
Robot localization based on KS-FAM

October 26, 2010

1 Description
The objective is mobile robot vision based localization using associative mem-
ories. The map stores a path previously followed by the robot in the form of
several view “landmarks” representing points of interest in the path. Those
landmarks will identify a section of the path, dividing it in a sequence of lo-
cations without gaps between them. These landmarks are stored as gray-scale
patterns in a Kosko Subsethood Fuzzy Associative Memory (KS-FAM) [1]. Lo-
calization will be performed by feeding the KS-FAM with the images that the
robot acquires in its movement, obtaining from it the recognized position.

2 Experiment details
For the experiment, the optical image database already recorded is used [5, 4,
6, 7, 2, 3]. Results shown here are obtained from the first recorded path. As
in other experiments, the first walk is used for training and the remaining 5
for testing. The sample path contains 11 relevant positions, that will be the
number of associations stored in the memories.

The code for the KS-FAM was provided by prof. Peter Sussner1.
Available example uses of KS-FAM are as Auto-Associative memories. In this

experiment, the Auto-Associative type has the additional problem of estimating
which position is the one recalled by the memory. Visual examination of results
with both Auto-Associative and Hetero-Associative memories seemed to give
very similar results. So, in a first approach, Hetero-Associative memories are
used and after evaluating their results, the same experiment will be performed
with Auto-Associative memories to compare their performance.

In the first experiment, the reference path map used identified each local-
ization with a single landmark, corresponding to the position of the interest
location in the map. In further experiments, each of the locations was identified
by several views arround the landmark, well distributed along the path segment
corresponding to it.

1http://www.ehu.es/ccwintco/groupware/webdav.php/apps/phpbrain/142/KSFAM%20-
%20Code.rar

1



2.1 Hetero-Associative case
In the pairs (x,y), x will be the pattern (gray-scale image corresponding to the
landmark that is going to be stored) and y will be a vector of size n = # of
patterns to store. The vector will be composed of 0’s, except for one 1 in the
vector position corresponding to the map position of the stored pattern. e.g:

Being X = {x1, x2, x3, x4, x5} the patterns that we want to encode in the KS-
FAM. The pair y2 of pattern x2 (second pattern in the path) will be y2 = [01000].
Y (the matrix of outputs) will be then (vectors stored column-wise):

Y =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

which corresponds to an identity matrix of size nxn.
Initially, a simpler approach was used, being yi a scalar identifying the po-

sition (i.e. ’2’ for the second position instead of [01000]). However, results
obtained with that method were much worse.

For validation purposes, the same ground division based on the odometry
data of previous experiments has been used.

2.2 View selection
In the case of maps with several views representing each location, those views
are selected according to the number of views to choose and the size of the
segment, in order to get views well spread along the segment. The cental view
of the segment is selected and views are selected ahead and behind it, with steps
equal to the number of views in the segment divided by the number of views
we want to select. For example, if we want to select 5 views from a segment of
25 views, first we choose the central view (view #13) and two views ahead and
behind it at spaces of 5 views (# of views in the segment / # of views we want
to select). In this way, the selected views will be 3, 8, 13, 18 and 23.

Every selected view for each segment will be encoded in the memory with
the same pair: the vector corresponding to the reference position.

2.3 Image normalization
Strong illumination variations between positions suggested that some prepro-
cessing concerning the lightness of the images could improve the results. The
approach tried was to normalize the images such that the mean of pixels value
is 0.5, using the code provided by Estevão Esmi.

2



3 Implementation details

3.1 Hetero-Associative case
First, the image database is transformed to gray-scale [0,1], as is done in the
sample code provided by Sussner.

f o r i = 1 : nWalks
f o r j = 1 : tamsBD( i ) ;

bdImagenes { i }( j , : ) = mat2gray ( bdImagenes { i }( j , : ) ) ;
end

end

The patterns matrix is built using the images of the selected landmark po-
sitions from the first walk.

