Evolutionary Learning using a Sensitivity-Accuracy Approach for Classification

Javier Sánchez Monedero¹, C. Hervás-Martínez¹, F.J. Martínez-Estudillo², Mariano Carbonero Ruz², M. C. Ramírez Moreno², M. Cruz-Ramírez¹ i02samoj@uco.es

¹Dept. of Computer Science and Numerical Analysis, University of Córdoba. ²Dept. of Management and Quantitative Methods, ETEA, Spain.

. / 20

Outline		

Introduction

	Introduction 00000		
Introduction			
Introd	uction		

How to evaluate a classifier?

Purpose of evaluation:

- To compare two classifiers performance
- To design fitness functions for evolutionary algorithms

Approaches:

- Accuracy (Traditional): one dimensional ordering
 - Global performance
 - "I can classify all the healthy people with 99% Accuracy...but 0% of the ill people class"
- Accuracy and Sensitivity: two dimensional ordering
 - Accuracy (C): Global performance
 - Sensitivity (S): worse classified class

	Introduction ○●○○○		
Introduction			

Alternatives for measuring a classifier performance

Binary-classification problems

- Correct Classification Rate (CCR) \rightarrow threshold metric
- Root mean square error (RMSE) \rightarrow probabilistic metric
- Area under Curve (AUC) \rightarrow range metric

Multi-classification problems

 Extension of AUC to multi-class: minimize the Q(Q − 1) misclassification rates →hight computational cost

・ 同 ト ・ ヨ ト ・ ヨ ト

	Introduction 00●00		
Introduction			
		()	

Accuracy and Sensitivity (I)

Classification problem

Lets consider a classification problem with Q classes and N training or testing patterns with a classifier g, the contingency or confusion matrix is:

$$M(g) = \left\{ n_{ij}; \sum_{i,j=1}^{Q} n_{ij} = N \right\}$$
(1)

where n_{ij} represents the number of times the patterns are predicted by classifier g to be in class j when they really belong to class i.

	Introduction 00000		
Introduction			
Accuracy	and Sensitivi	ty (II)	

Definitions

- the number of patterns associated with class *i* by $f_i = \sum_{j=1}^{Q} n_{ij}, i = 1, ..., Q.$
- Let S_i = n_{ii}/f_i the number of patterns correctly predicted to be in class i with respect to the total number of patterns in i (sensitivity for class i).
- $S = \min \{S_i; i = 1, ..., Q\}$
- Correct Classification Rate or Accuracy, $C = (1/N) \sum_{j=1}^{Q} n_{jj}$

	Introduction 0000●		
Introduction			
Accura	cy and Sensi	tivity plot	

Figure: Unfeasible region in the two-dimensional space for a concrete classification problem.

		The Proposed Method ●0000000	
The Proposed Method	i		

ELM's [1] Three-Step Learning Model

Extreme Learning Machine for ANNs

Given a training set N samples $D = \{(\mathbf{x}_j, \mathbf{y}_j) : \mathbf{x}_j \in R^K, \mathbf{y}_j \in R^Q, j = 1, 2, ..., N\}$, where \mathbf{x}_j is an $k \times 1$ input vector and \mathbf{y}_j is an $Q \times 1$ target vector, activation function g and the number of hidden nodes L,

- Assign randomly input weight vectors or centres a_i and hidden node bias or impact factor b_i , i = 1, ..., L
- **②** Calculate the hidden layer output matrix ${\bf H}$
- **③** Calculate the output weight $\hat{\boldsymbol{\beta}} = \mathbf{H}^{\dagger}\mathbf{Y}$

where \mathbf{H}^{\dagger} is the Moore-Penrose (MP) generalized inverse of matrix \mathbf{H}

		The Proposed Method ○●○○○○○○	
The Proposed Method			
Extreme I	_earning Mac	hine for ANNs	

ELM's features

- The learning speed of ELM is extremely fast.
- O The ELM tends to reach the solutions straightforward without problems such as local minima, improper learning rate and over fitting
- SELM is a simple tuning-free three-step algorithm.

Disadvantages / Limitations

- ELM need a high number of hidden layer nodes
- Some improvements of ELM:
 - Evolutionary ELM (E-ELM) [2]
 - Optimally-Pruned ELM (OP-ELM) [3]

		The Proposed Method 00●00000			
The Proposed Method					
Evolutionary ELM (E-ELM)					

Evolutionary ELM

- Uses Storn's [1] differential evolutionary algorithm
- **2** The population is $\boldsymbol{\theta} = [\mathbf{w}_1, \dots, \mathbf{w}_k, b_1, \dots, b_k]$
- E-ELM Evolves the input layer to hidden layer connection weights w_i
- Uses original ELM for obtaining the *optimal* output weights $\hat{\beta} = \mathbf{H}^{\dagger} \mathbf{Y}$
- The misclassification rate $\left(\frac{1}{Accuracy}\right)$ is used as fitness function

