2-D Shape Representation and Recognition by Lattice Computing Techniques

V. Kaburlasos, A. Amanatiadis, S.E. PapadakisDept. of Industrial InformaticsTEI of Kavala, Greece

The Problem: Classify 2-D Shapes in 70 classes ...

(a) class "chicken"

(b) class "bird"

... from the MPEG-7 benchmark of binary images

In a data pre-processing step, for each 2-D shape, we extracted three populations of *Descriptors** including

- N_{FD} = 32 Fourier Descriptors (FD),
- N_{ART} = 112 Angular Radial Transform (ART) Descriptors, and
- N_{IM} = 6 Image Moments (IM) Descriptors.

*A *Descriptor* is a real number.

IN representation of a Descriptors' population

a binary image was represented by three INs

Examples of INs induced from populations of Descriptors follow.

INs induced from FD descriptors

INs induced from ART descriptors

INs induced from IM descriptors

IN Representations & Mathematical Instruments

An Intervals' Number (IN) *F* can be represented, either by a *membership function* or, equivalently, by its (interval) α -cuts.

An interval-IN

• The space of interval-INs is a complete lattice.

An *inclusion measure* function σ : L×L→[0,1], in a complete lattice (L,≤) with minimum element O, by definition, satisfies conditions

1) σ(x,O) = 0, x≠O.

2)
$$\sigma(\mathbf{x},\mathbf{x}) = 1, \forall \mathbf{x} \in \mathbf{L}.$$

3)
$$u \le w \Rightarrow \sigma(x,u) \le \sigma(x,w)$$
.
4) $x \land y < x \Rightarrow \sigma(x,y) < 1$.

An *inclusion measure* σ : L×L→[0,1] is given by

either
$$\sigma_{\vee}(x,y) = \sigma_{\vee}(x \le y) = \frac{v(y)}{v(x \lor y)}$$

or
$$\sigma_{\wedge}(x,y) = \sigma_{\wedge}(x \le y) = \frac{v(x \land y)}{v(x)}$$

for either L=F or L=(lattice of interval-INs)

Cartesian Product Extensions

 Consider complete lattices (L_i,≤) each equipped with an inclusion measure function σ_i, i∈{1,...,N}. Let x=(x₁,...,x_N),y=(y₁,...,y_N)∈ L=L₁×...×L_N. Then, both functions

 $\sigma_{\wedge}(\boldsymbol{x} \leq \boldsymbol{y}) = \min_{i} \{\sigma_{i}(\boldsymbol{x}_{i} \leq \boldsymbol{y}_{i})\} \text{ and }$

 $\sigma_{\prod}(\mathbf{X} \leq \mathbf{y}) = \prod_{i} \sigma_{i}(\mathbf{x}_{i} \leq \mathbf{y}_{i})$

are inclusion measures.

The size of an interval [a_h,b_h] equals $S([a_h, b_h]) = v(b_h) - v(a_h),$ • The size of a IN $F = [a_h, b_h]$, $h \in (0, 1]$ equals $\mathbf{S}(F) = \int_{0}^{1} \mathbf{S}([\mathbf{a}_{\mathsf{h}},\mathbf{b}_{\mathsf{h}}]) dh = \int_{0}^{1} [\mathbf{v}(\mathbf{b}_{\mathsf{h}}) - \mathbf{v}(\mathbf{a}_{\mathsf{h}})] dh$

where function v:R \rightarrow R is strictly increasing.

BIIN_{trn}: Batch Interval-IN for training

- Let (δ₁,c(δ₁)),...,(δ_n,c(δ_n)) be labeled interval-INs for training.
- Consider a threshold S_{θ} .
- Let (I,J)=argmin{ $S(\delta_i \lor \delta_j)$ }: I \neq J and $c(\delta_l)=c(\delta_J)$.
- while $S(\delta_I \vee \delta_J) < S_{\theta}$ do
- Replace both δ_{I} and δ_{J} by $\delta_{I} \lor \delta_{J}$.
- Let (I,J)=argmin{ $S(\delta_i \lor \delta_j)$ }: I \neq J and $c(\delta_l)=c(\delta_J)$.
- end while

BIIN_{tst} : Batch Interval-IN for testing

- Let $(\delta_1, c(\delta_1)), \dots, (\delta_L, c(\delta_L))$ be labeled interval-INs.
- For i=1 to n do //for each testing datum IN E_i do
- $J = \operatorname{argmax}\{\sigma[E_i, E_i] \le \delta_{\ell}\}, \ell \in \{1, \dots, L\}.$
- Assign IN E_i to the class $c(\delta_J)$.
- end for

Interval-INs computed from ART descriptors

• Comparative experimental work is under way.