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Introduction

Introduction

Different types of neural networks used for classification purposes.

Projection basis functions:
Multilayer perceptron neural networks (MLP).
Product Unit Neural Networks (PUNNs).

Kernel basis functions:
Radial Basis Function (RBF) neural networks.

Shortcommings of the standard RBF

When dimensionality grows and/or when data is concentrated in
boundaries of the K dimensional space, standard Gaussian basis
function lacks its performance.

Our Proposal

Alternative q-Gaussian Radial Basis Neural Network obtained by a
Hybrid Algorithm (HA).
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RBFNNs

Radial Basis Functions Neural Networks

The model of a RBFNN can be described with the following
equation (binary classification or regression):

f (x) = β0 +
m∑
i=1

βi · φi (di (x)) (1)

The function di (x) is defined as:

di (x) =
‖x− ci‖2

r2
i

, 1 ≤ i ≤ m (2)
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RBFNNs

Radial Basis Functions Neural Networks

Standard RBF (SRBF)

φi (di (x)) = e−di (x) (3)

Very selective response, with high activation for patterns close
to the centroid and very small activation for distant patterns.
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RBFNNs

Radial Basis Functions Neural Networks

Cauchy RBF (CRBF)

φi (di (x)) =
1

1 + di (x)
(4)

Inverse Multiquadratic RBF (IMRBF)

φi (di (x)) =
1

(1 + di (x))
1
2

(5)

The CRBF and IMRBF have longer tails than the SRBF.
→ Activation for patterns distant to the centroid of the RBF
is bigger than the activation of the SRBF for those patterns.
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q-Gaussian RBFs for Classification

q-Gaussian RBFs

q-Gaussian RBF

φi (di (x)) =

{
(1− (1− q)di (x))

1
1−q if (1− (1− q)di (x)) ≥ 0;

0 Otherwise
(6)

The q-Gaussian can reproduce different RBFs for different
values of the real parameter q.

q → 2; q-Gaussian≡CRBF.
q → 3; q-Gaussian≡IMRBF.
q → 1; q-Gaussian≡SRBF.

A small change in the value of q represents a smooth
modification on the shape of the RBF.
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q-Gaussian RBFs

Radial unit activation in one-dimensional space with c = 0 and
r = 1 for different RBFs: (a) Gaussian, Cauchy and Inverse
Multiquadratic and (b) q-Gaussian with different values of q
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Figure: (a) Alternative RBFs

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q=0.5

q=1.0

q=1.5

q=2.0

q=3.0

q=8.0

Figure: (b) q-Gaussian RBF
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q-Gaussian RBFs for Classification

q-Gaussian RBFs for binary classification

Probabilistic framework:

The activation function of each output node is the softmax
function.

g(x) =
exp f (x)

1 + exp f (x)
(7)

It is possible to evaluate the model using the cross-entropy
error function, given by:

l(g) = − 1

N

N∑
n=1

[yn log f (xn) + (1− yn) log(1− f (xn))] (8)

P.A. Gutiérrez Evolutionary q-Gaussians for Binary-Classification 9 / 16



Outline Introduction RBFNNs Evolutionary q-Gaussian RBFs for Classification Experiments Conclusions

q-Gaussian RBFs for Classification

Hybrid Algorithm

1: Hybrid Algorithm:
2: Generate a random population of size N
3: repeat
4: Calculate the fitness of every individual in the population
5: Rank the individuals with respect to their fitness
6: The best individual is copied into the new population
7: The best 10% of population individuals are replicated and they

substitute the worst 10% of individuals
8: Apply parametric mutation to the best (pm)% of individuals
9: Apply structural mutation to the remaining (100− pm)% of

individuals
10: until the stopping criterion is fulfilled
11: Apply iRprop+ to the best solution obtained by the EA in the last

generation.

Figure: Hybrid Algorithm (HA) framework
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q-Gaussian RBFs for Classification

Hybrid Algorithm (Main characteristics I)

Error and Fitness Functions.

l(g) as the error function.
A(g) = 1

1+l(g) , where 0 < A(g) ≤ 1 as the fitness measure.

Initialization of the Population. 5, 000 random RBFNNs:

k-means algorithm for different values of k , k ∈ [Mmin,Mmax ],
where Mmin and Mmax are parameters of the algorithm.
Widths (ri ) of the RBFNNs → geometric mean of the distance
to the two nearest neighbours.
qi → values close to 1 (SRBF).
Then we select the best 500 RBFNNs, and we evolve them.
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q-Gaussian RBFs for Classification

Hybrid Algorithm (Main characteristics II)

Structural Mutation.There are four different structural
mutations: hidden node addition, hidden node deletion,
connection addition and connection deletion. If the structural
mutator adds a new node in the RBFNN, the q parameter is
assigned to a value in the interval [0.75, 1.25].

Parametric Mutation.Centre, Radii and q Mutation and
Output-to-Hidden Node Connection Mutations → adding a
Gaussian noise.

iRprop+. We have carried out the adaptation of the iRprop+
local improvement procedure to the softmax activation
function and the cross-entropy error function.
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Experimental Design

Experimental Design

Eleven binary classification datasets taken from the UCI
repository.

The performance of each method has been evaluated using
the correct classification rate (C ) in the generalization set.

The experimental design was conducted using a 10-fold
cross-validation procedure, with 10 repetitions per each fold.

Comparison of the results obtained to:

SRBF.
CRBF.
IMRBF.
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Statistical Results

Statistical Results (Mean±Standard Deviation)

Method(CG(%))
SRBF CRBF IMRBF q-Gaussian

Labor 91.33 ± 12.09 95.00± 11.24 91.66 ± 8.78 93 .33 ± 11 .65
Promoters 75.54 ± 13.56 80.18 ± 6.66 81 .09 ± 8 .69 84.00± 6.15
Hepatitis 86.33± 8.09 83.16 ± 7.15 85.12 ± 7.52 85 .30 ± 7 .54

Sonar 78.38± 9.03 74.09 ± 10.20 76.02 ± 11.16 76 .04 ± 13 .56
Heart 81.85 ± 8.97 83.70 ± 8.76 84.81± 8.45 84 .07 ± 7 .20

BreastC 72.04 ± 6.39 71.35 ± 8.00 73.10± 6.39 73 .06 ± 6 .77
Heart-C 85.44 ± 3.83 85.45 ± 5.59 85 .77 ± 3 .05 85.79± 5.20

Liver 68 .41 ± 5 .15 65.23 ± 8.23 65.52 ± 6.31 71.30± 6.50
Vote 96.32± 3.97 95.39 ± 3.59 94.94 ± 2.36 96 .08 ± 3 .45
Card 86.08 ± 3.14 86 .52 ± 3 .55 85.94 ± 3.80 87.87± 0.37

German 74.80 ± 3.82 74 .90 ± 3 .17 74.40 ± 2.50 75.25± 2.98

CG(%) 81.50 81.36 81.67 82.91
R 2.72 2.99 2.72 1.54

p-Value 0.03 0.00 0.03 -

α
′
Hommel 0.10 0.03 0.05 -

The best result is in bold face and the second best result in italics
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Conclusions

Conclusions

Conclusions

The models proposed, q-Gaussian Radial Basis Functions as
transfer functions, are a viable alternative for obtaining more
accurate binary classifications.

These models have been designed with a HA constructed
specifically for taking into account the characteristics of this
kernel model.

Future research

To study other alternative RBFs (Generalized RBFs).

To consider multi-class problems.
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