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Abstract. We work on a Bayesian approach to the estimation of the
specular component of a color image, based on the Dichromatic Reflec-
tion Model (DRM). The separation of diffuse and specular components is
important for color image segmentation, to allow the segmentation algo-
rithms to work on the best estimation of the reflectance of the scene. In
this work we postulate a prior and likelihood energies that model the re-
flectance estimation process. Minimization of the posterior energy gives
the desired reflectance estimation. The approach includes the illumina-
tion color normalization and the computation of a specular free image
to test the pure diffuse reflection hypothesis.

1 Introduction

Works on reflectance map estimation [17,4,10,9,12,1,2] usually need to impose
some assumptions like the knowledge of a color segmentation of the image, the
detection of color region boundaries or color discontinuities, or the knowledge of
the decomposition into linear basis functions of the surface color. The approach
presented here does not impose any such assumption and does not need previous
segmentations of the image. Most of the works in the literature are based on the
Dichromatic Reflection Model (DRM) [8], and we will also follow this model for
the development of our approach. We follow a Bayesian approach [3] to model
the desired result as constraints implemented in an a priori distribution. We
postulate the a priori distribution based on the idea developed in [13] that the
derivatives of the logarithmic images of both diffuse image and specular free
must be equal in order to have pure diffuse pixels.

Section 2 gives the reflection modelling background, section 3 describes our
Bayesian model giving the expressions for the a priori and likelihood energies.
Section 4 presents some experimental results. Section 5 gives some summary
conclusions and ideas for further work.

2 Reflection modelling

The DRM was proposed by Shafer [8]. It describes the surface reflection of light
in dielectric materials as the sum of two components, the diffuse and specular
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terms. The diffuse reflection component exhibits the color of the material due
to different light wavelengths are more or less absorbed as light is scattered by
the material. The specular reflection component is essentially determined by the
color of incident light. The model of the image taken with a digital camera is as
follows

I(x) = wd(x)
∫
Ω

S(λ, x)E(λ)q(λ)dλ+ ws(x)
∫
Ω

E(λ)q(λ)dλ (1)

I(x) = wd(x)B(x) + ws(x)G, (2)

where I = {Ir, Ig, Ib} is the color of an image pixel obtained through a
camera sensor, x = {x, y} are the two dimensional coordinates of the pixel in
the image, q = {qr, qg, qb} is the three element vector of sensor sensitivity, and
wd(x) and ws(x) are the weighting factors for diffuse and specular components,
respectively, which depend on the geometric structure at location x, S(λ, x) is the
diffuse spectral reflectance, E(λ) is the illumination spectral power distribution
function, which is independent of the spatial location x because we assume a
uniform illumination color. The integration is done over the visible light spectrum
Ω. We define the following chromatic terms:

– Image chromaticity (normalized RGB space) : Ψ(x) = I(x)
Ir(x)+Ig(x)+Ib(x)

– Diffuse Chromaticity: Λ(x) = B(x)
Br+Bg+Bb

– Specular or Illumination Source Chromaticity: Γ = G
Gr+Gg+Gb

.

The image can be written in terms of diffuse an specular chromaticity I(x) =
md(x)Λ(x)+ms(x)Γ, wheremd(x) = wd(x) [Br(x) +Bg(x) +Bb(x)] andms(x) =
ws(x) (Gr +Gg +Gb). We can see that the diffuse chromaticity depends on the
pixel location x, while the specular chromaticity does not, because we assume
a uniform illumination color. Both weighting factors depend on the geometric
structure at location x.

For the ensuing processes, we will be assuming that illumination colors (the
specular component) will be pure white, so that Γr = Γg = Γb. The illumination
corrected image is computed as I′(x) = I(x)

Γest(x) . Where Γ est is the estimation
of the illumination color, that can be estimated by some of the methods pro-
posed in the literature [6,14,15,2]. The quotient is computed as the Hadamard
quotient (applied at each component independently). The normalized image can
be expressed as I′(x) = m′d(x)Λ

′(x) + m′
s(x)
3 , where Λ′ is the illumination color

normalized diffuse chromaticity.
It is possible to obtain an specular free image [17] from the color normalized

image by the following procedure:

1. Compute at each pixel the minimum of all of its three color bands Ĩ(x) =
min{I ′r(x), I ′g(x), I ′b(x)}, therefore Ĩ(x) = m′d(x)Λ̃(x)+ m′

s(x)
3 , where Λ̃(x) =

min{Λ′r(x), Λ′g(x), Λ′b(x)}.



2. Compute at each pixel the difference of the normalized image and the one
obtained in the previous step Isf (x) = I′(x)− Ĩ(x) = m′d(x)

[
Λ′(x)− Λ̃(x)

]
,

so that the specular component dissapears from the image.

2.1 Separation Method

We will base our Bayesian model in the key element of the method proposed in
[11,13]. The pure diffuse pixels can be characterized by the following relation:

4(x) = dlog(I′(x))− dlog(Isf (x)) = 0, (3)

where dlog(Isf (x)) = ∂
∂x log(I

sf (x)) and dlog(I′(x)) = ∂
∂x log(I

′(x)), the log-
arithm is computed pixel wise, and the spatial derivative can be computed
in several ways, for instance in [13] it is computed on the scalar value image
given by the summation of the three channels. It can be easily verified that
dlog(I′(x)) = ∂

∂x log(m
′
d(x)) = dlog(Isf (x)) for pure diffuse pixels if the diffuse

chromaticity of neighboring pixels is the same. That means that the method
works well inside homogenous color regions, and needs the estimation of color
region boundaries. When4(x) > 0 in eq. 3 and the pixel is not at a color bound-
ary and a pure specular pixel, then it has some specular component that can
be removed to get the diffuse reflectance component. The method proposed in
[13] follows from an heuristic observation about the distribution of pixels in the
maximum chromaticity versus (normalized illumination color) intensity space.
Non diffuse pixels are decreased in intensity iteratively to search for the pure
diffuse pixel value.

