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Abstract. In previous works we have proposed Lattice Independent
Component Analysis (LICA) for a variety of image processing tasks. The
�rst step of LICA is to identify strong lattice independent components
from the data. The set of strong lattice independent vector are used for
linear unmixing of the data, obtaining a vector of abundance coe�cients.
In this paper we propose to use the resulting abundance values as fea-
tures for clasi�cation, speci�cally for face recognition. We report results
on two well known benchmark databases.

1 Introduction

Face recognition [3] is one of the most relevant applications of image analysis.
It's a true challenge to build an automated system which equals human ability
to recognize faces. There are many di�erent industrial applications interested in
it, most of them somehow related to security. Face recognition may consist in
the authentication of a user, which a binary decision, or in the identi�cation of
a user which is a (large) multiclass problem.

Images of faces, represented as high-dimensional pixel arrays, often belong to
a manifold of lower dimension. In statistical learning approaches, each image is
viewed as a point (vector) in a d -dimensional space. The dimensionality of these
data is too high. Therefore, the goal is to choose and apply the right statistical
tool for extraction and analysis of the underlying manifold. These tools must
de�ne the embedded face space in the image space and extract the basis functions
from the face space. This would permit patterns belonging to di�erent classes
to occupy disjoint and compacted regions in the feature space. Consequently,
we would be able to de�ne a line, curve, plane or hyperplane that separates
faces belonging to di�erent classes. The classical approach applied Principal
Component Analysis (PCA) for feature extraction [19], other approaches use the
variations of the Linear Discriminant Analysis (LDA) [11,22,21,10,13,20,14,2],
or the Locality Preserving Projections (LPP) [7]. Other successful statistic tools
include Bayesian networks [12], bi-dimensional regression [9], generative models
[8], and ensemble-based and other boosting methods [11].

In this paper we report experimental results with a novel feature extraction
method based on the notion of lattice independence: Lattice Independent Com-
ponent Analysis (LICA) [4]. Lattice independent vectors are a�ne independent



and de�ne a convex polytope. LICA aims to �nd a set of such lattice indepen-
dent vectors from the data whose associated convex polytope covers all or most
of the data. Feature extraction then consists in the computation of the unmixing
process relative to these vectors, which is equivalent to the computation of the
convex coordinates relative to them. We explore the performance of this feature
extraction process for face recognition over to well known benchmark databases,
comparing with Principal Component Analysis (PCA) and Independent Com-
ponent Analysis (ICA) applied as alternative feature extraction processes.

The paper is organized as follows: Section 2 introduces the LICA approach.
Section 3 reports the experimental results. Section 4 gives our conclusions and
further work directions.

2 Lattice Independent Component Analysis (LICA)

Lattice Independent Component Analysis is based on the Lattice Independence
discovered when dealing with noise robustness in Morphological Associative
Memories [16]. Works on �nding lattice independent sources (aka endmembers)
for linear unmixing started on hyperspectral image processing [6,17]. Since then,
it has been also proposed for functional MRI analysis [5] among other.

Under the Linear Mixing Model (LMM) the design matrix is composed of
endmembers which de�ne a convex region covering the measured data. The linear
coe�cients are known as fractional abundance coe�cients that give the contri-
bution of each endmember to the observed data:

y =

M∑
i=1

aisi +w = Sa+w, (1)

where y is the d-dimension measured vector, S is the d×M matrix whose columns
are the d-dimension endmembers si, i = 1, ..,M, a is theM -dimension abundance
vector, and w is the d-dimension additive observation noise vector. Under this
generative model, two constraints on the abundance coe�cients hold. First, to
be physically meaningful, all abundance coe�cients must be non-negative ai ≥
0, i = 1, ..,M , because the negative contribution is not possible in the physical
sense. Second, to account for the entire composition, they must be fully additive∑M

i=1 ai = 1. As a side e�ect, there is a saturation condition ai ≤ 1, i = 1, ..,M ,
because no isolate endmember can account for more than the observed material.
From a geometrical point of view, these restrictions mean that we expect the
endmembers in S to be an A�ne Independent set of points, and that the convex
region de�ned by them covers all the data points.

