Evolutionary *q*-Gaussian Radial Basis Functions for Binary-Classification

F. Fernández-Navarro, C. Hervás-Martínez, <u>Pedro A. Gutiérrez</u>, M. Cruz-Ramírez and M. Carbonero-Ruz pagutierrez@uco.es

Department of Computer Science and Numerical Analysis AYRNA Research Group University of Córdoba, Spain.

Outline			

2 Introduction

3 RBFNNs

4 Evolutionary q-Gaussian RBFs for Classification

5 Experiments

- Experimental Design
- Statistical Results

6 Conclusions

	Introduction ●		
Introduction			
Intro	oduction		

Different types of neural networks used for classification purposes.

- Projection basis functions:
 - Multilayer perceptron neural networks (MLP).
 - Product Unit Neural Networks (PUNNs).
- Kernel basis functions:
 - Radial Basis Function (RBF) neural networks.

Shortcommings of the standard RBF

When dimensionality grows and/or when data is concentrated in boundaries of the K dimensional space, standard Gaussian basis function lacks its performance.

Our Proposal

Alternative q-Gaussian Radial Basis Neural Network obtained by a Hybrid Algorithm (HA).

		RBFNNs ●00		
RBFNNs				
Radi	al Basis	Functi	ons Neural Networks	

The model of a RBFNN can be described with the following equation (binary classification or regression):

$$f(\mathbf{x}) = \beta_0 + \sum_{i=1}^m \beta_i \cdot \phi_i(d_i(\mathbf{x}))$$
(1)

The function $d_i(\mathbf{x})$ is defined as:

$$d_i(\mathbf{x}) = \frac{\|\mathbf{x} - \mathbf{c}_i\|^2}{r_i^2}, 1 \le i \le m$$
(2)

		RBFNNs 0●0		
RBFNNs				
Radi	al Racic	Functi	one Neural Networks	

Standard RBF (SRBF)

$$\phi_i(d_i(\mathbf{x})) = e^{-d_i(\mathbf{x})} \tag{3}$$

• Very selective response, with high activation for patterns close to the centroid and very small activation for distant patterns.

∃ ► < ∃ ►</p>

0 000 00000 0

RBFNNs

Radial Basis Functions Neural Networks

Inverse Multiquadratic RBF (IMRBF)

$$\phi_i(d_i(\mathbf{x})) = rac{1}{(1+d_i(\mathbf{x}))^rac{1}{2}}$$

The CRBF and IMRBF have longer tails than the SRBF.
 → Activation for patterns distant to the centroid of the RBF is bigger than the activation of the SRBF for those patterns.

- 4 回 ト 4 ヨト 4 ヨト

(5)

			Evolutionary <i>q</i> -Gaussian RBFs for Classification •00000	
q-Gaussiar	n RBFs for Classifi	cation		
aC	aussian	RREc		

q-Gaussian RBF

$$\phi_i(d_i(\mathbf{x})) = \begin{cases} (1-(1-q)d_i(\mathbf{x}))^{\frac{1}{1-q}} & \text{if } (1-(1-q)d_i(\mathbf{x})) \ge 0; \\ 0 & \text{Otherwise} \end{cases}$$
(6)

• The *q*-Gaussian can reproduce different RBFs for different values of the real parameter *q*.

•
$$q \rightarrow 2$$
; q -Gaussian \equiv CRBF.

- $q \rightarrow 3$; q-Gaussian \equiv IMRBF.
- $q \rightarrow 1$; q-Gaussian \equiv SRBF.
- A small change in the value of *q* represents a smooth modification on the shape of the RBF.

3 1 4 3

q-Gaussian RBFs

Radial unit activation in one-dimensional space with c = 0 and r = 1 for different RBFs: (a) Gaussian, Cauchy and Inverse Multiquadratic and (b) *q*-Gaussian with different values of *q*

Figure: (a) Alternative RBFs

Figure: (b) q-Gaussian RBF

	Evolutionary <i>q</i> -Gaussian RBFs for Classification	

q-Gaussian RBFs for binary classification

• Probabilistic framework:

• The activation function of each output node is the softmax function.

$$g(\mathbf{x}) = \frac{\exp f(\mathbf{x})}{1 + \exp f(\mathbf{x})}$$
(7)

• It is possible to evaluate the model using the cross-entropy error function, given by:

$$I(g) = -\frac{1}{N} \sum_{n=1}^{N} \left[y_n \log f(\mathbf{x}_n) + (1 - y_n) \log(1 - f(\mathbf{x}_n)) \right] \quad (8)$$

			Evolutionary <i>q</i> -Gaussian RBFs for Classification			
q-Gaussian RBFs for Classification						
Hyb	rid Algor	rithm				

- 1: Hybrid Algorithm:
- 2: Generate a random population of size N
- 3: repeat
- 4: Calculate the fitness of every individual in the population
- 5: Rank the individuals with respect to their fitness
- 6: The best individual is copied into the new population
- 7: The best 10% of population individuals are replicated and they substitute the worst 10% of individuals
- 8: Apply parametric mutation to the best (p_m) % of individuals
- 9: Apply structural mutation to the remaining $(100 p_m)\%$ of individuals
- 10: until the stopping criterion is fulfilled
- 11: Apply *iRprop*+ to the best solution obtained by the EA in the last generation.

