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Introduction

Introduction

@ Application of Machine Learning (ML) techniques for the
computer aided diagnosis (CAD) of cocaine adicted subjects.

o Aim:

e To obtain discriminant features from scalar measures of
structural (T1) Magnetic Resonance Imaging (MRI) data.

e To train and test classifiers able to discriminate cocaine
dependent patients from healthy subjects.
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Introduction

Cocaine Adiction

@ Cocaine is one of the most illegal consumed drugs.

@ lts chronic abuse may cause: ischemic, hemorrhagic strokes,
cerebral infarcts, depression and neuropsychological
abnormalities.

@ Selected regions in the brains of cocaine users show functional,
neurochemical and structural abnormalities.
@ These regions can be used to identify the differences between

the brains of cocaine users and nonusers and then, to select an
adecuate pharmacotherapy to treat this disorder.
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Introduction

T1 Magnetic Resonace Imaging

e MRI is a medical imaging technique used in radiology to
visualize detailed internal structures.

@ It provides good contrast between the different soft tissues of
the body.
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Introduction

Database

@ 30 male cocaine-dependent patients (34.41 + 6.62).
@ 35 matched controls (33.38 + 7,87).

@ Exclusion criteria: neurological illness, prior head trauma,
positive HIV status, diabetes, Hepatitis C or other medical
iliness and psychiatric disorders.

@ Groups were matched on the basis of age and level of
education.

o Patients were recruited from the Addiction Treatment Service
of San Agustin in Castellén, Spain.
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Methods

Preprocessing Steps

@ Appropriate data preprocessing, ensuring anatomical
correspondence of voxels intersubjects, is of paramount
importance.

@ Volumes were skull stripped and reoriented.
@ Two registration phases:

o Affine registered to MNI152 standard template.
o Nonlinear diffeomorphic registration of affine registered data to
MNI152 template was computed.
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Methods

Feature Selection process

@ Procedure:

o Considering each voxel site independently, we compose a vector
with the intensities at the voxel site across all the subjects.

o We compute Pearson’s correlation coefficient between this
vector and the control variable (Control=0; Patients=1)
obtaining a volume of correlation values at each voxel.

o We select a threshold corresponding to a percentile of the
absolute correlation distribution, retaining the voxel sites with
absolute value of correlation above this threshold.

o For each percentile selected, we compose a feature vector for
each subject.
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Methods

ature Extraction pipeline
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Figure: Feature Extraction Process.
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Methods

Dimensionality reduction

’ Percentile (%) ‘ # Features | Percentile (%) \ # Features

no processed 10.092.544 99,85 3.187
0 7.221.032 99,90 2.125
99,50 10.624 99,92 1.699
99,55 9.561 99,95 1.062
99,60 8.499 99,97 637
99,65 7.437 99,99 212
99,70 6.374 99,995 106
99,75 5.312 99,999 21
99,80 4.250

Table: Dimensionality reduction
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Classification

Support Vector Machines

@ Support Vector Machines (SVM) approach is a pattern
recognition technique based on statistical learning theory.

@ lts training principle consists of finding an optimal hyperplane
that minimize the expected classification error.

N
yxw) = ZwiK(x,xi) +wo
i=1
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Classification

Support Vector Machines

Figure: SVM linear separation.
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Computational Experiments Results
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Computational Experiments Results

Methodology

@ To evaluate performance:
e Leave one out cross-validation.
@ To quantify results:

e Accuracy.
o Sensitivity.
o Specificity.
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Computational Experiments Results

Classification Results

| (%) | 99.50-99.90 | 99.92 [ 99.95 | 99.97 | 99.99 | 99.995 | 99.999 |
Specificity 100.00 100.00 | 100.00 | 100.00 | 100.00 96.67 80.00
Sensitivity 100.00 100.00 | 100.00 | 100.00 97.14 97.14 88.57
Accuracy 100.00 100.00 | 100.00 | 100.00 98.46 96.92 84.61

Table: SVM classification results
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Computational Experiments Results

Feature Extraction result

o Voxels selected for the feature vectors were localized in:

Cerebral cortex
Planum polare
Insula
Parahippocampus
Cerebellum.

@ MNI structural atlas and Harvard-Oxford cortical and
subcortical atlases.

o Tool: AtlasQuery tool of FSL.
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Computational Experiments Results

Feature Extraction result

Figure: Most discriminant voxels for 99.50% percentile.
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Summary and Conclusions

Summary

@ We present a procedure for the construction of classifers able
to distinguish cocaine dependent patients from healthy
subjects using structural brain MRI.

@ We preprocess the images to ensure anatomical
correspondence of intersubjects, extract the most significant
features (Pearson's correlation) and use SVMs to classify these
features.
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Summary and Conclusions

Conclusions

@ Results are 100% accuracy, sensitivity and specificity for
almost all the percentiles we tested.

@ Brain regions where we find relevant information are also
found in the literature, supporting our methodology and
validating our results.
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Summary and Conclusions

Further work

e Main limitation:
o Results come from a small database.

@ More extensive testing will be needed to confirm our
conclusions.
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Thanks

o Contact:

Maite Termendn - PhD student.

Grupo de Inteligencia Computacional.

Universidad del Pais Vasco, San Sebsatian, Spain.
E-mail: maite.termenon@ehu.es
http://www.ehu.es/computationalintelligence
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