

A GPU-BASED DVC TO H.264/AVC TRANSCODER

Alberto Corrales-García, Rafael Rodríguez-Sánchez, José Luis Martínez, Gerardo Fernández-Escribano, José M. Claver and José Luis Sánchez

UNIVERSIDAD DE MURCIA

Vniver§itatöृ́ dValència

Overview

- 1. Introduction
- 2. Technical Background
- 3. Proposed DVC to H.264/AVC GPU-based Video Transcoder
- 4. Results
- 5. Conclusions

2010

GOBIERNO DE ESPAÑA MINISTERIO DE CIENCIA E INNOVACIÓN Consolider

GOBIERNO DE ESPAÑA MINISTERIO DE CIENCIA E INNOVACIÓN

- 1. Introduction
- 2. Technical Background
- a. Proposed DVC to H.264/AVC GPU-based Video Transcoder
- 4. Results
- 5. Conclusions

2010

Convolíder

complex

than

1. Introduction coding: encoders more

Traditional decoders.

Tipical scene: digital television.

1. Introduction

- Recently, new applications have been introduced. These applications have few resources.
- Examples: Surveillance Wireless Networks, Sensors Networks, Micro cameras, Mobile Devices or PDAs.
 - Devices which need low consumption and low complexity

is dis

The

Sor

est

Main idea of Distributed Video Coding (DVC): the complexity

Model + Parity Bits

1. Introduction

- Traditional coding : H.264
 - Encoder with high complexity
 - Decoder with low complexity
- DVC:
 - Encoder with low complexity
 - Decoder with high complexity

Idea:

GOBIERNO DE ESPAÑA MINISTERIO DE CIENCIA E INNOVACIÓN

 Taking advance of the low complexity of both paradigms for mobile-to-mobile video communications

2010

Consolider

- Disadvantage:
 - The transcoder joins the highest complexity of both paradigms

3. Coposed DVC to H.264/AVC GPU-based Video Transcoder

4. Results

5. Conclusions

DVC encoder:

Key Frames

MINISTERIO DE CIENCIA E INNOVACIÓN

GOBIERNO DE ESPAÑA 2010

Consolíder

- Wyner-Ziv frames \rightarrow Parity Bits
- DVC decoder:
 - Side Information \rightarrow Motion Vectors (MVs)

- A Graphic Processing Unit, or GPU, is a specialized processor that was originally designed for offloading 3D graphics rendering from the microprocessor.
- Recently, nVIDIA © has developed a powerful GPU architecture denominated Compute Unified Device Architecture (CUDA), which is accessible to software developers through industry standard programming languages, such us C, Python, Fortran, Java and Matlab.
- Hence, the ME algorithm developed in the H.264/AVC encoding algorithm fits well in the GPU philosophy, and offers us a new challenge for the GPUs.
- The main goal is how to efficiently distribute all the computations over the GPU and how DVC can improve the process.

2010

Consolíder

GOBIERNO DE ESPAÑA MINISTERIO DE CIENCIA

Proposed DVC to H.264/AVC GPU-based Video Transcoder

4. Results

3. Proposed DVC to H.264/AVC GPUbased Video Transcoder

H.264 Motion Estimation

Reference Frame
Current Frame

Search area Predictors

Predictors are replaced by DVC MVs

- 1. Sum Absolute Differences (SAD) calculation between the current MB (split into sixteen 4x4 partitions)
- 2. SAD costs for the different sub-partitions
- 3. SAD reduction cost to one SAD cost for each one

2010 Consolider 3. Proposed DVC to H.264/AVC GPUbased Video Transcoder

GOBIERNO DE ESPAÑA

MINISTERIO DE CIENCIA E INNOVACIÓN

Mapping Motion Vectors (GOP 2)

2010 Consolíder **3.** Proposed DVC to H.264/AVC GPUbased Video Transcoder

GOBIERNO DE ESPAÑA

MINISTERIO DE CIENCIA E INNOVACIÓN

Mapping Motion Vectors (GOP 4)

The process can be extended for all DVC GOPs

3. roposed DVC to H.264/AVC GPU-based Video

4. Results

4. Results

Simulation conditions

- The decoder was implemented with VISNET-II.
- The encoder was implemented using the H.264 JM reference software (JM15.1). The approach is compared with an unmodified H.264 JM reference software encoder
- QP values 28, 32, 36 and 40 were use for testing the sequences.
- GOP format:
 - DVC: 2, 4 and 8
 - H.264: I11(P)

Feature	GTX285	
Compute capability	1.3	
Global Memory	1 GB	
Number of multiprocessors	30	
Number of cores	240	
Constant memory	64 KB	
Shared memory per block	16384	
Registers per block	16 KB	
Max. active threads per multiprocessor	1024	
Clock rate	1.48 GHZ	

2010

Concolíder

GOBIERNO DE ESPAÑA MINISTERIO DE CIENCIA E INNOVACIÓN

Tested Sequences: Foreman, CoastGuard, Hall and Soccer at 30 fps

4. Results

GOBIERNO DE ESPAÑA MINISTERIO DE CIENCIA E INNOVACIÓN

RD performance of the WZ/H.264/AVC video transcoder – 30fps						
Sequence	GOP	PSNR (dB)	Bitrate (%)	TR (%)	fps	
Foreman	2	-0.191	4.60	80.53	27,12	
	4	-0.217	4.80	80.54	26,95	
	8	-0.161	4.12	80.88	26,83	
Hall	2	-0.055	1.21	72.97	28,96	
	4	-0.042	0.92	73.09	28,99	
	8	-0.036	0.82	73.18	29,05	
Coastguard	2	-0.118	2.95	82.47	27,11	
	4	-0.102	2.33	81.90	27,07	
	8	-0.105	2.37	81.71	27,13	
Soccer	2	-0.216	5.11	81.31	26,57	
	4	-0.213	5.26	81.97	26,84	
	8	-0.201	5.08	82.11	26,65	
mean	100	-0.138	3.297	79.39	27,44	

2010 Conrolíder

4. Results

RD performance for QCIF sequences

A GPU-based DVC to H.264/AVC Transcoder

18

2010

Consolíder

GOBIERNO DE ESPAÑA

MINISTERIO DE CIENCIA E INNOVACIÓN

3. roposed DVC to H.264/AVC GPU-based Video

ranscoder

4. Results

- DVC to H.264 transcoding provides a suitable framework to support mobile-to-mobile video communications.
- However, the transcoder has high complexity and it should be reduced.
- Motion Estimation is the most complex task of H.264 and GPUs can help to accelerate it by using MVs generated by DVC.
- Experiments show that the complexity of ME is reduced about a 79% without significant RD penalty.
- This proposal provides a first step in DVC to H.264 parallel GPU-based transcoding.

Thank you

Any question?

DVC: <u>albertocorrales@dsi.uclm.es</u> GPU/H.264: <u>rrsanchez@dsi.uclm.es</u>

