing function defined on
with more emphasis on samples with higher disagreement level,
such as the log function or hat-like loss function. To concentrate
on the most informative samples, we use the indicator func-
tion to build the multi-view adaptive maximum disagreement
(AMD) regularizer

(11)

By using the indicator function, only samples with the max-
imum level of disagreement are selected into the first stage
contention pool , thereby restricting the query candidates
to a smaller subset of the unlabeled data and reducing the
computational cost. Samples in represent the maximum
disagreement from all views, and thus contain the most un-
certainty information for the learner. Querying samples from

will bootstrap views to best learn the training set, and
to “agree” with each other on the extra unlabeled samples [13].
Also, according to the compatibility assumption, the regu-
larizer actually penalizes changes in the probability ,

. We denote this active learning method by
randomly sampling points from as multi-view AMD-SR
(Multi-view Adaptive Maximum Disagreement Single Reg-
ularization active learning). As learning progresses, different

views tend to agree with each other, and the confliction level
decreases, possibly resulting in inflation of the contention pool.
Thus, based on the consistency assumption, we further apply
the local consistency regularizer to evaluate the samples in

so as to force the learner to focus on querying the most
informative samples.

IV. REGULARIZATION VIA A GENERALIZED MANIFOLD SPACE

A. Generalized Manifold Space

According to the consistency assumption [18], [20], a simi-
larity function should be first defined to measure the closeness of
samples in the input space in a meaningful way. Hyperspectral
data have two important features: spatial and spectral informa-
tion. Manifold learning has been demonstrated to yield higher
classification accuracies and improved representation of phe-
nomena relative to linear dimensionality reduction methods in
several remote sensing investigations [22]–[27]. Hyperspectral
data lie on low-dimensional manifolds that are often inherently
nonlinear due to the scattering in the atmosphere and within the
ground resolution cell. The resulting low-dimensional manifold
coordinate system enforces the clustering assumption, whereby
similar samples are moved into closer proximity, and distances
between non-neighbor samples are increased. Since we focus
on the local proximity property, only local manifold methods
are used in our experiments: i.e., LLE [24] and LTSA [25].
Both methods start with finding the -nearest neighbors (based
on Euclidean distance) for each sample. LLE assumes that the
embedding mapping is locally linear and uses constrained op-
timization formulation to find the optimum local convex repre-
sentations of each point from a linear composition of its neigh-
bors. LTSA estimates the local tangent spaces for each point by
performing PCA on its neighborhood set, and then aligns those
tangent spaces to find the global coordinates by minimizing a
cost function that allows any linear transformation of each local
coordinate. This ultimately results in an eigenvalue problem,
whereas eigenvectors corresponding to the 2nd to smallest
eigenvalues of the constructed alignment matrix are found as
the global coordinates in the embedding space, where is the
dimension of the new generated manifold space, and .

Analogous to spectral manifolds, spatial content that corre-
sponds to the location of a point in the remotely sensed image
can be also viewed as a natural manifold space parameterized
by a 2-D coordinate system. This spatial manifold assumes
that natural spatial clustering exists in the image, which is
appropriate for many natural landscapes where classes form
contiguous patches distributed across the scene.

B. Local Proximity Based Regularizer

Because global behavior of the similarity function is not crit-
ical to the clustering assumption, we restrict the “close” sam-
ples within a local -nearest neighborhood in the low dimen-
sional spatial or spectral manifold space. Each sample in the
derived manifold space is denoted as . The -nearest
neighbor set for a sample is defined as

s.t. (12)
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where and are the labeled and unlabeled data sets in the
manifold space corresponding to and , respectively.

is the contention pool in corresponding to .
The geodesic distance corresponds to the Euclidean distance in
manifold space; thus we simply use as the Euclidean
distance between two vectors.

A -nearest neighborhood graph for each unlabeled sample
is then defined upon its closest samples. The graph

contains vertices (nodes) and edges where
represents the set of nodes, and represents the edges

of the graph. The predicted labels of the unlabeled data and
the true labels from the labeled data are all represented on the
graph. Let be the length of the edge from node to node ,
which represents the inconsistency between these two nodes

(13)

where

and is the weight used to differentiate the confidence as-
signed for the true label and the estimated label from the training
data and the unlabeled data, respectively; generally .
The length is actually a function of the conditional probability

and the marginal probability density . In semi-super-
vised learning, a regularizer should penalize changes in
more in the regions where values of are smaller. Contrary
to this principle, samples that lie in the lower region, but
have greater changes in are of the most interest in active
learning. represents the information in . Intu-
itively, if samples lie in a lower region, the distance be-
tween the core node and its -nearest samples is larger than that
in the high-density region. A better classifier can be obtained
by querying samples from those low regions. The overall
local inconsistency score is defined as the sum of all the edge
lengths in the local graph

(14)

where . represents the inconsistency of
the core node (unlabeled sample) towards its neighbors evalu-
ated on the weighted -nearest neighborhood local graph. It also
discriminatively interpolates the information from both the la-
beled and unlabeled samples. By using the hard label estimation

, the method aims to directly improve the conditional relation-
ship using the empirical error.