E-ELM considering C and S

Objective: to improve both the Accuracy and Sensitivity of the ANNs classifiers obtained by E-ELM

イロト イポト イヨト イヨト

ъ

	The Proposed Method 000●0000	

The Proposed Method

E-ELM considering C and S (E-ELM-CS)

Multi-objective optimization

- Multi-objective approach: not always C and S are cooperative objectives
- Linear multi-objective: efficient approach for multi-objective optimization

E-ELM-CS

• E-ELM-CS fitness function (to minimize):

$$\phi_{\lambda} = \frac{1}{(1-\lambda)C + \lambda S}$$

• $\lambda \in [0,1]$ is a user parameter obtained by experimental validation

(2)

		The Proposed Method ○○○○●○○○	
The Proposed Method			
C and S a	as competitive	e objectives	

Figure: E-ELM-CS C and S evolution for BreastC database.

<ロ> (日) (日) (日) (日) (日)

		The Proposed Method	
The Proposed Method			
E-ELM vs	E-ELM-CS		

Dataset	Algorithm	C(%) Mean±SD	$S(\%)$ Mean \pm SD
BreastC	$E-ELMCS_{\lambda=0.4}$	68.97±3.19	33.97±6.82
	E-ELM	$68.36 {\pm} 1.98$	23.33 ± 6.42
BreastCW	$E-ELM-CS_{\lambda=0.4}$	96.32±0.86	93.87±2.28
	E-ELM	95.68 ± 1.19	92.61 ± 3.21
Balance	E-ELM-CS $_{\lambda=0.7}$	91.48 ±1.50	$86.74{\pm}10.01$
	E-ELM	90.56±1.38	14.00 ± 17.73
Gene	$E-ELM-CS_{\lambda=0.1}$	83.72±1.93	81.10±2.94
	E-ELM	83.48±1.90	78.89 ± 4.97
Iris	E-ELM-CS $\lambda = 0.9$	97.41±1.76	94.53±11.24
	E-ELM	97.04±2.21	92.18 ± 4.98
Newthy	E-ELM-CS $\lambda = 0.9$	96.23±2.31	$80.85{\pm}11.88$
	E-ELM	94.26 ± 2.35	75.77 ± 10.16

	The Proposed Method 000000●0	
The Proposed Method		

<ロ> <同> <同> < 同> < 同>

3

	The Proposed Method 0000000●	
The Proposed Method		

E-ELM vs. E-ELM-CS

Figure: Comparison of E-ELM-CS, E-ELM, TDIF, MPAN-MSE and MPAN-HN methods for Balance database

J. Sánchez Monedero et al.

			Conclusions ●○	
Conclusions and futur	re work			
E-ELM-C	CS Conclusior	IS		

- To consider the classifier training process as a multi-objective approach improves both C and S, but more significantly S
- S is improved for imbalanced databases
- Apparently, it is not clear with weight should be assigned to each objective. It heavily depends on the dataset

			Conclusions ○●			
Conclusions and futur	Conclusions and future work					
Future w	ork					

- Multiclassification problems with high number of classes and imbalanced datasets
- Look for efficient algorithms for building classifiers based on ANNs (¿extending E-ELM-CS?):
 - Optimally-Pruned ELM
 - Re-sampling, hibridation, etc.
 - Other neural networks types such as Product Unit, generalized Gaussian, qGaussian...

• . . .

			References
Referenc	es		

[1] Huang, G.B., Chen, L., Siew, C.K.:

Universal approximation using incremental constructive feedforward networks with random hidden nodes.

Neural Networks, IEEE Transactions on **17**(4) (July 2006) 879–892

[2] Zhu, Q.Y., Qin, A., Suganthan, P., Huang, G.B.:
Evolutionary extreme learning machine.
Pattern Recognition 38(10) (2005) 1759 – 1763

[3] Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.:

Op-elm: Optimally pruned extreme learning machine. Neural Networks, IEEE Transactions on **21**(1) (December 2009) 158–162

			References
Refere	nces		

[1] Storn, R., Price, K.:

Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces.

J. of Global Optimization 11(4) (1997) 341-359

[2] Fernández, J., Martínez-Estudillo, F., Hervás, C., Gutiérrez, P.:

Sensitivity versus accuracy in multi-class problems using memetic pareto evolutionary neural networks. IEEE Transacctions on Neural Networks **Accepted** (2010)

		References

Evolutionary Learning using a Sensitivity-Accuracy Approach for Classification

Javier Sánchez Monedero¹, C. Hervás-Martínez¹, F.J. Martínez-Estudillo², Mariano Carbonero Ruz², M. C. Ramírez Moreno², M. Cruz-Ramírez¹ i02samoj@uco.es

¹Dept. of Computer Science and Numerical Analysis, University of Córdoba. ²Dept. of Management and Quantitative Methods, ETEA, Spain.

23rd June 2010

(日) (日) (日) (日) (日)