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Introduction

How to evaluate a classifier?

Purpose of evaluation:

To compare two classifiers performance

To design fitness functions for evolutionary algorithms

Approaches:

Accuracy (Traditional): one dimensional ordering

Global performance
“I can classify all the healthy people with 99% Accuracy. . . but
0% of the ill people class”

Accuracy and Sensitivity: two dimensional ordering

Accuracy (C ): Global performance
Sensitivity (S): worse classified class
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Alternatives for measuring a classifier performance

Binary-classification problems

Correct Classification Rate (CCR) → threshold metric

Root mean square error (RMSE) → probabilistic metric

Area under Curve (AUC) → range metric

Multi-classification problems

Extension of AUC to multi-class: minimize the Q(Q − 1)
misclassification rates →hight computational cost
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Accuracy and Sensitivity (I)

Classification problem

Lets consider a classification problem with Q classes and N
training or testing patterns with a classifier g , the contingency or
confusion matrix is:

M (g) =

nij ;
Q∑

i ,j=1

nij = N

 (1)

where nij represents the number of times the patterns are predicted
by classifier g to be in class j when they really belong to class i .
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Accuracy and Sensitivity (II)

Definitions

the number of patterns associated with class i by
fi =

∑Q
j=1 nij , i = 1, . . . ,Q.

Let Si = nii/fi the number of patterns correctly predicted to
be in class i with respect to the total number of patterns in i
(sensitivity for class i).

S = min {Si ; i = 1, . . . ,Q}
Correct Classification Rate or Accuracy, C = (1/N)

∑Q
j=1 njj

J. Sánchez Monedero et al. Evolutionary Learning using Sensitivity-Accuracy 6 / 20



Outline Introduction The Proposed Method Conclusions References

Introduction

Accuracy and Sensitivity plot
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Figure: Unfeasible region in the two-dimensional space for a concrete
classification problem.
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Extreme Learning Machine for ANNs

ELM’s [1] Three-Step Learning Model

Given a training set N samples
D = {(xj , yj) : xj ∈ RK , yj ∈ RQ , j = 1, 2, . . . ,N}, where xj is an
k × 1 input vector and yj is an Q × 1 target vector, activation
function g and the number of hidden nodes L,

1 Assign randomly input weight vectors or centres ai and hidden
node bias or impact factor bi , i = 1, . . . , L

2 Calculate the hidden layer output matrix H

3 Calculate the output weight β̂ = H†Y

where H† is the Moore-Penrose (MP) generalized inverse of matrix
H

J. Sánchez Monedero et al. Evolutionary Learning using Sensitivity-Accuracy 8 / 20



Outline Introduction The Proposed Method Conclusions References

The Proposed Method

Extreme Learning Machine for ANNs

ELM’s features

1 The learning speed of ELM is extremely fast.

2 The ELM tends to reach the solutions straightforward without
problems such as local minima, improper learning rate and
over fitting

3 ELM is a simple tuning-free three-step algorithm.

Disadvantages / Limitations

ELM need a high number of hidden layer nodes

Some improvements of ELM:

Evolutionary ELM (E-ELM) [2]
Optimally-Pruned ELM (OP-ELM) [3]
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Evolutionary ELM (E-ELM)

Evolutionary ELM

1 Uses Storn’s [1] differential evolutionary algorithm

2 The population is θ = [w1, . . . ,wk , b1, . . . , bk ]

3 E-ELM Evolves the input layer to hidden layer connection
weights wi

4 Uses original ELM for obtaining the optimal output weights
β̂ = H†Y

5 The misclassification rate ( 1
Accuracy ) is used as fitness function

E-ELM considering C and S

Objective: to improve both the Accuracy and Sensitivity of the
ANNs classifiers obtained by E-ELM
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E-ELM considering C and S (E-ELM-CS)

Multi-objective optimization

Multi-objective approach: not always C and S are cooperative
objectives

Linear multi-objective: efficient approach for multi-objective
optimization

E-ELM-CS

E-ELM-CS fitness function (to minimize):

φλ =
1

(1− λ)C + λS
(2)

λ ∈ [0, 1] is a user parameter obtained by experimental
validation

J. Sánchez Monedero et al. Evolutionary Learning using Sensitivity-Accuracy 11 / 20



Outline Introduction The Proposed Method Conclusions References

The Proposed Method

C and S as competitive objectives
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Figure: E-ELM-CS C and S evolution for BreastC database.
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E-ELM vs. E-ELM-CS

Dataset Algorithm C (%) Mean±SD S(%)Mean±SD

BreastC E-ELMCSλ=0.4 68.97±3.19 33.97±6.82
E-ELM 68.36±1.98 23.33±6.42

BreastCW E-ELM-CSλ=0.4 96.32±0.86 93.87±2.28
E-ELM 95.68±1.19 92.61±3.21

Balance E-ELM-CSλ=0.7 91.48±1.50 86.74±10.01
E-ELM 90.56±1.38 14.00±17.73

Gene E-ELM-CSλ=0.1 83.72±1.93 81.10±2.94
E-ELM 83.48±1.90 78.89±4.97

Iris E-ELM-CSλ=0.9 97.41±1.76 94.53±11.24
E-ELM 97.04±2.21 92.18±4.98

Newthy E-ELM-CSλ=0.9 96.23±2.31 80.85±11.88
E-ELM 94.26±2.35 75.77±10.16
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E-ELM vs. E-ELM-CS
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E-ELM vs. E-ELM-CS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
 (

A
cc

ur
ac

y)

S (Sensitivity)

(1-p*=0.94)

unfeasible region
E-ELMCS λ=0.7

E-ELM
TRAINDIFFEVOL

MPAN-MSE
MPAN-HN

Figure: Comparison of E-ELM-CS, E-ELM, TDIF, MPAN-MSE and
MPAN-HN methods for Balance database
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Conclusions and future work

E-ELM-CS Conclusions

To consider the classifier training process as a multi-objective
approach improves both C and S , but more significantly S

S is improved for imbalanced databases

Apparently, it is not clear with weight should be assigned to
each objective. It heavily depends on the dataset
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Future work

Multiclassification problems with high number of classes and
imbalanced datasets

Look for efficient algorithms for building classifiers based on
ANNs (¿extending E-ELM-CS?):

Optimally-Pruned ELM
Re-sampling, hibridation, etc.
Other neural networks types such as Product Unit, generalized
Gaussian, qGaussian. . .

. . .
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