Preprocesing 0000 Characterization

Analysis Conclusions

Machine Learning in fMRI

Alexandre Savio, Maite Termenón, Manuel Graña¹

¹Computational Intelligence Group University of the Basque Country

Preprocesing 0000 Characterization 00000000 Analysis Conclusions 000000000000

Outline

- 2 Preprocesing
 - Registration
 - Segmentation
- 3 Characterization
 - Feature Extraction
 - Curse of Dimensionality
- 4 Analysis
 - Resampling
 - Classification
 - Validation
- 5 Conclusions

Experimental Design

- As a general principle the experimenter has to decide in as much detail as possible what he/she wants from the experiment.
- The scientific question may not be suitable for neuroimaging, and this very basic point must be addressed at the beginning of every research project.
- fMRI: This stage involves the formulation of a hypothesis and this necessarily will influence the scheme adopted for the cognitive task conditions (stimulus presentation strategies, resting state), and image acquisition parameters.

Preprocesing 0000 Characterization 00000000 Analysis Conclusions 000000000000

Data Acquisition

- This is a process where we don't take part but it determines our work.
- The way data are captured (noise, orientation), the format of the captured images (nifti, dicom), ...

Preprocesing ●000 Characterization 00000000 Analysis Conclusions

Outline

Experimental Design and Data Acquisition

- 2 Preprocesing
 - Registration
 - Segmentation
 - Characterization
 - Feature Extraction
 - Curse of Dimensionality
 - Analysis
 - Resampling
 - Classification
 - Validation
 - 6 Conclusions

Characterization 00000000 Analysis Conclusions

Image Registration

- In image processing one is often interested not only in analyzing one image but in comparing or combining the information given by different images.
- The task of image registration is to find an optimal geometric transformation between corresponding image data using a template or a reference image

Preprocesing 00●0 Characterization 00000000 Analysis Conclusions

Outline

- Experimental Design and Data Acquisition
- 2 Preprocesing
 - Registration
 - Segmentation
 - Characterization
 - Feature Extraction
 - Curse of Dimensionality
 - Analysis
 - Resampling
 - Classification
 - Validation
 - 5 Conclusions

Characterization

Analysis Conclusions

Image Segmentation

- Depending on the problem we are dealing with, we can divide the brain into different regions and discard all the information we are not interested in.
- For example, it is common to remove the skull because it does not give relevant information and can complicate the classification process.

Preprocesing 0000 Characterization •0000000 Analysis Conclusions

Outline

Experimental Design and Data Acquisition

- Preprocesing
 Registration
 - Segmentation

3 Characterization

Feature Extraction

Curse of Dimensionality

Analysis

- Resampling
- Classification
- Validation
- 6 Conclusions

Feature Extraction

• It is a process of transforming image data into feature vectors.

 x_1, x_2, \ldots, x_n

$$\mathbf{x_i} = \left[x_i^{(1)}; x_i^{(2)}; \dots; x_i^{(d)} \right]$$

where n is the number of samples and d is the number of components of each feature vector.

 Geometrically, every x_i represents a point in a d-dimensional feature space.

Preprocesing 0000 Characterization

Analysis Conclusions

Outline

- 3 Characterization Feature Extraction • Curse of Dimensionality • Resampling
 - Classification
 - Validation
 - 5 Conclusions

Curse of Dimensionality

- This phenomena occurs (even more in fMRI) when the dimensionality of feature space is too high compared with the number of samples $(d \gg n)$.
- This leads to a degradation on the performance of the analysis process.
- When this happens, it is convenient to reduce the feature space dimensionality keeping all the relevant information.
- There are two common ways of doing this:
 - Feature Selection.
 - Feature Transformation.

Preprocesing 0000 Characterization

Analysis Conclusions

Feature Selection

- This technique selects a subset of the components of the feature space.
- There are multiple ways to proceed with the feature selection process.

Preprocesing 0000 Characterization

Analysis Conclusions

Selection Criteria

- Pearson correlation.
- Average intensity in multiple TRs.

Preprocesing 0000 Characterization

Analysis Conclusions

Feature Transformation

• It consists of projecting the data onto a new feature space of fewer dimensions through a functional mapping

 $f: \mathbb{R}^d \to \mathbb{R}^m$

such that m < d.

Feature Transformation techniques

- PCA Principal Component Analysis: A transformation where the data set receives a new coordinate system, in which new axes follow the direction of greatest variance in the data set.
- ICA Independent Component Analysis: It is a computational method for separating a multivariate signal into additive subcomponents supposing the mutual statistical independence of the non-Gaussian source signals.
- LICA Latice Independent Component Analysis: It follows the same philosophy as ICA but in the Lattice Algebra framework.

