

Universidad Carlos III de Madrid

Detecting Features from Confusion Matrices using Generalized Formal Concept Analysis

F.J. Valverde-Albacete and Carmen Peláez-Moreno

Departamento de Teoría de la Senal y Comunicaciones Universidad Carlos III de Madrid, Spain

24/06/2010 / San Sebastián

This talk: www.tsc.uc3m.es/~carmen/HAIS_24_06_10.pdf

Outline

2 $(\overline{\mathbb{R}}_{max,+})$ -Formal Concept Analysis applied to confusion matrices

- Formal Concept Analysis of boolean confusion matrices
- Exploration of non-boolean confusion matrices
- The analysis of articulation confusion matrices

2/21

San Sebastían 2010

Classification as Transmission

Consider

- A set of input labels (stimuli) G
- A set of output labels (percepts) M
- Events consisting of presenting one input label (stimulus) G = g_i and returning an output label (percept) M = m_i for it.

The Miller & Nicely [1955] Hypothesis:

Recognition of speech seems to be based in the independent transmission of *phonetic features*

Confusion matrices of multiclass classifiers

Ν	р	m	t	f	th	k	S
р	150	0	38	7	13	88	0
m	0	201	0	0	0	0	0
t	30	0	193	1	0	28	0
f	4	1	3	199	46	5	4
th	11	0	6	85	114	4	10
k	86	0	45	4	1	138	0
s	0	0	2	5	38	1	170

Figure: N_{GM} at SNR = 0 dB

- The performance of classifier system can be measured post-operation by a *confusion matrix* counting the ocurrence of the events N_{ij} = N_{GM}(g_i, m_j).
- Notice: no symmetry. Some nulls.

An example of a depiction of a confusion matrix

Motivation

(R_{max,+})-Formal Concept Analysis applied to confusion matrices Formal Concept Analysis of boolean confusion matrices

- Exploration of non-boolean confusion matrices
- The analysis of articulation confusion matrices

3 Conclusions

Formal context and Concept Lattice

Concepts: for context (G, M, I) and concept lattice $\underline{\mathfrak{B}}(G, M, I)$ $(A, B) \in \underline{\mathfrak{B}}(G, M, I) \Leftrightarrow A^+ = B \Leftrightarrow A = {}^+B$

< ロ > < 同 > < 回 > < 回 >

Confusion lattices (cont.)

join- and -meet irreducible concepts $\tilde{\gamma}(s) = (\{s\}, \{s, th\})$ $\tilde{\mu}(th) = (\{f, s, th\}, \{th\})$

Valverde-Albacete & Peláez-Moreno (Univ. CDetecting Features from Confusion Matrices.

Motivation

(R_{max,+})-Formal Concept Analysis applied to confusion matrices Formal Concept Analysis of boolean confusion matrices

Exploration of non-boolean confusion matrices

The analysis of articulation confusion matrices

3 Conclusions

0

Generalized Formal Concept Analysis

• R is the mutual information distribution

$$m{R}(i,j) = \log rac{\hat{P}_{GM}(i,j)}{\hat{P}_{G}(i) \cdot \hat{P}(j)}$$

R	р	m	t	f	th	k	S
р	2.851	$-\infty$	0.824	-1.717	-0.305	2.155	$-\infty$
m	$-\infty$	4.202	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$
t	0.761	$-\infty$	3.401	-4.292	$-\infty$	0.735	$-\infty$
f	-2.213	-3.793	-2.674	3.277	1.683	-1.817	-1.626
th	-0.567	$-\infty$	-1.487	2.236	3.179	-1.953	-0.117
k	2.149	$-\infty$	1.169	-2.424	-3.904	2.905	$-\infty$
s	$-\infty$	$-\infty$	-3.047	-1.826	1.619	-3.928	3.995

E 5 4 E

 $(\mathbb{R}_{max,+})$ -Formal Concept Analysis [Valverde & Peláez, 2007]

$(G, M, R)_{\mathbb{R}_{max,+}}$ is called a $\mathbb{R}_{max,+}$ -valued formal context

- *R*(*i*, *j*) = λ reads as "stimuli *g_i* is confused with received stimuli *m_j* in degree λ"
- or dually "received stimuli m_j is taken for stimuli g_i to degree λ ".
- We can construct φ-concepts as pairs (A, B)_φ with similar properties to those of standard Formal Concept Analysis.

$$(A,B)_{\varphi} \Leftrightarrow (A)^+_{R,\varphi} = B \Leftrightarrow ^+_{R,\varphi}(B) = A$$

- The set of φ-concepts, ordered componentwise is a complete lattice <u>B</u>^φ(G, M, R)_{Rmax,+}.
- φ ∈ ℝ describes a maximum degree of existence allowed for pairs (A, B) to be considered members of <u>B</u>^φ(G, M, R)_{ℝmax,+}.

Structural lattices

- The φ -concept lattice $\underline{\mathfrak{B}}^{\varphi}(G, M, R)_{\overline{\mathbb{R}}_{\max,+}}$ is huge!
- To simplify, for each choice of φ deemed interesting:
 - Work out the concepts $\gamma(g_i)^+_{R,\varphi}$ and $\mu(m_j)^+_{R,\varphi}$ associated to singleton stimuli and responses, respectively.
 - 2 Build a binary incidence $I_{R,\varphi}^+$ associated to those concepts by adequately comparing them to create the binary context $(G, M, I_{R,\varphi}^+)$ with the binary incidence $g_i \langle I_{R,\varphi}^+ \rangle m_i \iff \gamma(g_i)_{R,\varphi}^+ \le \mu(m_i)_{R,\varphi}^+$.