Finally, the regularizer for each unlabeled sample is ob-
tained as the product of the disagreement based regularizer

and the local inconsistency regularizer
in (6). Three methods are developed under this framework
according to different “manifold spaces” that are used:

• SpaCR: Spatial manifold space based co-regulariza-
tion AL (Spatial-CR);

• LmCR: LLE manifold space based co-regulariza-
tion AL (LLE-mCR);

• TmCR: LTSA manifold space based co-regular-
ization AL (LTSA-mCR).

To evaluate the effectiveness of using the low-dimensional man-
ifold space, we denote SpeCR (Spectral feature space based
co-regularization AL: Spectral-CR) as the method which em-
ploys the two-stage co-regularizer where the second local incon-
sistency regularizer uses the original high-dimensional spectral
features to search the -nearest close samples to build the graph
and compute the distance between in (13).

V. EXPERIMENTS

A. Data Description

Two hyperspectral data sets from different sensors are
used for this experiment [3], [32], [33]. NASA EO-1 Hy-
perion and Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS), were used to collect the data over the Okavango
Delta, Botswana (BOT), and the Kennedy Space Center (KSC),
respectively. The KSC data were acquired in March 1996 and
consist of 224 bands of 10-nm width covering 400–2500 nm,
with 18-m spatial resolution. Discrimination of the land cover
types in the KSC data is difficult due to the similarity of the
spectral signatures for certain vegetation types and the existence
of mixed classes [3]. BOT data were acquired in May 2001
in a 7.7-km strip at 30-m spatial resolution with 242 bands of
10-nm width covering 400–2500 nm. The data were obtained to
study the impact of flooding on vegetational response. Removal
of noisy and water absorption bands resulted in 176 and 145
candidate features for KSC and BOT data, respectively. Details
of the land cover classes of both data sets are given in Table I.
Figs. 2 and 3 contain the RGB images of a portion of the whole
scene and the corresponding distribution of the labeled data
by class for the two data sets. Classes occur in small patches
scattered throughout the image.

B. Experimental Design

The labeled samples from each data set were randomly sam-
pled into two equal sets: one for transductive learning, which
was used to generate the initial labeled training set ( ) and
the unlabeled data set ( ); the other was for inductive learning
and used as the unseen data set ( ). Five views were gener-
ated for both data sets based on the correlation matrix. For the
KSC data, the associated band indices are 1–11, 12–31, 32–96,
97–130, and 131–176; and for the BOT data, views correspond
to bands 1–25, 26–61, 62–79, 80–110, and 111–145. The initial
labeled data pool for KSC consists of only 30 pixels obtained
by randomly selecting three samples from each class. For the
BOT data set, the initial labeled data pool consists of 54 pixels
obtained by randomly choosing six samples from each class. A
larger initial set was used for the BOT data because of its lower
spatial resolution and lower SNR as compared to the AVIRIS
data. All the initial sets are quite small relative to the dimension
of the hyperspectral image. To concentrate on the early perfor-
mance of active learning, algorithms ran for 400 and 600 epochs
for KSC and BOT data, respectively, adding one pixel to at
each iteration ( details are listed in Table II).

The focus of this research is active learning, so only one
method was used for classification. Support vector machines
(SVMs) are nonparametric discriminative classifiers which typ-
ically perform well in classification of hyperspectral data and
do not require reduction in dimensionality [35]. A radial basis
function (RBF) kernel-based SVM [34] was used as the base
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Fig. 2. (a) RGB image of KSC data. (b) KSC labeled data. (c) Class legend.

learner. All data were first normalized [34] to avoid scaling is-
sues in computing the kernel. Two hyperparameters, (spread of
the Gaussian kernel function) and (regularization parameter),
were obtained by grid search over a wide range of values. In
order to focus on construction of the training data set by AL, pa-
rameters were selected such that satisfactory performance was
achieved when using all the available training data ( )
which occurs at the later learning stage. Empirically, we found
that a wide range of parameter values perform well for these
data sets. Parameters were not updated along the learning since
no significant improvement was observed in preliminary exper-
iments. Classification results were obtained by training the base
learner on the final labeled data pool using the full set of spec-
tral data. Results are reported by the average performance of at
least ten-fold cross-validation experiments.