X = ze r o s ( tamVec , n S i t i o s ) ; % r e s e r v o e s p a c i o para mat r i z de pa t r on e s
% obtengo l o s pa t r on e s ( imagenes de l o s landmaks )
f o r i = 1 : n S i t i o s

X ( : , i ) = bdImagenes {1}( s i t i o s ( i ) , : ) ;
end

Output patterns matrix is built as the identity matrix.

Y = eye ( n S i t i o s ) ; % cada v e c t o r t end rá un 1 en l a p o s i c i ó n c o r r e s p o n d i e n t e

Mxz and Wzy memories are built using the input and output pattern matri-
ces.

Mxz = BoxMax2 ( eye ( n S i t i o s ) , −1∗X’ ,− I n f ) ;
Wzy = BoxMin2 (Y, −1∗eye ( n S i t i o s ) , I n f ) ;

For each test walk i, the images are put in an input matrix and feed to the
memories. Some of the code is redundant or unnecessary, but was done like that
to make sure that it was being done correctly.

Xin = z e r o s ( tamVec , tamsBD( i ) ) ;
f o r j = 1 : tamsBD( i )

Xin ( : , j ) = bdImagenes { i }( j , : ) ;
end
[ Yout , u ] = AMM_Nova( Xin , Mxz ,Wzy ) ;

Output vectors are translated to scalars identifying the positions (’find’ re-
turns the nonzero position in the vector) .

posLoc ( j ) = f i n d ( Yout ( : , j ) ) ;

3



Success rate is calculated for each walk (i+1 because the first walk was used
for training) using the path division based on odometry.

a c i e r t o s ( i ) = sum( posLoc { i } ( : ) == gruposOdo{ i +1}( : ) )/ tamsBD( i +1);

3.2 Auto-Associative case
First, the image database is transformed to gray-scale [0,1], as is done in the
sample code provided by Sussner.

f o r i = 1 : nWalks
f o r j = 1 : tamsBD( i ) ;

bdImagenes { i }( j , : ) = mat2gray ( bdImagenes { i }( j , : ) ) ;
end

end

The patterns matrix is built using the images of the selected landmark po-
sitions from the first walk.

X = ze r o s ( tamVec , n S i t i o s ) ; % r e s e r v o e s p a c i o para mat r i z de pa t r on e s
% obtengo l o s pa t r on e s ( imagenes de l o s landmaks )
f o r i = 1 : n S i t i o s

X ( : , i ) = bdImagenes {1}( s i t i o s ( i ) , : ) ;
end

Output patterns matrix is the same than the patterns matrix.

Ya = X; % s a l i d a en e l caso de l a s a u t o a s o c i a t i v a s

Mxz and Wzya memories are built using the input and output pattern ma-
trices.

Mxz = BoxMax2 ( eye ( n S i t i o s ) , −1∗X’ ,− I n f ) ;
Wzya = BoxMin2 (Ya , −1∗eye ( n S i t i o s ) , I n f ) ;

For each test walk i, the images are put in an input matrix and feed to the
memories. Some of the code is redundant or unnecessary, but was done like that
to make sure that it was being done correctly.

Xin = z e r o s ( tamVec , tamsBD( i ) ) ;
f o r j = 1 : tamsBD( i )

Xin ( : , j ) = bdImagenes { i }( j , : ) ;
end
[ Yout , u ] = AMM_Nova( Xin , Mxz , Wzya ) ;

4



The obtained output is compared with the stored patterns. The recognized
position is the closest pattern. Since the memory always retrieves one of the
stored patterns, the lowest difference will be equal to 0.

f o r i = 2 : nWalks
% Compruebo a que p o s i c i ó n co r r e s ponde cada imagen d e v u e l t a
outWalk = grupos { i −1};
f o r j = 1 : s i z e ( outWalk , 2 )