The structural lattice $\underline{\mathfrak{B}}(G, M, I^+_{R,\varphi})$ is the (standard) confusion lattice of the binary incidence, $I^+_{R,\varphi}$

Valverde-Albacete, F. J. and Peláez-Moreno, C. (in press). Extending conceptualisation modes for generalised Formal Concept Analysis. Information Sciences, 2010.

< 回 > < 三 > < 三 >

Outline

Motivation

(R_{max,+})-Formal Concept Analysis applied to confusion matrices Formal Concept Analysis of boolean confusion matrices Exploration of non-boolean confusion matrices

San Sebastían 2010

13/21

The analysis of articulation confusion matrices

3 Conclusions

Phonetic confusion lattice ($\varphi = 0.11716$ and SNR= 0 dB)

Adjoined sublattices establish separate groups or channels!

C. Peláez-Moreno, A. I. García-Moral, and F. J. Valverde-Albacete, *Analyzing phonetic confusions using formal concept analysis*, accepted for publication in Journal of the Acoustical Society of America, 2010.

Valverde-Albacete & Peláez-Moreno (Univ. CDetecting Features from Confusion Matrices.

Classical phonetic theory: articulatory features

	labial	lab-dental	dental	alveolar	p-alv	velar
stops	/p/ /b/			/t/ /d/		/k/ /g/
fricative		/f/ /v/	/th/ /dh/	/s/ /z/	/sh/ /zh/	
nasal	/m/			/n/		

Table: Classification of consonant phonemes in English

Examples: /p/ pit, /b/ bit, /t/ tin, /d/ din, /k/ cut, /g/ gut, /f/ fat, /v/ vat, /th/ thin, /dh/ then, /s/ sap, /z/ zap, /sh/ she, /zh/ measure, /m/ map, /n/ nap.

Classical phonetic theory: a lattice representation

• Voiced sounds on the right of each node.

э

- A - TH

Estimated lattice (including voicedness)

Valverde-Albacete & Peláez-Moreno (Univ. CDetecting Features from Confusion Matrices.

э

A B A A B A

< 5

Conclusions

- K-Formal Concept Analysis is a powerful tool for extracting information from matrices extending the capabilities of Formal Concept Analysis over matrices with entries in a semiring like Rmax,+
- φ ∈ ℝ describes a maximum degree of existence required for pairs (A, B) to be considered as members of the φ-lattice <u>B</u>^φ(G, M, R)_{ℝmax,+}
- We can explore a (R_{max,+})-valued confusion matrices to find channels "trasmitting" some phonetic features, but not *all* those suggested by the standard theory.

References

- G. A. Miller and P. E. Nicely, An analysis of perceptual confusions among some english consonants, Journal of the Acoustical Society of America, vol. 27, no. 2, pp. 338–352, 1955.
- F. J. Valverde-Albacete and C. Peláez-Moreno, *Galois connections* between semimodules and applications in data mining, Lecture Notes on Artificial Intelligence, S. Kusnetzov and S. Schmidt, Eds., vol. 4390. Berlin, Heidelberg: Springer, 2007, pp. 181–196.
- C. Peláez-Moreno, A. I. García-Moral, and F. J. Valverde-Albacete, Analyzing phonetic confusions using formal concept analysis, accepted for publication in Journal of the Acoustical Society of America, 2010.
- C. Peláez-Moreno, F. J. Valverde-Albacete and V. Esteban-Alonso, *KFCA on-line demo*,

http://www.tsc.uc3m.es/~carmen/KFCADemo.html

4 E N 4 E N

Sequences of lattices: feature detection (cont.)

For unvoiced groups we can conclude that friction is the distinctive feature.

Valverde-Albacete & Peláez-Moreno (Univ. CDetecting Features from Confusion Matrices.

\mathcal{K} -Formal Concept Analysis

$$\overline{\mathcal{K}} = \langle \overline{K}, \preccurlyeq \rangle \equiv \langle \overline{K}, \oplus = \lor, \otimes, \cdot^{-1}, \bot, \boldsymbol{e} \rangle$$
$$\overline{\mathcal{K}}^{d} = \langle \overline{K}, \preccurlyeq^{d} \rangle \equiv \langle \overline{K}, \dot{\oplus} = \land, \dot{\otimes}, \cdot^{-1}, \top, \boldsymbol{e} \rangle$$
$$\overline{\mathbb{R}}_{\max,\min,+} = \langle \mathbb{R} \cup \{\pm \infty\}, \max, +, \min, +, \cdot -, -\infty, \mathbf{0}, \infty \rangle$$

The concept forming operators:

 $\langle x \mid R \mid y \rangle = y^{\mathsf{T}} \otimes R^{-1} \otimes x$, where $y \in \mathcal{Y}$ is a multivalued set of objects and $x \in \mathcal{X}$ a multivalued set of attributes is actually a binary residuated operation:

$$(y)_{R,\varphi}^{+} = \bigvee \{ x \in \mathcal{X} \mid \langle x \mid R \mid y \rangle \leq \varphi \} \quad {}^{+}_{R,\varphi}(x) = \bigvee \{ y \in \mathcal{Y} \mid \langle x \mid R \mid y \rangle \leq (y)_{R,\varphi}^{+} = R^{\mathsf{T}} \stackrel{\cdot}{\otimes} y^{-1} \stackrel{\cdot}{\otimes} \varphi \qquad {}^{+}_{R,\varphi}(x) = R \stackrel{\cdot}{\otimes} x^{-1} \stackrel{\cdot}{\otimes} \varphi$$

Valverde-Albacete & Peláez-Moreno (Univ. CDetecting Features from Confusion Matrices.