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ente, Miguel A. Veganzones, Manuel GrañaComputational Intelligen
e Group, Bask Country University (UPV/EHU)Abstra
t. In this paper we deal with the problem of indexing hyper-spe
tral images as an spe
ial 
ase of Content Based Image Retrieval(CBIR) systems. We de�ne a similarity measure between hyperspe
tralimages based on the image endmembers, whi
h are indu
ed from theimages. For this indu
tion we use Asso
iative Morphologi
al Memories(AMM).1 Introdu
tionThe growth in multimedia information, espe
ially images, is driving the develop-ment of the �eld of Content Based Image Retrieval (CBIR) [1℄. Remote sensingand earth observation are a big sour
e of images that may bene�t from auto-mated exploration (data mining) and retrieval systems. In CBIR systems, theimages stored in the database are labeled by feature ve
tors, whi
h are extra
tedfrom the images by means of 
omputer vision and digital image pro
essing te
h-niques. In CBIR systems, the query to a database is spe
i�ed by an image. Thequery's feature ve
tor is 
omputed and the 
losest items in the database, a
-
ording to a similarity metri
 or distan
e de�ned in feature spa
e, are returnedas the answers to the query. This is the low level, semanti
 free, de�nition ofthe CBIR systems, that does not take into a

ount the semanti
 gap betweenthe user expe
tations and the system response. Re
ent approa
hes [6℄ apply rel-evan
e intera
tions with the user to build up semanti
 models upon to drive theinformation retrieval and data mining pro
esses to the user expe
tations. Ourwork, however, is at the low level, without relevan
e iteration me
hanisms.In hyperspe
tral images ea
h pixel 
ontains a �ne sampling of the visible andnear infrared spe
trum, represented by a high dimensional ve
tor. New spa
emissions, like Hyperion, in
lude hyperspe
tral sensor, so it 
an be expe
ted agrowing need for the maintenan
e of large 
olle
tions of hyperspe
tral images,and for the automated sear
h within these 
olle
tions. The attempts to de�neCBIR strategies for them are s
ar
e and partial. In [3℄ the authors use thespe
tral mean and varian
e, as well as a texture feature ve
tor, to 
hara
terizehyperspe
tral image tiles. The approa
h sear
hes for spe
i�
 phenomena in theimages (hurri
anes, �res, et
), using an intera
tive relevan
e strategy that allowsthe user to re�ne the sear
h. In [6℄ some of the �rst PCA and texture featuresfrom the �rst PCA image are used as feature ve
tors.We propose the 
hara
terization of the hyperspe
tral images by their so-
alled endmembers. Endmembers are a set of spe
tra that are assumed as ver-ti
es of a 
onvex hull 
overing the image pixel points in the high dimensional



spe
tral spa
e. Endmembers may be de�ned by the domain experts (geologists,biologists, et
.) sele
ting them from available spe
tral libraries, or indu
ed fromthe hyperspe
tral image data using ma
hine learning te
hniques. In [4,5℄ we haveproposed an automated pro
edure that indu
es the set of endmembers from theimage, using AMM to dete
t the morphologi
al independen
e property, whi
his a ne
essary 
ondition for a 
olle
tion of endmembers. The goal in [4,5℄ wasto obtain a method for unsupervised hyperspe
tral image segmentation. Therethe abundan
e images were of interest. In this paper, the goal is to obtain a
hara
terization of the image that 
an be useful for CBIR. The 
olle
tion ofendmembers serves as a summary of the spe
tral information in the image.2 Spe
tral mixing and endmember extra
tionLinear mixing models assume the knowledge of a set of endmembers S = [s1, s2, ..., sn],where ea
h si ∈ Rdis a d-dimensional ve
tor. Then, one pixel of a hyperspe
tralimage 
an be expressed as f(x, y) = S · a(x, y) + η(x, y), where η(x, y) is theindependent additive noise 
omponent and a(x, y) is the n-dimensional ve
torof endmember fra
tional abundan
e in the pixel. In other words, a(x, y) are the
onvex 
oordinates of the pixel relative to the 
onvex hull de�ned by the ver-ti
es in S. In [4,5℄ we were interested in a(x, y) as unsupervised segmentationsof the hyperspe
tral image. Here we 
onsider that the set of endmembers S maybe per se a good 
hara
terization of the hyperspe
tral image S, if it has beenobtained from it. The method proposed in [4,5℄ to obtain the set of endmembers
S is based on the notion of morphologi
al independen
e [8℄. Given a ve
tor set
X = {x1, x2, ..., xm}, a new ve
tor y is morphologi
ally independent in the ero-sive sense from X if 6 ∃x ∈ X |y ≤ x and it is morphologi
ally independent in thedilative sense from X if 6 ∃x ∈ X |y ≥ x. The partial order de�ned over the ve
-tors is the one indu
ed from the order of their 
omponents: y ≤ x ⇔ ∀i, yi ≤ xi.The ve
tor set X is said to be morphologi
ally independent when all the ve
-tors in the set are independent of the remaining ones in either sense. A set ofmorphologi
al independent ve
tors de�nes a high dimensional box.In [4,5℄ we propose the use of AMMs for the dete
tion within a hyperspe
tralimage of a set of morphologi
al independent spe
tra whose 
orresponding highdimensional box may be taken as a good approximation to the 
onvex hull ofthe image data. The algorithm is shown in Algorithm 1. These spe
tra are theindu
ed endmembers that will be used to 
hara
terize the image. In brief theproposed method 
onsists in the following:1. A seed pixel is taken as the initial set of endmembers.2. Erosive and dilative AMMs are built from the 
urrent set of endmembers.3. Ea
h pixel is examined as a 
andidate endmember testing the response ofthe erosive and dilative AMMs to it.4. Morphologi
ally independent pixels are added to the set of endmembers.The pro
ess takes into a

