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The Problem:

Classify 2-D Shapes in 70 classes ...

W

(a) class “chicken” (b) class “bird”

...from the MPEG-7 benchmark of binary images




In a data pre-processing step, for each 2-D shape,
we extracted three populations of Descriptors®
including

e Ny = 32 Fourier Descriptors (FD),

e N,rt = 112 Angular Radial Transform (ART)
Descriptors, and

e N;, = 6 Image Moments (IM) Descriptors.

*A Descriptor is a real number.




e A population of Descriptors was represented

by an Intervals’ Number (IN) as follows.




IN representation of a Descriptors’ population
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In conclusion,

e a binary image was represented by three INs

Examples of INs induced from populations of
Descriptors follow.




INs induced from FD descriptors
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INs induced from ART descriptors
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INs induced from |IM descriptors
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IN Representations &
Mathematical Instruments

An Intervals’ Number (IN) F can be represented, either by a
membership function or, equivalently, by its (interval) a—cuts.
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Let F denote the space of INs. Then,

e (F,<)is a complete lattice
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An interval-IN

e The space of interval-INs is a complete lattice.
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An inclusion measure function o: LxL—[0,1],
iIn a complete lattice (L,<) with minimum
element O, by definition, satisfies conditions

1) o(x,0) =0, x=0.

2) o(x,x) =1,vxel.
3) usw = o(x,u) <o(x,w).
4) Xy < X = o(x,y) < 1.
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An inclusion measure o: LxL—[0,1] is given by

v(y)
V(XVY)

either oy (xy)=0,(x<y)=

v(xry)
V(X)

OF o,(xy)=0,(x<y)=

for either L=F or L=(lattice of interval-INs)
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Cartesian Product Extensions

e Consider complete lattices (L;,<) each equipped
with an inclusion measure function c;, ie{1,...,N}.
Let x=(Xq,...,XN),Y=(Y1,.--,Yn) € L=Lyx .. xLy.
Then, both functions

O'/\(X < y) = mln{GI(XI < yl )} and
I

orp(X<y)= liTGi(Xiﬁyi)

are inclusion measures.
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Rule-Based Decision-Making

e The degree of membership of a red interval-IN
in class c; equals o((l4,15,15)<(F4,F5,F3)).

THEN class c,
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e The size of an interval [a,,b,] equals

S([an,bp]) = v(by) — v(ay),

e The size ofa IN F =[a, ,b,], he(0,1] equals

1 1
S(F) = (I) S([an,bh])dh = é [v(bh )-v(ap )]dh

where function v:R—R is strictly increasing.
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BIIN, : Batch Interval-IN for training

trn-

e Let (0,,c(0)),...,(5,,c(0,)) be labeled interval-INs
for training.

e Consider a threshold S,,.

e Let (l,J)=argmin{S(5v4)}: I-J and c(g)=c(9)).

e while S(ov9)) < S,y do

e Replace both § and ¢, by §vJ,.

o Let (l,J)=argmin{ S(5vad) }: I=J and c(g)=c(J)).
e end while
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BIIN,, : Batch Interval-IN for testing

Let (64,¢(0)),...,(5,c(0)) be labeled interval-INs.
For i=1 to n do //for each testing datum IN E; do
J = argmax{c[E;,E] < J}, ¢e{1,...,L}.
Assign IN E, to the class c¢(J)).
end for
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e Preliminary Experiments and Results
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Interval-INs computed from ART descriptors

ART

(a) class “chicken” (b) class “bird”
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e Recognition rates > 90%

e Comparative experimental work is under way.
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