3 Bayesian Modelling

Given an image f and a desired unknown response of a computational process
d, Bayesian reasoning gives, as the estimate of d, the image wich maximizes the
A Posteriori distribution P (d|f) ∝ e−U(d|f), where the A Posteriori energy can
be decomposed in to the A Priori U(d) and Likelihood (Conditional) U(f |d)
energies U(d|f) = U(f |d) + U(d). The Maximum A Posteriori (MAP) estimate
is equivalent minimize the posterior energy function

d∗ = arg min
d
U(d|f) (4)

The Likelihood energy U(f |d) measures the cost caused by the discrepancy
between the input image f and the solution d. The A Priori energy U(d) is a
model of the desired solution, usually built as a RandomMarkov Field (RMF), so
that the A Priori energy can be built up as the summation of the local energies at
the pixels, which are expressed as summations over the set of cliques including
the pixel, weighted by the local potential parameter. A Priori energy usually
incorporates any desired constraint, such as smoothness, into the model.



We will assume a Gaussian Likelihood distribution plus a Chromaticity preser-
vation constraint, therefore the Likelihood energy will have the following expres-
sion:

U(d|f) =
m∑
i=1

(fi − di)2

2σ2
+

m∑
i=1

(
Ψfi − Ψ

d
i

)2

,

where fi and di are the RGB pixel values a the i-th pixel position for the observed
and desired image, respectively. Also, Ψfi and Ψdi denote the chromaticity pixels
of the observed and desired image, respectively.

The A Priori energy is built up from two components. The first one is the
Chromaticity continuity:

UΨ (d) =
m∑
i=1

∑
j∈Ni

∑
c∈{r,g,b}

(
Ψdi,c − Ψdj,c

)2
.

The second modelling the estimation of the derivatives in eq. 3 as the cliques
of the RMF. That is, we assume that the local energy at pixel di is defined as

U4 (di) =
(
dlog(di)− dlog(dsfi )

)2

,

where dsfi is the i-th pixel of the specular free image, computed as described
above, and dlog(.) in means the local estimation of the derivative, which is
approximated as follows:

dlog(di) =
1

#N

∑
j∈Ni

log(
I(xj)
I(xi)

),

where Ni is the local neighborhood of pixel di, and #N is its cardinality. After
some manipulations, the local derivative component of the A Priori energy is
derived as:

U4 (di) =

∑
j∈Ni

∑
c∈{r,g,b}

log
dj,cd

sf
i,c

di,cd
sf
j,c

2

.

This local energy is equivalent to the Kuk-Jin ratio criterion [17]. The deriva-
tive component of the A Priori energy is, therefore, the addition of these local
energies:

U4 (d) =
m∑
i=1

U (di) ,

and the A Priori energy is given by the addition U (d) = U4 (d) + UΨ (d).

4 Some Experimental results

In this section we report some experimental results applying the Bayesian ap-
proach described above. The starting value for the energy minimization process



is set to f = d (0) = I′. Each iteration step of the energy minization involves
the computation of the specular free image dsf (t) of the current hypothesis
d (t) of the optimal estimation d∗. Instead of using a Monte Carlo minimization
technique [3], such as Simulated Annealing, we have employed a simple heuris-
tic to determine the new hypothesis d (t+ 1), consisting in the reduction of the
intensity of the pixels preserving their chromacity components relative ratios.
Although simple, this strategy does in fact produce a minimization of the en-
ergy function, as can be appreciated in figure 1, where we plot an instance of the
energy function evolution. We have tested our approach on some images already
tested by some authors in the literature i.e. [13,12] among others. Figure 2 shows
the result over a well known test image with two colors and two light sources.
Our algorithm does not include any modelling of the underlying color regions in
the scene, such as in [12], so it can be appreciated that the almost pure specular
pixels can not be corrected, because there almost no chromatic information left
in them. To improve our approach we will be including a color map field in the
model, to be able to assign those pixels the most likely color. The figure 3 shows
a complex geometry image. Our estimation of the diffuse reflectance component
recovers the underlying geometry, with some blurring effects.

Fig. 1. Evolution of the energy function in an instance run of the algorithm

5 Conclusions and further works

We have presented a Bayesian approach to the problem of reflection component
separation. As in previous works, our approach works with only one image [13]
and does not need any additional assumption, such as models of the colors in
scene o previous color segmentations of the image. We compute the specular



Fig. 2. From left to righ, the original image, the estimated diffuse reflection component,
and the estimated especular component

Fig. 3. From left to righ, the original image, the estimated diffuse reflection component,
and the estimated especular component

free image, which can be done on the fly for each hypothesis. We have tested the
approach applying a simple heuristic to provide new hypothesis from the previous
iteration, with quite encouraging results. From the experiments we detect the
need to incorporate a color map field in the A Priori model, so that the color
of almost purely specular pixels can be recovered more easily. The problem of
diverse color illumination sources will be dealt with in further works. We will
also extend our works to other imaging models [7,16,5].
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