The Lattice Independent Component Analysis (LICA) approach assumes the
LMM as expressed in equation 1. Moreover, the equivalence between A�ne In-
dependence and Strong Lattice Independence [15] is used to induce from the
data the endmembers that compose the matrix S. Brie�y, LICA consists of two
steps:



Algorithm 1 One step of the cross-validation of LICA for face recognition

1. Build a training face image matrixXTR = {xj ; j = 1, . . . ,m} ∈ RN×m. The testing
image matrix is denoted XTE = {xj ; j = 1, . . . ,m/3} ∈ RN×m/3.

2. Data preprocessing approaches:

(a) either perform PCA over X, obtaining T = {tj ; j = 1, . . . ,m} ∈ Rm×m

(b) or directly do T = XTR .

3. Obtain a set of k endmembers using an EIA over T : E = {ej ; j = 1, . . . , k} from
T . Varying EIA parameters will give di�erent E matrices. The algorithm has been
testing with α values ranging from 0 to 10.

4. Unmix train and test data: YTR = E#XT
TR and YTE = E#XT

TE .
5. Nearest Neighbor classi�cation: For each image vector yj ∈ YTE

(a) calculate the Euclidean distance to each training image vj ∈ YTR.
(b) assign the class to which yj belongs as the class of the nearest vj .

6. Compute performance statistics: classi�cation accuracy

1. Use an Endmember Induction Algorithm (EIA) to induce from the data a set
of Strongly Lattice Independent vectors. In our works we use the algorithm
described in [6,5]. These vectors are taken as a set of a�ne independent
vectors that forms the matrix S of equation 1.

2. Apply the Full Constrained Least Squares estimation to obtain the abun-
dance vector according to the conditions for LMM.

The advantages of this approach are (1) that we are not imposing statistical
assumptions to �nd the sources, (2) that the algorithm is one-pass and very
fast because it only uses lattice operators and addition, (3) that it is unsuper-
vised and incremental, and (4) that it can be tuned to detect the number of
endmembers by adjusting a noise-�ltering related parameter. When M � d the
computation of the abundance coe�cients can be interpreted as a dimension
reduction transformation, or a feature extraction process.

2.1 LICA for face recognition

Our input is a matrix of face images in the form of column vectors. The induced
SLI vectors (endmembers) are selected face images which de�ne the convex poly-
tope covering the data. A face image is de�ned as a Aa×b matrix composed by
a · b = N pixels. Images are stored like row-vectors. Therefore, column-wise the
dataset is denoted by Y = {yj ; j = 1, . . . , N} ∈ Rn×N , where each yj is a pixel
vector. Firstly, the set of SLI X = {x1} ∈ Rn×K is initialized with the maximum
norm pixel (vector) in the input dataset Y . We chose to use the maximum norm
vector as it showed experimentally to be the most successful approach.

We have tested LICA over the original data and over the PCA transforma-
tion coe�cients. For the PCA we retain all non-null eigenvalue eigenvectors. The
maximum number of such eigenvectors is the size of the data sample, because we
have much less data samples than the space dimensionality. The classi�cation



method performed was a 30 times executed 4-fold cross-validation, randomiz-
ing the folds on each iteration; and selecting by euclidean distance the nearest
neighbor to decide the class. One step of the cross-validation process is speci�ed
in algorithm 1. In this algorithm E# denotes the pseudo-inverse of the matrix
E. Note that we compute the feature extraction process over the training data
for each repetition of the data partition into train and test subsamples. When
testing PCA as a feature extraction, we retain the eigenvectors with greatest
eigenvalues. The algorithm for endmember induction, the EIA, used is the one
in [6] which has tolerance parameter α controlling the amount of endmembers
detected. In the ensuing experiments we have varied this parameter in order to
obtain varying numbers of endmembers on the same data. In other words, in
step 3 of algorithm 1 there is implicit an iteration varying the values of α in
order to obtain diverse dimensionality reductions.