Figure: Hybrid Algorithm (HA) framework

	Evolutionary <i>q</i> -Gaussian RBFs for Classification	

q-Gaussian RBFs for Classification

Hybrid Algorithm (Main characteristics I)

Error and Fitness Functions.

- I(g) as the error function.
- $A(g) = \frac{1}{1+l(g)}$, where $0 < A(g) \le 1$ as the fitness measure.

• Initialization of the Population. 5,000 random RBFNNs:

- k-means algorithm for different values of k, $k \in [M_{min}, M_{max}]$, where M_{min} and M_{max} are parameters of the algorithm.
- Widths (r_i) of the RBFNNs → geometric mean of the distance to the two nearest neighbours.
- $q_i \rightarrow$ values close to 1 (SRBF).
- Then we select the best 500 RBFNNs, and we evolve them.

ヨト イヨト イヨト

	Evolutionary <i>q</i> -Gaussian RBFs for Classification	

Hybrid Algorithm (Main characteristics II)

- Structural Mutation. There are four different structural mutations: hidden node addition, hidden node deletion, connection addition and connection deletion. If the structural mutator adds a new node in the RBFNN, the *q* parameter is assigned to a value in the interval [0.75, 1.25].
- Parametric Mutation.Centre, Radii and *q* Mutation and Output-to-Hidden Node Connection Mutations → adding a Gaussian noise.
- iRprop+. We have carried out the adaptation of the *iRprop*+ local improvement procedure to the softmax activation function and the cross-entropy error function.

- Eleven binary classification datasets taken from the UCI repository.
- The performance of each method has been evaluated using the correct classification rate (*C*) in the generalization set.
- The experimental design was conducted using a 10-fold cross-validation procedure, with 10 repetitions per each fold.
- Comparison of the results obtained to:
 - SRBF.
 - CRBF.
 - IMRBF.

・ 同 ト ・ ヨ ト ・ ヨ ト

				Experiments ○ ●			

Statistical Results

Statistical Results (Mean±Standard Deviation)

$Method(C_{\mathrm{G}}(\%))$						
	SRBF	CRBF	IMRBF	q-Gaussian		
Labor	91.33 ± 12.09	$\textbf{95.00} \pm \textbf{11.24}$	91.66 ± 8.78	93.33 ± 11.65		
Promoters	75.54 ± 13.56	80.18 ± 6.66	81.09 ± 8.69	84.00 ± 6.15		
Hepatitis	$\textbf{86.33} \pm \textbf{8.09}$	83.16 ± 7.15	85.12 ± 7.52	85.30 ± 7.54		
Sonar	$\textbf{78.38} \pm \textbf{9.03}$	74.09 ± 10.20	76.02 ± 11.16	76.04 ± 13.56		
Heart	81.85 ± 8.97	83.70 ± 8.76	84.81 ± 8.45	84.07 ± 7.20		
BreastC	72.04 ± 6.39	71.35 ± 8.00	$\textbf{73.10} \pm \textbf{6.39}$	73.06 ± 6.77		
Heart-C	85.44 ± 3.83	85.45 ± 5.59	85.77 ± 3.05	$\textbf{85.79} \pm \textbf{5.20}$		
Liver	$\textit{68.41} \pm \textit{5.15}$	65.23 ± 8.23	65.52 ± 6.31	$\textbf{71.30} \pm \textbf{6.50}$		
Vote	$\textbf{96.32} \pm \textbf{3.97}$	95.39 ± 3.59	94.94 ± 2.36	96.08 ± 3.45		
Card	86.08 ± 3.14	86.52 ± 3.55	85.94 ± 3.80	$\textbf{87.87} \pm \textbf{0.37}$		
German	74.80 ± 3.82	74.90 ± 3.17	74.40 ± 2.50	$\textbf{75.25} \pm \textbf{2.98}$		
$\overline{C}_{\mathrm{G}}(\%)$	81.50	81.36	81.67	82.91		
\overline{R}	2.72	2.99	2.72	1.54		
<i>p</i> -Value	0.03	0.00	0.03	-		
α'_{Hommel}	0.10	0.03	0.05	-		

The best result is in bold face and the second best result in italics

		Experiments ○ ●	

Statistical Results

Statistical Results (Mean±Standard Deviation)