Preprocesing 0000 Characterization

Analysis Conclusions ••••••

Outline

- Feature Extraction Analysis 4 • Resampling
 - 5 Conclusions

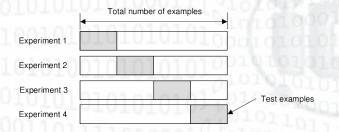
Preprocesing 0000 Characterization 00000000 Analysis Conclusions

Resampling

- Hold-out
- Cross Validation:
 - k-Fold
 - Leave-one-out

Hold-out

• Split dataset into two groups:


- Training set: used to train the classifier.
- Test set: used to estimate the error rate of the trained classifier

Total number of examples

Training Set Test Set

k-Fold Cross Validation

 For each of K experiments, use K-1 folds for training and the remaining one for testing.

- The advantage of K-Fold Cross-validation is that all the examples in the dataset are eventually used for both training and testing.
- Common choice for K-Fold Cross-validation is K=10.

Preprocesing 0000 Characterization

Analysis Conclusions

Leave-one-out Cross Validation

- Leave-one-out is the degenerate case of K-Fold Cross
 Validation, where K is chosen as the total number of examples.
- For each experiment use N-1 examples for training and the remaining example for testing, then N experiments will be performed.

	Total number of examples	
Experiment 1	01010101010249	
Experiment 2		
Experiment 3		Single test example
Experiment N		0011001

Preprocesing 0000 Characterization 00000000 Analysis Conclusions

Outline

 Feature Extraction Curse of Dimensionality 4 Analysis • Resampling • Classification

Classification

- Classification is the process of labelling each sample as one of the k available classes.
- There are two general types of classification:
 - Supervised classification.
 - Unsupervised classification.

Supervised Classification

- The process of using samples of known informational classes (training sets) to classify pixels of unknown identity.
- Most common algorithms:
 - LDA (Linear Discriminant Analysis), kNN (k-Nearest Neighbour).
 - ML (Maximum Likelihood), MAP (Maximum A Posteriori).
 - MLP (Multi Layer Perceptron), RBF (Radial Basis Function).
 - Non Linears: SVM (Support Vector Machine), RVM (Relevance Vector Machine).

Unsupervised Classification

- The identification of natural groups or structures/patterns with no information about the classes they belong to.
- Most common algorithms:
 - k-MEANS: It is a method of cluster analysis which aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean.
 - SOM: Self Organizing Maps. It is a type of artificial neural network that produce as low-dimensional (typically two-dimensional), discretized representation of the input space of the training samples, called a map.

Unsupervised Classification

- Dendrograms: It is a tree diagram frequently used to illustrate the arrangement of the clusters produced by hierarchical clustering. Dendrograms are often used in computational biology to illustrate the clustering of genes or samples.
- LBG: Linde-Buzo-Gray Algorithm. It is a vector quantization algorithm to derive a good codebook. It is similar to the k-means method in data clustering.

Preprocesing 0000 Characterization 00000000 Analysis Conclusions

Outline

• Feature Extraction Curse of Dimensionality 4 Analysis • Resampling Classification Validation

Preprocesing 0000 Characterization

CALCULATE STREET

Analysis Conclusions

Contingency Matrix

	actual value		
	P	n	tota
p' prediction outcome n'	True Positive	False Positive	P'
	False Negative	True Negative	N'

Measures of fit

- There are a big variety of measures to give as validation. The most used in the medical literature are Accuracy, Sensitivity and Specificity.
- TP + FP + FN + TN = N
- Accuracy:

• Acc = (TP + TN)/N

• True Positive Rate or Sensitivity or Recall:

•
$$TPR = \frac{TP}{TP + FN} = Sensitivity$$

• False Positive Rate:

•
$$FPR = \frac{FP}{FP+TN} = 1 - Specificity$$

Characterization

Analysis Conclusions

Conclusions

The goal of the analysis is to validate the work hypothesis.
It is, to conclude if the studied phenomena (for instance, if the patient has a neurodegenerative disease or not) could be discerned from a fMRI data image using classification techniques.

Acknowledgements |

- Validation Lecture Ricardo Gutierrez-Osuna Intelligent Sensor Systems - Wright State University
 - (http://courses.cs.tamu.edu/rgutier/ceg499_s02/l13.pdf)

References I

Tools:

- Quick-R: http://www.statmethods.net/advstats
- PyMVPA: http://www.pymvpa.org
- LibSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- SVM-light: http://svmlight.joachims.org/
- Weka: http://www.cs.waikato.ac.nz/ml/weka/
- Pechenizkiy, M; Tsymbal, A; Puuronen, S: "PCA-based Feature Transformation for Classification: Issues in Medical Diagnostics". Proceedings. 17th IEEE Symposium on Computer-Based Medical Systems, 2004. CBMS 2004. 535 -540.