Fig. 1. An instance of the �rst 5 eigenfaces (PCA), independent components (ICA)
and endmembers (LICA)

3 Experimental results

The recognition task was performed over the ORL database[18] and the Yalefaces
database [1]. We did not perform any image registration or spatial normalization.
Neither we did perform any face detection process. Images were taken as given
from the databases. On Yalefaces we tested a simple normalization consisting in
extracting the mean intensity value of the image to all the pixels (to obtain a



zero mean) and adding them the middle value of the gray scale interval. Tests
covered dimensionality reduction up to 30 components. For ICA and PCA that
was accomplished selecting the desired sources and eigenvectors, respectively.
For LICA that implies varying the value of the α parameter and observing the
number of endmembers detected. Graphic 5 contains the endmembers obtained
depending on the α value. Graphic 4 illustrates the relation between α and hit-
rate. Table 1 contains the best cross-validation results obtained for each database
and feature extraction process. On the ORL database, LICA obtained better
results on the original images than on the result of PCA transformation. LICA
improves on ICA, with a greater dimensionality reduction. LICA best result is
worse than PCA's on this database. For the Yalefaces, the ICA performs better
than the other two and LICA improves over PCA. The normalization of the
images introduces some improvement in ICA and LICA based approaches, but
not in PCA.

ORL Yalefaces Yalefaces
Method prep. original normalized

data Acc. Dim. Acc. Dim. Acc. Dim.

PCA - 0.94 25 0.70 25 0.70 27

ICA PCA 0.86 30 0.76 26 0.80 27

LICA PCA 0.87 24 0.73 10 0.76 30

LICA - 0.91 15 0.78 30
Table 1. Face recognition results.

For a better assessment of the algorithm's performance, we show the plots
of the recognition accuracy versus the �nal dimension of the transformed data.
These plots represent the average accuracy obtained from the cross-validation
repetitions at such dimension reductions. Figure 2 shows the accuracy versus
dimension reduction on the ORL database. It can be appreciated that LICA
features computed over the original images improve for all dimension over the
ICA features and is close to the PCA features. The LICA features computed on
the PCA transformed data perform worse than the other approaches for almost
all dimensions tested. Figure 3 shows the accuracy versus dimension on the
Yalefaces database after the normalization of the images described above. It can
be appreciated that PCA performs better for some low dimension but is improved
by ICA as the number of dimensions increase. The LICA features on the original
images improve steadily with the dimensions approaching the performance of
ICA. It's noticeable the good performance obtained over Yalefaces database,
taking into account that it includes great illumination variations.

4 Conclusions

We have applied LICA and two well know dimension reduction procedures to
feature extraction for face recognition on two well known databases. The results



Fig. 2. Plots of accuracy versus dimension on the ORL database

Fig. 3. Plots of accuracy versus dimension on the Yalefaces database



Fig. 4. Accuracy of LICA on the Yalefaces database for di�erent α values.

Fig. 5. Number of endmembers retrieved by LICA depending on α.



on both databases show that LICA features perform comparable to both linear
feature extraction algorithms. This results open a new computational approach
to pattern recognition, specially biometric identi�cation problems. However there
are some issues on the LICA algorithm: The uncertainty about the amount of
endmembers found and therefore the high variance of recognition rates.

Future works will follow these lines:

� Con�rm obtained results performing this same experiment over more com-
plex databases like FERET.

� Combine the non-linear algorithm LICA with other well known statistical
tools like PCA, LDA, and other state-of-the art face recognition approaches.

� Work on Lattice Theory mathematical foundations in order to apply energy
function-like methods to Lattice Computing implementations that may allow
more robust endmember induction.

� Test LICA's capabilities of dealing with face recognition well known prob-
lems: Illumination, pose, occlusion, etcetera.
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