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The Problem:
Classify 2-D Shapes in 70 classes …

(a) class “chicken” (b) class “bird”

…from the MPEG-7 benchmark of binary images
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In a data pre-processing step, for each 2-D shape, 
we extracted three populations of Descriptors* 
including

NFD = 32 Fourier Descriptors (FD),
NART = 112 Angular Radial Transform (ART) 
Descriptors, and
NIM = 6 Image Moments (IM) Descriptors.

*A Descriptor is a real number.
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A population of Descriptors was represented 
by an Intervals’ Number (IN) as follows.
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IN representation of a Descriptors’ population
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In conclusion, 

a binary image was represented by three INs

Examples of INs induced from populations of 
Descriptors follow.
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INs induced from FD descriptors

(a) INs for 4 “chicken” (b) INs for 4 “bird”
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INs induced from ART descriptors

(a) INs for 4 “chicken” (b) INs for 4 “bird”
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INs induced from IM descriptors

(a) INs for 4 “chicken” (b) INs for 4 “bird”
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IN Representations & 
Mathematical Instruments

An Intervals’ Number (IN) F can be represented, either by a 
membership function or, equivalently, by its (interval) α–cuts.

F
1
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Let F denote the space of INs. Then,

(F,≤) is a complete lattice
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An interval-IN

The space of interval-INs is a complete lattice.
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An inclusion measure function σ: L×L→[0,1], 
in a complete lattice (L,≤) with minimum 
element O, by definition, satisfies conditions

1)  σ(x,O) = 0, x≠O.
2)  σ(x,x) = 1,∀x∈L.
3)  u ≤ w ⇒ σ(x,u) ≤ σ(x,w).
4) x∧y < x ⇒ σ(x,y) < 1.
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An inclusion measure σ: L×L→[0,1] is given by

either

or 

for either L=F or L=(lattice of interval-INs)

v(y)σ (x,y) σ (x y)
v(x y)

= ≤ =∨ ∨ ∨

v(x y)σ (x,y) σ (x y)
v(x)
∧

= ≤ =∧ ∧
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Cartesian Product Extensions

Consider complete lattices (Li,≤) each equipped 
with an inclusion measure function σi, i∈{1,…,N}. 
Let x=(x1,…,xN),y=(y1,…,yN)∈ L=L1×… ×LN. 
Then, both functions

and

are inclusion measures.

i i i imin{ }σ ( ) σ ( )x y≤ = ≤∧ x y

i i i
i
σ (x y )σ ( ) ∏ ≤≤ =Π x y
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Rule-Based Decision-Making

The degree of membership of a red interval-IN 
in class ci equals σ((I1,I2,I3)≤(F1,F2,F3)).

THEN  class ci
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The size of an interval [ah,bh] equals

S([ah,bh]) = v(bh) – v(ah),

The size of a IN F = [ah,bh], h∈(0,1] equals

where function v:R→R is strictly increasing.

1 1
d d

0 0
S([a ,b ]) [v(b ) v(a )]h h h h( )S = −∫ ∫= h hF
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BIINtrn: Batch Interval-IN for training

Let (δ1,c(δ1)),…,(δn,c(δn)) be labeled interval-INs
for training.
Consider a threshold Sθ.
Let (I,J)=argmin{S(δi∨δj)}: I≠J and c(δI)=c(δJ).
while S(δI∨δJ) < Sθ do
Replace both δI and δJ by δI∨δJ.
Let (I,J)=argmin{ S(δi∨δj) }: I≠J and c(δI)=c(δJ).

end while
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BIINtst : Batch Interval-IN for testing

Let (δ1,c(δ1)),…,(δL,c(δL)) be labeled interval-INs.
For i=1 to n do //for each testing datum IN Ei do
J = argmax{σ[Ei,Ei] ≤ δl}, l∈{1,…,L}.
Assign IN Ei to the class c(δJ).

end for
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Preliminary Experiments and Results
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Interval-INs computed from ART descriptors

(a) class “chicken” (b) class “bird”
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Recognition rates > 90%

Comparative experimental work is under way.