To evaluate the approach, we compare the manifold based
co-regularization methods: SpaCR, LmCR, and TmCR with
1) SpeCR to show the incremental contribution of nonlinear
dimensionality reduction), 2) AMD-SR to evaluate the in-
cremental contribution by the additional local inconsistency
regularizer, and 3) the base-line random sampling (RS) and
the benchmark AL method: SVM-based simple “Margin Sam-
pling” [11] (denoted by SVM ). To directly evaluate the
overall performance compared to passive learning (RS), we
define the average improvement of the classification accuracy
( ) as

(15)

Fig. 3. (a) RGB subset of BOT data. (b) BOT labeled data. (c) Class legend.

TABLE I
CLASS INFORMATION FOR KSC AND BOT DATA

and the Efficiency Ratio (ER) as

(16)
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TABLE II
SAMPLE CHARACTERISTICS FOR EXPERIMENTS

TABLE III
ABBREVIATIONS AND RELATED PARAMETER SETTINGS FOR EXPERIMENTS

where is the total number of query steps. and
represent the classification accuracy by a given ac-

tive learning method and random sampling at the th query,
respectively. Parameter settings for the experiments and the
corresponding abbreviations are listed in Table III. Three
parameters are required: 1) the -nearest neighborhood size
for manifold learning, denoted as ; 2) the dimension of the
generated manifold space, denoted as ; 3) the -nearest neigh-
borhood size used to compute the local inconsistency, denoted
as .

Note that, in SpeCR and SpaCR, only one parameter ( ) is
needed, while in LmCR and TmCR all three parameters are re-
quired. The relaxation variable that mitigates the effect of noise
and outliers was set as 0.1 in our experiments, and values of

and were assumed. The absolute values of
and are not very important since they only work to en-

large the discrepancy between the confidence assigned to the
labeled and unlabeled data, and the query is based only on the
ranking order of the local inconsistency. The parameter used
in manifold learning is the number of the nearby samples that are
assumed to have a strong local geometric relationship. It con-
strains the size of the local region that is used to construct the
spectral graph for generating the manifold coordinates. Thus,
we only tested the cases with the -nearest neighborhood size

. Also, it should be noted that in LTSA, must be larger
than the desired dimension of the generated manifold space
since each local region with size is used to perform a local
PCA-like spectral analysis, and then aligned to obtain the global
manifold coordinate.

For the KSC data, all methods (SpeCR, SpaCR, LmCR, and
TmCR) were tested with various sizes of -nearest neighbor-
hoods: 5, 10, 15, and 20, respectively. LmCR and TmCR
were evaluated with values of 8 and 15 and 10, 20, and
30. Only was tested for the BOT data based on our pre-
vious studies using these data [26], [27].

C. fResults and Discussion

Fig. 4 shows some typical examples of classification accu-
racy of the proposed methods compared with RS and
for and from both data sets. Parameter settings are: KSC
with , , , and BOT with , ,

. Fig. 5 and Table IV provide comparisons in terms of Ef-
ficiency Ratio (ER) and the incremental change in classification
accuracy ( ) between different methods (given in Table III) for
BOT data. Table V lists results of different methods and settings
for the KSC data in terms of the average improvement in clas-
sification accuracy ( ).

The following trends are observed.
The proposed active learning methods, as well as AMD and

SpeCR, outperform random sampling and in all cases
for the two data sets, based on overall classification accuracies
(Tables IV and V) and the Efficiency Ratio (Fig. 5). Classi-
fication accuracies by active learning (including ) on

and are all higher than for RS, but the difference is
smaller for unseen data. This is because information from the
unlabeled data is incorporated directly into the classifier during
the learning stage as samples from are iteratively queried
and evaluated.

Several specific aspects of the proposed methods were also
evaluated, including: the co-regularization versus AMD based
single-regularization; spatial versus spectral local regulariza-
tion; and the contribution of individual views.

1) Comparison of AMD With Co-Regularization Methods:
Table V shows that the proposed co-regularization methods
(SpaCR, LmCR, and TmCR) have better performance than
multi-view based AMD single-regularization in terms of in-
cremental classification accuracy for both and . This
indicates the potential value of adding the second regularizer to
the active learning process. Table V also indicates that results
for the proposed methods are insensitive to the values of for
these data. The spectral based method SpeCR also outperforms
AMD in all cases on , and all but two cases ( , )
on the unseen data. SpeCR is more affected by than the other
proposed methods, with the best performance being achieved
when .

