Support Vector Regression Algorithms in the Forecasting of Daily Maximums of Tropospheric Ozone Concentration in Madrid

E. G. Ortiz-García, S. Salcedo-Sanz, A. M. Pérez-Bellido, J. Gascón-Moreno and A. Portilla-Figueras

> Department Signal Theory and Comunications Universidad de Alcalá, Madrid, Spain HAIS 2010 Conference

Index

- Introduction
- SVMr Formulation
- Parameters Search Space
- Air Pollution Monitoring Network of Madrid
- Experiments and Results

Introduction

- Tropospheric Ozone (O₃)
 - Very important pollutant in urban areas
 - Increases the mortality rates
 - Produced by interaction of NOx and VOC
 - Influence of sunlight
- Several works
 - Concentration in a column or in a area
 - Different cities

Introduction

Support Vector machines regression

- One of the most important soft computing techniques
- High quality in regression problems
- Balance between error aproximation and generalization

$$\min_{w,\xi,\xi^*,b} \left(\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^l \xi_i + \xi_i^* \right)$$
$$y_i - \mathbf{w}^T \phi(\mathbf{x_i}) - b \le \epsilon + \xi_i$$
$$-y_i + \mathbf{w}^T \phi(\mathbf{x_i}) + b \le \epsilon + \xi_i^*$$
$$\xi_i, \xi_i^* \ge 0$$

SVMr Formulation

Dual Formulation

$$\max\left(-\frac{1}{2}\sum_{i,j=1}^{l}(\alpha_{i}-\alpha_{i}^{*})(\alpha_{j}-\alpha_{j}^{*})K(\mathbf{x}_{i},\mathbf{x}_{j})-\epsilon\sum_{i=1}^{l}(\alpha_{i}+\alpha_{i}^{*})+\sum_{i=1}^{l}y_{i}(\alpha_{i}-\alpha_{i}^{*})\right)$$
$$\sum_{i=1}^{l}(\alpha_{i}-\alpha_{i}^{*})=0\qquad \qquad \alpha_{i},\alpha_{i}^{*}\in[0,C]$$
$$y(\mathbf{x})=f(\mathbf{x})+b\qquad \qquad f(\mathbf{x})=\sum_{i=1}^{l}(\alpha_{i}-\alpha_{i}^{*})k(\mathbf{x}_{i},\mathbf{x})$$

Parameters Search Space

C - Regularization parameter

$$C \leq \frac{y_i^{max} - b - \epsilon}{\left(1 - \frac{1}{l-1} \sum_{j=1, j \neq i}^l K(\mathbf{x_j}, \mathbf{x_i})\right)}$$

Υ - Kernel parameter

$$\gamma \leq -\frac{\log_e(0.001)}{\left(\frac{1}{l}\sum_{i=1}^l \min_{j,i\neq j} d(\mathbf{x_j}, \mathbf{x_i})\right)^2}$$

ε – Margin parameter

$$\epsilon < \sigma_y$$

Air Pollution Monitoring Network of Madrid

- Largest in Spain, one of largest in Europe
- 27 stations
- Data from 2002 to 2007
- 6 meteorological stations

- General description
 - Daily prediction of maxima concentration
 - Six years 2002-2007
 - 365 samples a year
 - Several train and test by dividing into 5 subsets
 - 30 experiments for statistical tests
 - Kolmogorov-Smirnov normality test
 - T-test
 - 5 chosen stations (highest concentrations)

Dependence with solar radiation and temperature

	None		Solar radiation		Temperature		Both	
Station	Mean	Std	Mean	Std	Mean	Std	Mean	Std
5	17.56	4.80	17.53	4.59	17.82	4.19	17.68	4.22
9	15.69	4.06	15.61	4.18	15.78	4.17	15.83	4.13
10	17.38	4.91	17.13	4.83	17.39	4.50	17.13	4.49
14	16.84	3.72	16.53	3.11	17.01	4.11	16.87	3.88
24	17.29	4.01	17.00	3.79	17.23	3.66	17.04	3.74

	Solar radiation		Tempe	erature	Both		
Station	P-value	W-L-T	P-value	W-L-T	P-value	W-L-T	
5	0.80*	15-15-0	0.26^{*}	15-15-0	0.69^{*}	19-11-0	
9	0.65^{*}	16-14-0	0.62^{*}	15-15-0	0.53^{*}	16-14-0	
10	0.04^{*}	21-9-0	0.97^{*}	17-13-0	0.09^{*}	19-11-0	
14	0.22^{*}	17-13-0	0.56^{*}	15-15-0	0.92^{*}	17-13-0	
24	0.02^{*}	18-12-0	0.71^{*}	14-16-0	0.06^{*}	18-12-0	

* t-test $\alpha = 0.05$

Dependence with solar radiation and temperature

Comparison SVMr versus MLP

- Multilayer Perceptron
 - Number of neurons from 6 to 20
 - Levenberg-Marquardt (20 repetitions)
 - Hold-out validation

Comparison SVMr versus MLP

	MI	ĹΡ	SVMr		SVMr vs MLP		
Station	Mean	Std	Mean	Std	t-test	W-L-T	
5	34.60	14.75	17.53	4.59	0.00^{*}	29-1-0	
9	32.90	16.12	15.61	4.18	0.00^{*}	29-1-0	
10	34.99	15.97	17.13	4.83	0.00^{*}	28-2-0	
14	31.58	14.13	16.53	3.11	0.00^{*}	28-2-0	
24	33.28	15.26	17.00	3.79	0.00^{*}	29-1-0	

* t-test $\alpha = 0.05$

Thank you for your attention!!