ount the varian
e of the spe
tra at ea
h band toenhan
e the robust dete
tion of endmembers, adding and subtra
ting the



Algorithm 1 The indu
tion of the endmembers from the image in one pass overthe image1. Compute the zero mean image: fc(i, j) = f(i, j) − µ; i = 1, ..., n; j = 1, ..., m2. Initialize the set of endmembers E = {e1} with a pixel spe
tra randomly pi
kedfrom the image. Initialize the set of morphologi
ally independent binary signatures
X = {x1} = {e1

k > 0; k = 1, ..., d}3. Constru
t the AMM's based on the morphologi
ally independent binary signatures:
MXXand WXX .4. For ea
h pixel fc(i, j):(a) Compute the ve
tor of the signs of the Gaussian noise 
orre
tions f+(i, j) =

(fc(i, j) + ασ > 0) and f−(i, j) = (fc(i, j) − ασ > 0)(b) Compute y+ = MXX ∧ f+(i, j)(
) Compute y− = WXX ∨ f−(i, j)(d) if y+ 6∈ X or y− 6∈ X then fc(i, j) is a new endmember to be added to E, goto spet 3 and resume the exploration of the image(e) if y+ 6∈ X and fc(i, j) > ey+ the pixel spe
tral signature is more extreme thanthe stored endmember, then substitute ey+ with fc(i, j)(f) if y− 6∈ X and fc(i, j) < ey− the pixel spe
tral signature is more extreme thanthe stored endmember, then substitute ey− with fc(i, j)per band standard deviation multiplied by a gain parameter to the pixelspe
trum before performing the tests with the dilative and erosive AMMs,respe
tively. This gain parameter is set by default to 2. The pro
ess goesone time over the image data. If the region is very homogeneous, the pro
essmay stop without adding any new endmember, besides the seed pixel taken.Then, the gain parameter is redu
ed and the pro
ess is repeated until thenumber of endmembers is 2 or more.3 Distan
e between imagesLet it be Sk = sk
1
, sk

2
, ..., sk

pk
the set of endmembers, obtained as des
ribed beforefrom the k-th image fk(x, y) in the database, where pk is the number of endmem-bers dete
ted in this image. Given two images fk(x, y) and fl(x, y), we 
omputethe following matrix whose elements are the Eu
lidean distan
es between theendmembers of ea
h image:

Dk,l = di,j ; i = 1, ..., pk; j = 1, ..., pl (1)where di,j = |sk
i − sl

j |.We 
ompute the ve
tors of the minimal values by rows and 
olumns, mk =
[

mk
i = minj{di,j}

] and mk =
[

ml
i = mini{di,j}

] respe
tively. Then the similaritybetween the images is given by the following expression:
d(fk, fl) = (|mk| + |ml|)(|nk − nl| + 1) (2)



