B. Fernandez-Gauna, M. Graña*

*Computational Intelligence Group, UPV/EHU¹

July 30, 2014

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Summary

- Social and Smart (SandS) project ecosystem: household appliance users, recipes, and an intelligent social layer.
 - innovation producing new recipes for unkown user tasks,
 - and the adaptation to personalize the recipe.
- Reinforcement Learning: user feedback == system reward.
- actor-critic approach,
- providing some experimental results on synthetic datasets

ション ふゆ く は マ く ほ マ く し マ

Contents

1 Introduction

- Taxonomy of systems
 - Crowdsourcing
 - Computational social science
 - Subconscious social intelligence

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- The Social and Smart project
- 2 Reinforcement learning
- 3 Experiment setting
- 4 Experimental results

5 Conclusions

- Introduction

Contents

1 Introduction

- Taxonomy of systems
 - Crowdsourcing
 - Computational social science
 - Subconscious social intelligence

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

- The Social and Smart project
- 2 Reinforcement learning
- 3 Experiment setting
- 4 Experimental results

5 Conclusions

-Introduction

Introduction

Fact

Social networks can be seen as a repository of information and knowledge that can be queried when needed to solve problems or to learn procedures.

Fact

In the social sciences, social networks have been useful to spread educational innovations

- in health care training
- management of product development programs,
- engagement in agricultural innovations by farmers.

- Introduction

└─ Taxonomy of systems

Crowdsourcing

Figure: Crowdsourcing paradigm

물 🛌 🗄

▲ 伊 ▶ ▲ 国 ▶

-Introduction

└─ Taxonomy of systems

Crowdsourcing

Crowdsourcing "enlists a crowd of users to explicitly collaborate to build a long-lasting artifact that is beneficial to the whole community"²

- how to recruit and retain users;
- what can users do;
- how to combine their inputs; and
- how to evaluate them

²Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy, Crowdsourcing systems in the World-Wide Web, CACM, (2011) 54:86-96 (2014)

-Introduction

└─ Taxonomy of systems

Crowdsourcing efforts

- Galaxy Zoo ³: classifying galaxy images
- FolfIt ⁴: solving protein folding puzzles
- Image labeling ⁵
- reCAPTCHA ⁶ for crowsourced OCR
- Wikipedia, sourceforge...
- Amazon Mechanical Turk

³http://www.galaxyzoo.org

⁴http://fold.it/portal/

⁵http://www.artigo.org/about.html

- Introduction

└─ Taxonomy of systems

Computational Social Sciences

Social Computing and Computational Social Science paradigm

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Introduction

└─ Taxonomy of systems

Computational social sciences

- User profiling
 - Targeted marketing
- Community discovery
 - New product development

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Security
- Sentiment Analysis
- Process mining

- Introduction

└─ Taxonomy of systems

Subconscious social intelligence

Subconscious Social Intelligence paradigm

- Introduction

└─ Taxonomy of systems

Axes of a Taxonomy

Axes of social computing taxonomy

-Introduction

└─The Social and Smart project

SandS project

- The Social and Smart (SandS) project aims
 - to lay the foundations for a social network of home applicance users
 - endowed with a layer of intelligent systems
 - to produce new solutions to new problems
 - from knowledge accumulated by the social players.
- The system is not a symple recollection of tested appliance use recipes,
 - generate new recipes trying to satisfy user demands,
 - fine tuning of recipes on the basis of user satisfaction

• by a hidden reinforcement learning process.

- Introduction

└─ The Social and Smart project

The SandS architecture

-Introduction

└─The Social and Smart project

The SandS architecture

Tasks

Specified by the user

- Recipes provided by
 - Appliance Manufacturer
 - User: conscious innovation
 - Networked intelligence: subconscious innovation,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

reinforcement learning for personalization

- Introduction

The Social and Smart project

SandS knowledge representation

SandS interaction

Recipe (washing) as a process

Contents

1 Introduction

- Taxonomy of systems
 - Crowdsourcing
 - Computational social science
 - Subconscious social intelligence

・ロト ・ 四ト ・ 日ト ・ 日 ・

The Social and Smart project

2 Reinforcement learning

- 3 Experiment setting
- 4 Experimental results

5 Conclusions

Interaction Actor-Critic

The learning scheme adapted to the SandS project is:

- **1** The eahouker sets the parameters of the task he/she wants to accomplish $(t_i \in T)$.
- **2** The actor reacts outputting the recommended recipe $r_i \in R$ according its actual policy.
- **3** Upon completion of the task, the user gives his/her satisfaction $s_i \in S$ and the critic updates the value δ_i of the actor's policy for task t_i accordingly
- 4 The value update δ_i is passed then to the actor for policy updating.

