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Abstract. In this paper we deal with the problem of indexing hyper-
spectral images as an special case of Content Based Image Retrieval
(CBIR) systems. We define a similarity measure between hyperspectral
images based on the image endmembers, which are induced from the
images. For this induction we use Associative Morphological Memories
(AMM).

1 Introduction

The growth in multimedia information, especially images, is driving the develop-
ment of the field of Content Based Image Retrieval (CBIR) [1]. Remote sensing
and earth observation are a big source of images that may benefit from auto-
mated exploration (data mining) and retrieval systems. In CBIR systems, the
images stored in the database are labeled by feature vectors, which are extracted
from the images by means of computer vision and digital image processing tech-
niques. In CBIR systems, the query to a database is specified by an image. The
query’s feature vector is computed and the closest items in the database, ac-
cording to a similarity metric or distance defined in feature space, are returned
as the answers to the query. This is the low level, semantic free, definition of
the CBIR systems, that does not take into account the semantic gap between
the user expectations and the system response. Recent approaches [6] apply rel-
evance interactions with the user to build up semantic models upon to drive the
information retrieval and data mining processes to the user expectations. Our
work, however, is at the low level, without relevance iteration mechanisms.

In hyperspectral images each pixel contains a fine sampling of the visible and
near infrared spectrum, represented by a high dimensional vector. New space
missions, like Hyperion, include hyperspectral sensor, so it can be expected a
growing need for the maintenance of large collections of hyperspectral images,
and for the automated search within these collections. The attempts to define
CBIR strategies for them are scarce and partial. In [3] the authors use the
spectral mean and variance, as well as a texture feature vector, to characterize
hyperspectral image tiles. The approach searches for specific phenomena in the
images (hurricanes, fires, etc), using an interactive relevance strategy that allows
the user to refine the search. In [6] some of the first PCA and texture features
from the first PCA image are used as feature vectors.

We propose the characterization of the hyperspectral images by their so-
called endmembers. Endmembers are a set of spectra that are assumed as ver-
tices of a convex hull covering the image pixel points in the high dimensional



spectral space. Endmembers may be defined by the domain experts (geologists,
biologists, etc.) selecting them from available spectral libraries, or induced from
the hyperspectral image data using machine learning techniques. In [4,5] we have
proposed an automated procedure that induces the set of endmembers from the
image, using AMM to detect the morphological independence property, which
is a necessary condition for a collection of endmembers. The goal in [4,5] was
to obtain a method for unsupervised hyperspectral image segmentation. There
the abundance images were of interest. In this paper, the goal is to obtain a
characterization of the image that can be useful for CBIR. The collection of
endmembers serves as a summary of the spectral information in the image.

2 Spectral mixing and endmember extraction

Linear mixing models assume the knowledge of a set of endmembers S = [s1, $2, ..
where each s; € R%s a d-dimensional vector. Then, one pixel of a hyperspectral
image can be expressed as f(z,y) = S - a(x,y) + n(z,y), where n(z,y) is the
independent additive noise component and a(z,y) is the n-dimensional vector
of endmember fractional abundance in the pixel. In other words, a(x,y) are the
convex coordinates of the pixel relative to the convex hull defined by the ver-
tices in S. In [4,5] we were interested in a(x,y) as unsupervised segmentations
of the hyperspectral image. Here we consider that the set of endmembers S may
be per se a good characterization of the hyperspectral image S, if it has been
obtained from it. The method proposed in [4,5] to obtain the set of endmembers
S is based on the notion of morphological independence [8]. Given a vector set
X ={x1,x2,...,xm }, a new vector y is morphologically independent in the ero-
sive sense from X if Ax € X|y < z and it is morphologically independent in the
dilative sense from X if Ax € X|y > x. The partial order defined over the vec-
tors is the one induced from the order of their components: y < x < Vi, y; < ;.
The vector set X is said to be morphologically independent when all the vec-
tors in the set are independent of the remaining ones in either sense. A set of
morphological independent vectors defines a high dimensional box.

In [4,5] we propose the use of AMMs for the detection within a hyperspectral
image of a set of morphological independent spectra whose corresponding high
dimensional box may be taken as a good approximation to the convex hull of
the image data. The algorithm is shown in Algorithm 1. These spectra are the
induced endmembers that will be used to characterize the image. In brief the
proposed method consists in the following;:

. A seed pixel is taken as the initial set of endmembers.

. Erosive and dilative AMMSs are built from the current set of endmembers.