4 Dis
ussion of distan
e propertiesThe endmember indu
tion pro
edure may give di�erent number of endmembersand endmember features for two hyperspe
tral images. The similarity measureis a 
omposition of two asymmetri
al views: ea
h ve
tor of minimal distan
esmeasures how 
lose are the endmembers of one image to some endmember ofthe other image. Suppose that all the endmembers Sk of an image are 
lose toa subset of the endmembers Sl of the other image. Then the ve
tor of minimaldistan
es mk will be very small, not taking into a

ount the unlike endmembersin the se
ond image. However, the ve
tor of minimal distan
es ml will be largerthan mk be
ause it will take into a

ount the distan
es of endmembers in Slwhi
h are unlike to those in Sk. Thus the similarity measure 
an 
ope withthe asymmetry of the situation. It avoids the 
ombinatorial problem of tryingto de
ide whi
h endmembers 
an be mat
hed and what to do in 
ase that thenumber of endmembers is di�erent from one image to the other. The di�eren
e inthe number of endmembers is introdu
ed as an amplifying fa
tor. The measureis independent of image size and, as the endmember indu
tion algorithm is veryfast, it 
an be 
omputed in a

eptable time. Also the endmember set poses nostorage problem.Our approa
h does not use spatial features, su
h as the textures in [3℄, but theendmembers give a ri
h 
hara
terization of the spe
tral 
ontent of the image. Afurther work on our approa
h may be the study of spatial features 
omputed onthe abundan
e images produ
ed by the spe
tral unmixing, solving the questionof band sele
tion or dimension redu
tion prior to spatial feature 
omputation.5 Experimental results on simulated dataThe hyperspe
tral images used for the experimental results are generated as lin-ear mixtures of a set of spe
tra (the ground truth endmembers) with synthesizedabundan
e images. The ground truth endmembers were randomly sele
ted froma subset of the USGS spe
tral libraries 
orresponding to the AVIRIS �ights.Figures 1 and 2 show some spe
tra used in the 2 and 5 endmembers images.The syntheti
 ground truth abundan
e images were generated in a two steppro
edure, �rst we simulate ea
h as an gaussian random �eld with Matern 
or-relation fun
tion of parameters θ1, θ2 varying between 2 and 20. We applied thepro
edures proposed by [7℄ for the e�
ient generation of big domain gaussianrandom �elds. Se
ond, to ensure that there are regions of almost pure endmem-bers we sele
ted for ea
h pixel the abundan
e 
oe�
ient with the greater valueand we normalize the remaining to ensure that the abundan
e 
oe�
ients inthis pixel sum up to one. It 
an be appre
iated on the abundan
e images thatea
h endmember has several regions of almost pure pixels, viewed as brighterregions in the images. Image size is 256x256 pixels of 224 spe
tral bands ea
h.We have generated 
olle
tions of 100 images with 2 to 5 ground truth endmem-ber/abundan
es, for total number of 400 images.The experiment performed on these images 
onsists on the following steps:



Fig. 1. Ground truth endmembers extra
ted from the USGS library used in one dis-tan
e of a 2-endmembers syntheti
 image

Fig. 2. Ground truth endmembers extra
ted from the USGS library used in one dis-tan
e of a 5-endmembers syntheti
 image