2) Evaluation of Co-Regularization Methods of Different
Manifold Spaces: The two local manifold learning based
methods (LmCR and TmCR) produced similar results. Both
methods have better performance than SpeCR in most cases,
and the best performance is obtained by TmCR ( ,

, and ). This is consistent with our previous
study in which we found that LTSA yielded higher accuracies
on the KSC data [26], [27]. These results indicate that manifold
learning successfully captures spectral characteristics of the
data. Moreover, by reducing the dimension from the original
spectral feature space (for KSC, and for BOT,

) to the lower dimensional manifold space ( 8 and
15), which can be computed offline, LmCR and TmCR greatly
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Fig. 4. Classification accuracies for KSC (a) � , (b) � , and for BOT: (c) � , (d) � .

Fig. 5. AL Efficiency Ratio (ER) for � and � of BOT data (definitions in
Table III).

TABLE IV
AL EFFICIENCY RATIO (ER) AND INCREMENTAL CHANGE IN CLASSIFICATION

ACCURACY (D) RELATIVE TO RANDOM SAMPLING OF SPACR, LmCR AND

TmCR FOR BOT DATA UNDER DIFFERENT MANIFOLD SETTINGS

reduce the online computational complexity as compared to
SpeCR during the iterative learning.

Table V also shows that in most cases, LmCR and TmCR
have better performance than the spatial-based method SpaCR.

TABLE V
INCREMENTAL CHANGE IN CLASSIFICATION ACCURACY (D) RELATIVE TO

RANDOM SAMPLING FOR KSC DATA UNDER DIFFERENT MANIFOLD SETTINGS
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This is not surprising since the spatial manifold assumption is
much weaker and can only be utilized effectively where good
spatial clustering exists in the data, whereas the spectral-based
manifold space is generated from the spectral features which
have greater discriminative potential for the classification task.
Furthermore, since only the spectral features are used as inputs
to the classifier, LmCR and TmCR are able to adjust the condi-
tional probability of the classifier more directly.

SpaCR generally performs slightly worse on compared to
SpeCR, but has comparable performance on . Figs. 2 and 3
show that both KSC and BOT data have good spatial class clus-
ters, which indicates that the spatially closeness measurement
can be a good distance metric to capture the “locality” and used
to identify the “close” samples. Considering that SpaCR only
uses features (compared with in SpeCR for
KSC), these results indicate that spatially based regularization
might be useful for such data sets.

3) Performance of Individual Views: Fig. 6 shows an example
of the classification accuracy of each view by TmCR for of
KSC and BOT data, respectively, where KSC experiments con-
tinued to 620 epochs in order to illustrate the final convergence
of different views. The yellow curve denotes the overall accuracy
obtained by the base learner, and the dark blue curve (CP) rep-
resents the size of the contention pool by the first stage regular-
izer. As learning progresses, the accuracy of each view is suc-
cessfully bootstrapped, and different views tend to agree with
each other, indicating that the degree of confusion of the learner
committee on the unlabeled data decreases. The agreement of hy-
potheses generated from different views represents the v-inter-
section of those hypothesis spaces (version space) [10], [13]. The
greater the agreement, the smaller the version space and closer
the learner approaches the target function. The upper bound of
the generalization error which is proportional to the complexity
of this version space can therefore be reduced as well [12]. The
three jumps of the size of the contention pool in Fig. 6(a) for KSC
data around the 130th, the 320th, and the 610th queries corre-
spond to the decrease of the maximum disagreement level from
5 to 4, 4 to 3, and 3 to 2, respectively. Similar results are also
obtained for BOT data and are illustrated in Fig. 6(b).

Fig. 6 also shows that the views exhibit different discrimina-
tive ability, and performance for the two data sets differs. For
KSC, View 3 (V3) has the best performance over all views,
whereas View 1 has the worst performance. Table VI lists the
spectral characteristics of each view for the KSC data. Views 3,
4, and 5 lie in the Red, or (N/SW) IR spectral range, while View
2 includes bands from the Green and Red part of the spectrum.
View 1 contains bands in the Blue region of spectrum. Because
the KSC data are dominated by green vegetation, spectral bands
in the Red and NIR region have good discriminative ability, ex-
plaining the good performance of Views 2 and 3. Views 4 and 5
provide additional discrimination between upland tree classes.
BOT land cover is not as dense as for KSC, and savanna grass-
lands and mopane woodlands have distinctive features in the
SWIR portion of the spectrum. View 1 includes a continuum of
bands from the Blue, Green, and Red wavelengths, while Views
2 to 5 contain groups of sequential bands from the Red, NIR,
and SWIR part of the spectrum. The trend in view performance
is similar, although views 2, 4, and 5 produce superior results to
Views 1 and 3.