% Compruebo cua l e s e l landmark mas ce r cano
d i f sA c = z e r o s ( tamVec , n S i t i o s ) ;
f o r k = 1 : n S i t i o s

d i f sA c ( : , k ) = X( : , k ) − outWalk ( : , j ) ; %d i s t a n c i a e n t r e e l landmark k y l a imagen d e v u e l t a para esa p o s i c i ó n
end
[ ordenados , orden ] = s o r t ( sum( abs ( d i f sA c ) ) ) ; %sumo d i f e r e n c i a s y ordeno
posLoc { i −1}( j ) = orden ( 1 ) ; %me quedo con e l menor

end
end

Success rate is calculated for each walk (i+1 because the first walk was used
for training) using the path division based on odometry.

a c i e r t o s ( i ) = sum( posLoc { i } ( : ) == gruposOdo{ i +1}( : ) )/ tamsBD( i +1);

4 Results
Obtained results are rather poor, as can be appreciated in tables 1 and 2.
Surprisingly, the best results were obtained using the smallest images. Also,
exactly the same results were obtained with both Hetero-Associative and Auto-
Associative memories.

Table 3 shows the results obtained using several views to represent each
position, using the smallest images. We can appreciate some improvement,
being the best results with 5 and 9 views, and degrading with higher number of
views by position. The view selection algorithm was automatic, so with higher
number of images we can not garantee that one view could be selected several
times when the number of views to select is greater than the number of views
in the segment. The table shows also the results obtained storing all the images
of the path in the KS-FAM.

Table 4 shows the results using normalized images. The success rates increase
greatly in all cases, with improvements up to 30%. Also, the results obtained
are much more stable, with less variability between walks. The table 5 shows
the results obtained with normalized images and 9 views for each landmark,
divided by positions. It can be appreciated that, while 6th and 7th positions
are better recognised now, most of the error comes from 2nd, 10th and 11st
positions.

5



Image size Walk 2 Walk 3 Walk 4 Walk 5 Walk 6 Mean
242x314 0.3221 0.3812 0.2883 0.3264 0.246 0.3128
121x157 0.2969 0.3193 0.2909 0.3107 0.2086 0.28528
61x79 0.4678 0.4629 0.4494 0.389 0.4171 0.43724

Table 2: Position recognition success rates obtained using Auto-Associative KS-
FAM, with images of different sizes.

# of views Walk 2 Walk 3 Walk 4 Walk 5 Walk 6 Mean
5 0.619 0.5891 0.4727 0.4517 0.4733 0.52116
7 0.4734 0.3911 0.3481 0.3551 0.3556 0.38466
9 0.6162 0.4975 0.4987 0.4674 0.5214 0.52024
11 0.521 0.3738 0.3403 0.3629 0.3503 0.38966
13 0.5042 0.4158 0.3506 0.3681 0.3663 0.401
15 0.4818 0.3614 0.3455 0.3316 0.3102 0.3661
17 0.4566 0.3787 0.3299 0.3577 0.3529 0.37516
All 0.5462 0.4356 0.4078 0.3525 0.4064 0.4297

Table 3: Position recognition success rates using different number of views for
each position.

The computation times of the Auto-Associative memories are much higher
(figures 1 and 2) with no appreciable improvement in the obtained results (Note:
the higher computation time of the 2nd walk is probably due the program
reserving memory for the first time for the Xin variable).

Image size Walk 2 Walk 3 Walk 4 Walk 5 Walk 6 Mean
242x314 0.3221 0.3812 0.2883 0.3264 0.246 0.3128
121x157 0.2969 0.3193 0.2909 0.3107 0.2086 0.28528
61x79 0.4678 0.4629 0.4494 0.389 0.4171 0.43724

Table 1: Position recognition success rates obtained using Hetero-Associative
KS-FAM, with images of different sizes.