$Method(C_{\mathrm{G}}(\%))$						
	SRBF	CRBF	IMRBF	q-Gaussian		
Labor	91.33 ± 12.09	$\textbf{95.00} \pm \textbf{11.24}$	91.66 ± 8.78	93.33 ± 11.65		
Promoters	75.54 ± 13.56	80.18 ± 6.66	81.09 ± 8.69	84.00 ± 6.15		
Hepatitis	$\textbf{86.33} \pm \textbf{8.09}$	83.16 ± 7.15	85.12 ± 7.52	85.30 ± 7.54		
Sonar	$\textbf{78.38} \pm \textbf{9.03}$	74.09 ± 10.20	76.02 ± 11.16	76.04 ± 13.56		
Heart	81.85 ± 8.97	83.70 ± 8.76	84.81 ± 8.45	84.07 ± 7.20		
BreastC	72.04 ± 6.39	71.35 ± 8.00	$\textbf{73.10} \pm \textbf{6.39}$	73.06 ± 6.77		
Heart-C	85.44 ± 3.83	85.45 ± 5.59	85.77 ± 3.05	$\textbf{85.79} \pm \textbf{5.20}$		
Liver	$\textit{68.41} \pm \textit{5.15}$	65.23 ± 8.23	65.52 ± 6.31	$\textbf{71.30} \pm \textbf{6.50}$		
Vote	$\textbf{96.32} \pm \textbf{3.97}$	95.39 ± 3.59	94.94 ± 2.36	96.08 ± 3.45		
Card	86.08 ± 3.14	86.52 ± 3.55	85.94 ± 3.80	$\textbf{87.87} \pm \textbf{0.37}$		
German	74.80 ± 3.82	74.90 ± 3.17	74.40 ± 2.50	$\textbf{75.25} \pm \textbf{2.98}$		
$\overline{C}_{G}(\%)$	81.50	81.36	81.67	82.91		
\overline{R}	2.72	2.99	2.72	1.54		
<i>p</i> -Value	0.03	0.00	0.03	-		
α'_{Hommel}	0.10	0.03	0.05	-		

The best result is in bold face and the second best result in italics

		Experiments ○ ●	

Statistical Results

Statistical Results (Mean±Standard Deviation)

$Method(C_{\mathrm{G}}(\%))$						
	SRBF	CRBF	IMRBF	q-Gaussian		
Labor	91.33 ± 12.09	$\textbf{95.00} \pm \textbf{11.24}$	91.66 ± 8.78	93.33 ± 11.65		
Promoters	75.54 ± 13.56	80.18 ± 6.66	81.09 ± 8.69	84.00 ± 6.15		
Hepatitis	$\textbf{86.33} \pm \textbf{8.09}$	83.16 ± 7.15	85.12 ± 7.52	85.30 ± 7.54		
Sonar	$\textbf{78.38} \pm \textbf{9.03}$	74.09 ± 10.20	76.02 ± 11.16	76.04 ± 13.56		
Heart	81.85 ± 8.97	83.70 ± 8.76	84.81 ± 8.45	84.07 ± 7.20		
BreastC	72.04 ± 6.39	71.35 ± 8.00	$\textbf{73.10} \pm \textbf{6.39}$	73.06 ± 6.77		
Heart-C	85.44 ± 3.83	85.45 ± 5.59	85.77 ± 3.05	$\textbf{85.79} \pm \textbf{5.20}$		
Liver	$\textit{68.41} \pm \textit{5.15}$	65.23 ± 8.23	65.52 ± 6.31	$\textbf{71.30} \pm \textbf{6.50}$		
Vote	$\textbf{96.32} \pm \textbf{3.97}$	95.39 ± 3.59	94.94 ± 2.36	96.08 ± 3.45		
Card	86.08 ± 3.14	86.52 ± 3.55	85.94 ± 3.80	$\textbf{87.87} \pm \textbf{0.37}$		
German	74.80 ± 3.82	74.90 ± 3.17	74.40 ± 2.50	$\textbf{75.25} \pm \textbf{2.98}$		
$\overline{C}_{\mathrm{G}}(\%)$	81.50	81.36	81.67	82.91		
\overline{R}	2.72	2.99	2.72	1.54		
<i>p</i> -Value	0.03	0.00	0.03	-		
α'_{Hommel}	0.10	0.03	0.05	-		

The best result is in bold face and the second best result in italics

			Conclusions ●○
Conclusior	าร		
Con	clusions		

Conclusions

- The models proposed, *q*-Gaussian Radial Basis Functions as transfer functions, are a viable alternative for obtaining more accurate binary classifications.
- These models have been designed with a HA constructed specifically for taking into account the characteristics of this kernel model.

Future research

- To study other alternative RBFs (Generalized RBFs).
- To consider multi-class problems.

			Conclusions ○●
Conclusions			

Evolutionary *q*-Gaussian Radial Basis Functions for Binary-Classification

F. Fernández-Navarro, C. Hervás-Martínez, <u>Pedro A. Gutiérrez</u>, M. Cruz-Ramírez and M. Carbonero-Ruz pagutierrez@uco.es

Department of Computer Science and Numerical Analysis AYRNA Research Group University of Córdoba, Spain.

23rd June, 2010

・ロト ・ 同ト ・ ヨト ・ ヨ