Fig. 6. Learning performance by TmCR of each view (V1-V5) and the overall
classification accuracy (OAc) on � for (a) KSC. (b) BOT, compared with the
size of the contention pool (CP).

TABLE VI
SPECTRAL CHARACTERISTICS OF EACH VIEW FOR KSC DATA

4) Contribution of the Multi-View Regularization Versus the
Local Proximity Regularization: Fig.7(a)and(b)showstheclas-
sification accuracies of AMD, SpaCR, and RS for and of
KSC data, respectively. The black curve at the bottom in both fig-
ures denotes the size of the contention pool from one test case.
Fig. 7(c) shows the corresponding classification accuracy of each
view by AMD. Since the two stage regularizers perform sequen-
tially, while the performance is improved by the second stage reg-
ularizer, it is also affected by the first stage regularizer. This phe-
nomenon can be seen clearly at the th step of querying,
where both SpaCR and AMD exhibit a slower improvement as
learning progresses. This is due to the decrease of the maximum
disagreement level as View 2 has improved as shown in Fig. 7(c),
which leads to inflation of the contention pool. Since more sam-
ples with lower disagreement level are incorporated into the con-
tentionpool,byrandomlysamplingfromthiscontentionpool, the
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Fig. 7. Comparison of AMD-SR, SpaCR, and RS for KSC data, with the size
of the corresponding contention pool (black curves): performance on (a) � ,
and (b) � , (c) classification accuracy of each view by AMD-SR on � .

learner may not be able to focus on the most informative sam-
ples, thus resulting in slower improvement of the classification
accuracy. However, with additional local consistency evaluation,
samples in this pool are further ranked, which helps SpaCR to
focus on the more informative samples. Thus, the degradation
in the performance is less for SpaCR than for AMD.

D. Computational Complexity

The overall computational complexity of the method con-
sists of two parts. The offline part consists of computing the
manifold space and finding the neighboring samples in the new
manifold space, which mainly depends on the complexity of
the manifold learning method. Both LLE and LTSA scale as

, where is the total sample
number of the labeled and the unlabeled data. Further, the search

of the -nearest neighbor samples in the new generated mani-
fold space scales as .

The online active learning component of the method depends
on the total number queried , the efficiency of the base
learner, the size of the -nearest neighborhood for computing
the local proximity, the dimension of the generated manifold
space, and the size of the unlabeled data pool.

In our case, at the th query, the base learner SVM requires
for training, which depends

on the number of support vectors , and
for predicting on the unlabeled data.

Since we apply the adaptive maximum disagreement regular-
izer to build the first stage contention pool, the number
of candidate samples is greatly reduced, and it is only necessary
to evaluate those candidate samples by the second stage regular-
izer, thus reducing the computational load. Denote as the
number of candidate samples in , where usually

. The calculation of the regularizer for each candidate
sample and sorting the results to identify the next query sample
scales as , which further depends on the di-
mension of the feature used for computing the distance between

in (13). By nonlinear mapping of the original high di-
mensional data into the low-dimensional manifold space, a more
reliable distance measure is obtained, and also since the
online computational complexity is improved.

Since our method does not require a specific learner, addi-
tional computational improvement can be achieved by using a
more efficient base learner. This also provides the flexibility to
choose the proper model for different types of data.

VI. CONCLUSION

In this paper, we have presented a new sequential co-regu-
larization active learning framework that utilizes multi-view
consistency and the local proximity assumption for remote
sensing image classification. The first regularizer explores the
intrinsic multi-view information embedded in the hyperspectral
image to boost learning by using the complementary informa-
tion from the disjoint feature subspaces. The second regularizer
seeks boundary samples in the spatial/spectral low dimensional
manifold structure, as those samples are more useful for im-
proving the discriminative SVM classifier. Based on different
manifold assumptions, three methods are developed which
emphasize local consistency: SpaCR, LmCR, and TmCR.
Experiments show the improvement achieved by adding the
second stage regularizer to the AMD regularizer. As compared
to SpeCR, which is based on the original high-dimensional
spectral feature space, manifold based methods achieve higher
classification accuracies and greater efficiency, with less online
computational cost due to the resulting low-dimensional mani-
fold space. All the methods, including AMD and SpeCR, show
excellent performance as compared to RS and SVM on two
data sets (KSC and BOT). This indicates the potential effec-
tiveness of the regularization based active learning framework.
The good performance by AMD, where views are obtained
according to correlation between spectral bands, motives us to
further investigate the properties associated with multi-view
learning and alternative ways of generating views. Our results
also indicate that class dependent manifold embedding may be
a promising direction for future research.
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