6



# of views Train Walk 2 Walk 3 Walk 4 Walk 5 Walk 6 Mean
3 0.6464 0.5126 0.5817 0.4234 0.4778 0.484 0.4959
5 0.9558 0.7143 0.646 0.6052 0.5822 0.639 0.63734
7 0.9503 0.7367 0.6411 0.6026 0.6319 0.631 0.64866
9 0.9724 0.7451 0.6782 0.6234 0.658 0.6791 0.67676
11 0.9503 0.7395 0.6906 0.6182 0.658 0.6551 0.67228
13 0.9586 0.7367 0.6856 0.6156 0.6554 0.6631 0.67128
15 0.9586 0.7395 0.6881 0.6442 0.6475 0.6257 0.669
17 0.8895 0.7451 0.6807 0.6208 0.6397 0.6684 0.67094

Table 4: Position recognition success rates with normalized images. Mean does
not include the test walk.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Train 1 1 0.973 0.9667 1 1 1 0.9592 1 1 0.8125

Walk 2 1 0.3333 0.4848 0.9231 0.963 0.881 0.9412 0.9483 1 0.5 0
Walk 3 1 0 0.3421 0.9167 0.8857 0.7872 0.9737 0.8814 1 0.4 0.0588
Walk 4 1 0 0.2333 0.825 0.4333 0.8 0.9697 0.9796 0.9429 0.1923 0
Walk 5 1 0 0.641 0.6053 1 0.8261 0.9744 1 0.7407 0.1176 0.0286
Walk 6 1 0 0.5714 0.8485 1 0.8718 0.9722 0.96 0.8333 0 0

Table 5: Position recognition success rates by position, using normalized images
and 9 views for each landmark.

>> localizacionKSFAM
Creando matr i ce s de entrada y s a l i d a .
Elapsed time i s 0 .003206 seconds .
Calculando Mxz .
Elapsed time i s 0 .632443 seconds .
Calculando Wzy.
Elapsed time i s 0 .004929 seconds .
Calculando l o c a l i z a c i o n walk 2 .
Elapsed time i s 4 .189256 seconds .
Calculando l o c a l i z a c i o n walk 3 .
Elapsed time i s 0 .903991 seconds .
Calculando l o c a l i z a c i o n walk 4 .
Elapsed time i s 0 .968646 seconds .
Calculando l o c a l i z a c i o n walk 5 .
Elapsed time i s 0 .982962 seconds .
Calculando l o c a l i z a c i o n walk 6 .
Elapsed time i s 0 .856521 seconds .

tTota l =

8.5421

Figure 1: Hetero-Associative run with smallest images.

7



>> localizacionKSFAMAA
Creando matr i ce s de entrada y s a l i d a .
Elapsed time i s 0 .003120 seconds .
Calculando Mxz .
Elapsed time i s 0 .593087 seconds .
Calculando Wzya .
Elapsed time i s 0 .013334 seconds .
Calculando l o c a l i z a c i o n walk 2 .
Elapsed time i s 7 .779774 seconds .
Calculando l o c a l i z a c i o n walk 3 .
Elapsed time i s 5 .628681 seconds .
Calculando l o c a l i z a c i o n walk 4 .
Elapsed time i s 5 .091582 seconds .
Calculando l o c a l i z a c i o n walk 5 .
Elapsed time i s 5 .044541 seconds .
Calculando l o c a l i z a c i o n walk 6 .
Elapsed time i s 4 .827368 seconds .
Calculando l a po s i c i ón devue l ta .
Elapsed time i s 1 .303573 seconds .

tTota l =

30.2852

Figure 2: Auto-Associative run with smallest images.