1. Compute the distan
es between the images in the database using the groundtruth endmembers. The distan
es are 
omputed between images with thesame number of ground truth endmembers, and with all the remaining im-ages.2. Extra
t the endmembers from the images using the approa
h des
ribed inse
tion 2.3. Compute the distan
es between the images in the database using the mor-phologi
ally independent indu
ed endmembers. The distan
es are 
omputedbetween images with the same number of ground truth endmembers, andwith all the remaining images.4. We 
onsider the R 
loser images to ea
h image in ea
h 
ase (ground truthand morphologi
ally independent indu
ed endmembers) as the responses toa potential query represented by the image.5. The images that appear in both responses (based on the ground truth andthe morphologi
ally independent indu
ed endmembers) are 
onsidered asrelevant images, or 
orre
t responses.In table 1 we present the results from the experiment with the 400 images, interms of the average number of 
orre
t responses. First row presents the resultswhen we pool together all the images, regardless of the number of ground truthendmembers. The next rows present the results when we only try to sear
h inthe sub
olle
tion of images with the same number of endmembers as the queryimage. Ea
h row 
orresponds to a di�erent number of images in the response tothe query. The value of the noise gain was set to α = 0.5.R=1 R=3 R=5 R=10All images 0.94 1.21 1.61 2.962 Endmembers 0.81 1.55 2.27 4.673 Endmembers 0.98 1.44 2.21 4.964 Endmembers 0.99 1.53 2.36 4.815 Endmembers 1.00 1.57 2.37 4.74Table 1. Average number of relevant images per queryIn Table 1 it 
an be appre
iated that the 
onsideration of all the images asresponses to the query introdu
es some 
onfusion and redu
e the average num-ber of 
orre
t images obtained in the query. This e�e
t 
an be due to the fa
tthat the morphologi
al independen
e algorithm 
an �nd a number of endmem-bers di�erent from the ground truth making it possible for the image to mat
hwith images outside its natural 
olle
tion of images. Then images with di�erentground truth numbers of endmembers may be
ome similar enough to enter intheir respe
tive response sets.When we restri
t the sear
h to the 
olle
tions with identi
al number of groundtruth endmembers, all the results improve, ex
ept when R=1. We have thatnear 50% of the responses are signi�
ative when R>1. The 
ase R=1 
an be



interpreted as the probability of obtaining the 
losest image in the databasea

ording to the distan
e de�ned in se
tion 3, or the probability of su

ess. It
an be seen that it is very high, 
lose to 1 for all sear
h instan
es, ex
ept for the
ase of 2 ground truth endmembers.6 Con
lussions and further workWe have proposed an approa
h to CBIR in homogeneous databases of hyper-spe
tral images based on the 
olle
tion of endmembers indu
ed by an algorithmsthat sear
hes for morphologi
ally independent ve
tors. We have performed anexperiment of exhaustive sear
h on a 
olle
tion of simulated hyperespe
tral im-ages. The results are en
ouraging: almost 100% su

ess in providing the 
losestimage in terms of the ground truth endmembers.However these results only 
on�rm the ability of the AMM based algorithmto �nd a good approximation to the ground truth endmembers. We have still totest the e�e
t of additive noise on the results, and maybe to perform 
omparisonwith other endmember extra
tion algorithms. Previous experiments 
omparingthe AMM based algorithm with Independent Component Analysis (ICA) [9,10℄and other algorithms have been favourable to the AMM algorithm [4,5℄.It is possible to de�ne other distan
es based on the endmembers extra
ted bythe AMM (or any alternative algorithm). For example, the Eu
lidean distan
ebetween individual endmembers may be substituted by max/min distan
es. Thewhole set of endmbembers may be evaluated a

ording to the Haussdorf distan
e.There are also diverse ways to evaluate the diverse number of endmembers foundin the images, introdu
ing penalization terms.We have not in
luded yet any spatial element in the distan
e. One of the ob-vious ways to do it is to 
ompute the 
orrelation between the abundan
e images,mat
hed a

ording to the relative mat
h of their 
orresponding endmembers.The distan
e between images would in
lude a spatial 
orrelation term, with anspe
i�
 weight that must be tuned. If the images are homogeneous in their de�-nition of the image domain, this 
orrelation 
an be 
omputed in the straightfor-ward manner. However if they are of di�erent sizes and/or the original 
apture
an not be assumed to be exa
tly registered, there is a 
ombinatorial problemto be solved, that of �nding the optimal image domain transformation (transla-tion, rotation, s
aling) to register the two images being spatially mat
hed. The
ost of this operation may be prohibitive in the 
ontext of large database index-ing. Additional information, su
h as image 
oordinates, will serve to redu
e this
omputational problem.Assuming that the image 
olle
tion is homogenous we have avoided the prob-lem of mat
hing images from di�erent sensors or images with di�erent frequen
ybands missing due to image prepro
essing and noise. This is a main di�
ultyfor our algorithm, be
ause we 
an not deal at present with missing data. Theonly available way is to interpolate assuming lo
al 
ontinuity of the observedspe
tra. However, this solution may be hardly a

epted by the remote sensinguser (geologist, agri
ulture engineer, biologist, et
).



There is a strong trend to introdu
e the human fa
tor in the index 
onstru
-tion loop. Some semanti
 information 
an be introdu
ed in the system that way.We have yet to devise a methodology to introdu
e the intera
tion with the userwhen dealing with spe
tral information.A
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