Interaction Actor-Critic

Figure: Online Actor-critic learning scheme.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Reinforcement learning

- Markov Decision Process (MDP) $\langle S, A, P, R \rangle$
 - S is the state space defined by state variables $X = \{X_1, X_2 \dots X_n\},\$
 - A is the action space,
 - *P* is the state transition function $P: S \times A \times S \rightarrow [0,1]$, and

ション ふゆ く 山 マ ふ し マ うくの

- *R* is the reward function $R: S \times A \times S \rightarrow \mathbb{R}$.
- The learning agent looks for a policy $\pi_a(s)$ maximizing the expected accumulated reward, denoted $R^{\pi}(s)$.
 - The state-action value function $Q^{\pi}(s, a)$
 - The optimal action-state value function $Q^*(s, a)$

Continuous Action-Critic Learning Automaton (CACLA)

The actor only updates its policy if the critic is positive:

if
$$\delta_t > 0$$
: $\theta_t^a(s) \leftarrow \theta_t^a(s) + \alpha_t \cdot (a_t - \pi_a(s)) \cdot \frac{\partial \pi_a(s_{t-1})}{\partial \theta_{t-1}^{\pi}}$. (1)

The critic is given by a TD (λ) value iteration algorithm: The value function V^π(t) is represented as Gaussian RBFs with 6 features per dimension. The update rule is defined:

$$\theta^{V} \leftarrow \theta^{V} + \alpha \left(\boldsymbol{s} - \hat{V}(t) \right) \cdot \frac{\partial \hat{V}(t)}{\partial \theta^{V}},$$
 (2)

where α is the learning gain, s is the satisfaction value observed and $\hat{V}(t)$ is the estimated value of the actor's policy for task t.

\Box Experiment setting

Contents

1 Introduction

- Taxonomy of systems
 - Crowdsourcing
 - Computational social science
 - Subconscious social intelligence

・ロト ・ 四ト ・ 日ト ・ 日 ・

- The Social and Smart project
- 2 Reinforcement learning
- 3 Experiment setting
- 4 Experimental results

5 Conclusions

Experiment setting

Parameter definitions

Washing machines:

- \blacksquare The task ($\mathcal{T} \in \mathbb{R}^{12})$
 - Material percentages of the load: C1 (synthetic), C2 (silk), C3 (bedding), C4 (cotton), C5 (wool).
 - Degree of dirtiness of the load: C6 (less), C7 (normal), C8 (high), C9 (very stained).
 - Colors: C10 (white), C11 (little colors), C12 (very colored).
- The recipe $(R \in \mathbb{R}^5)$: water in Liters, Temperature, (RPM) while drying, Detergent ml, duration in Minutes
- The satisfaction $S \in [0, 5]$,
 - distance of a given task-recipe pair to one of the 6 hidden optimal tasks-recipes (⟨*T*^{*}_i, *R*^{*}_i, 5.0⟩) unknown to the learning system.
 - The smaller the distance, the higher the satisfaction value (reward in RL) it is given.

Experiment setting

Setup

- The actor was presented one of the tasks for which an optimal recipe has been defined.
- 2 The actor outputs its recipe
- 3 The system simulates the satisfaction of the user as a function of the distance to the *optimal recipe*
- 4 The critic observes the reward, calculates the TD-error,
- **5** Observed this TD-error, the actor updates its policy
- 6 The actor reduces the amplitude of the additive noise signal

Experimental results

Contents

1 Introduction

- Taxonomy of systems
 - Crowdsourcing
 - Computational social science
 - Subconscious social intelligence

・ロト ・ 四ト ・ 日ト ・ 日 ・

- The Social and Smart project
- 2 Reinforcement learning
- 3 Experiment setting
- 4 Experimental results

5 Conclusions

Experimental results

Some results

Figure: Actor: Outputs of the actor during the learning process for the original task $T_1^{\ast} {\rm and} \ T_2^{\ast}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Experimental results

Some results

Figure: Actor: Outputs of the actor during the learning process for the original tasks T_3^* and T_4^* .

<ロ> (四) (四) (三) (三) (三) (三)

- Conclusions

Contents

1 Introduction

- Taxonomy of systems
 - Crowdsourcing
 - Computational social science
 - Subconscious social intelligence
- The Social and Smart project
- 2 Reinforcement learning
- 3 Experiment setting
- 4 Experimental results

5 Conclusions

- Conclusions

Conclusions

- computational experimental setup: washing machines
- We define 6 hidden prototype task-recipe pairs with maximum satisfaction from the user
- The reward is defined as the distance from the ideal recipe,
- so the aim of the RL algorithm is to reach zero
- The computational results are encouraging. The RL effectively converges to the hidden optimal recipes and maximum eahouker satisfaction.

ション ふゆ く は マ く ほ マ く し マ

Conclusions

Grant agreement 317947 EU, SandS project. UFI11/07 of the UPV/EHU.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?