8



Recognized Position
Real Position 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

1st 30 0 0 0 0 0 0 0 0 0 0
2nd 0 3 0 0 0 0 6 0 0 0 0
3rd 0 0 16 0 7 4 6 0 0 0 0
4th 0 0 1 24 1 0 0 0 0 0 0
5th 0 0 0 1 26 0 0 0 0 0 0
6th 0 0 0 0 4 37 1 0 0 0 0
7th 0 0 0 0 0 2 32 0 0 0 0
8th 0 0 0 0 3 0 0 55 0 0 0
9th 0 0 0 0 0 0 0 0 27 0 0
10th 11 0 0 0 0 0 0 0 5 16 0
11th 4 0 0 0 32 3 0 0 0 0 0

(a) Table

(b) Image

Figure 3: Recognized positions in each landmark with 9 view and normalized
images.

5 Discussion
The dense nature of the map can cause “overlapping” recognition areas. That
is, the views at both sides of the boundaries of two consecutive positions are
very similar, and they may be recognised as belonging to the neighbour and
not to the actual position they belong to. This problem would be responsible
for a small percentage of the error rate. There is also a problem when different
positions have views quite similar. This problem can be appreciated in the long
corridor.

However there are other recognition problems whose source must be neces-
sarily different. For instance, several views of the first segment are recognised
as members of the last segment (maybe due the windows in the upper part of
the image). Also, the sixth and seventh positions are completely missed.

After the normalization of the images, the problem with the sixth and sev-
enth positions seems solved, but instead we get very bad results in the 2nd,
10th and 11st positions. In 2nd position, a great deal of the error comes from
recognizing the 7th position. In 10th positions recognizes several times the 1st
position. Finally, in 11st position recognizes the 5th position (figure 3).

9



References
[1] Peter Sussner and Estevão Esmi. An introduction to the Kosko Subsethood

FAM. In Emilio Corchado, Manuel Graña Romay, and Alexandre Man-
haes Savio, editors, Hybrid Artificial Intelligence Systems, volume 6077 of
Lecture Notes in Computer Science, pages 343–350. Springer Berlin / Hei-
delberg, 2010.

[2] Ivan Villaverde, Alicia D’Anjou, and Manuel Graña. Morphological Neural
Networks and vision based simultaneous localization and maping. Integrated
Computer-Aided Engineering, 14(4)(14):355–363, 2007. IOS Press.

[3] Ivan Villaverde, Borja Fernandez-Gauna, and Ekaitz Zulueta. Lattice Inde-
pendent Component Analysis for mobile robot localization. In Emilio Cor-
chado, Manuel Graña Romay, and Alexandre Manhaes Savio, editors, Hybrid
Artificial Intelligence Systems, volume 6077 of Lecture Notes in Computer
Science, pages 335–342. Springer Berlin / Heidelberg, 2010.

[4] Ivan Villaverde, Manuel Graña, and Alicia D’Anjou. Morphological Neural
Networks and vision based mobile robot navigation. In Artificial Neural
Networks - ICANN 2006, volume 4131 of Lecture Notes in Computer Science,
pages 878–887. Springer-Verlag, 2006.

[5] Ivan Villaverde, Manuel Graña, and Alicia D’Anjou. Morphological Neural
Networks for localization and mapping. In Proceedings of the IEEE Interna-
tional Conference on Computational Intelligence for Measurement Systems
and Applications (CIMSA 06), pages 9–14. IEEE Press, 2006.

[6] Ivan Villaverde, Manuel Graña, and Alicia D’Anjou. Morphological Indepen-
dence for landmark detection in vision based SLAM. In F. Sandoval, A. Pri-
eto, J. Cabestany, and M. Graña, editors, Proc. of IWANN 2007, volume
4507 of Lecture Notes in Computer Science, pages 847–854. Springer-Verlag,
2007.

[7] Ivan Villaverde, Manuel Graña, and Jose Luis Jiménez. Lattice Inde-
pendence and vision based mobile robot navigation. In Bruno Apolloni,
Robert J. Howlett, and Lakhmi Jain, editors, Knowledge-Based Intelligent
Information and Engineering Systems, KES 2007, volume 4693/2009 of Lec-
ture Notes in Artificial Inteligence, pages 1196–1203. Springer-Verlag, 2007.

10