3. Each pixel is examined as a candidate endmember testing the response of
the erosive and dilative AMMs to it.

4. Morphologically independent pixels are added to the set of endmembers.

The process takes into account the variance of the spectra at each band to

enhance the robust detection of endmembers, adding and subtracting the
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Algorithm 1 The induction of the endmembers from the image in one pass over
the image

1. Compute the zero mean image: f°(i,7) = f(i,7) —wi=1,...,n;5=1,....m
2. Initialize the set of endmembers £ = {e;} with a pixel spectra randomly picked
from the image. Initialize the set of morphologically independent binary signatures
X={z1}={e >0k=1,...d}
3. Construct the AMM’s based on the morphologically independent binary signatures:
MXX and WX)(.
4. For each pixel f°(i,7):
(a) Compute the vector of the signs of the Gaussian noise corrections f*(i,5) =
(°(i, ) + a0 > 0) and f~(i,7) = (f°(i,5) — ac > 0)
(b) Compute y© = Mxx A f1(i,5)
(c) Compute y~ = Wxx V f7(3,5)
(d) if y© € X or y~ & X then f°(i, ) is a new endmember to be added to E, go
to spet 3 and resume the exploration of the image
(e) if y* & X and f°(i,j) > e,+ the pixel spectral signature is more extreme than
the stored endmember, then substitute e,+ with f¢(i, j)
(f) ify~ & X and f°(4,7) < e,— the pixel spectral signature is more extreme than
the stored endmember, then substitute e,— with f¢(i, j)

per band standard deviation multiplied by a gain parameter to the pixel
spectrum before performing the tests with the dilative and erosive AMMs,
respectively. This gain parameter is set by default to 2. The process goes
one time over the image data. If the region is very homogeneous, the process
may stop without adding any new endmember, besides the seed pixel taken.
Then, the gain parameter is reduced and the process is repeated until the
number of endmembers is 2 or more.

3 Distance between images

Let it be Sp, = sk, sk, ..., s’;k the set of endmembers, obtained as described before
from the k-th image fi(z,y) in the database, where py, is the number of endmem-
bers detected in this image. Given two images f(x,y) and fi(z,y), we compute
the following matrix whose elements are the Euclidean distances between the

endmembers of each image:

Dk,l Zdi)j;iz 1,..ps5=1,...,m (1)

where d; j = |sf — s4].

We compute the vectors of the minimal values by rows and columns, my =
[m¥ = min;{d; ;}] and my = [ml = min;{d; ;}] respectively. Then the similarity

between the images is given by the following expression:

d(fr, f1) = (| + [mu])(Inge — il + 1) (2)



4 Discussion of distance properties

The endmember induction procedure may give different number of endmembers
and endmember features for two hyperspectral images. The similarity measure
is a composition of two asymmetrical views: each vector of minimal distances
measures how close are the endmembers of one image to some endmember of
the other image. Suppose that all the endmembers Sy of an image are close to
a subset of the endmembers S; of the other image. Then the vector of minimal
distances my will be very small, not taking into account the unlike endmembers
in the second image. However, the vector of minimal distances m; will be larger
than my because it will take into account the distances of endmembers in S
which are unlike to those in Sg. Thus the similarity measure can cope with
the asymmetry of the situation. It avoids the combinatorial problem of trying
to decide which endmembers can be matched and what to do in case that the
number of endmembers is different from one image to the other. The difference in
the number of endmembers is introduced as an amplifying factor. The measure
is independent of image size and, as the endmember induction algorithm is very
fast, it can be computed in acceptable time. Also the endmember set poses no
storage problem.

Our approach does not use spatial features, such as the textures in [3], but the
endmembers give a rich characterization of the spectral content of the image. A
further work on our approach may be the study of spatial features computed on
the abundance images produced by the spectral unmixing, solving the question
of band selection or dimension reduction prior to spatial feature computation.

5 Experimental results on simulated data

The hyperspectral images used for the experimental results are generated as lin-
ear mixtures of a set of spectra (the ground truth endmembers) with synthesized
abundance images. The ground truth endmembers were randomly selected from
a subset of the USGS spectral libraries corresponding to the AVIRIS flights.
Figures 1 and 2 show some spectra used in the 2 and 5 endmembers images.

The synthetic ground truth abundance images were generated in a two step
procedure, first we simulate each as an gaussian random field with Matern cor-
relation function of parameters 61,05 varying between 2 and 20. We applied the
procedures proposed by [7] for the efficient generation of big domain gaussian
random fields. Second, to ensure that there are regions of almost pure endmem-
bers we selected for each pixel the abundance coefficient with the greater value
and we normalize the remaining to ensure that the abundance coefficients in
this pixel sum up to one. It can be appreciated on the abundance images that
each endmember has several regions of almost pure pixels, viewed as brighter
regions in the images. Image size is 256x256 pixels of 224 spectral bands each.
We have generated collections of 100 images with 2 to 5 ground truth endmem-
ber/abundances, for total number of 400 images.

The experiment performed on these images consists on the following steps:
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Fig. 1. Ground truth endmembers extracted from the USGS library used in one dis-
tance of a 2-endmembers synthetic image
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Fig. 2. Ground truth endmembers extracted from the USGS library used in one dis-
tance of a 5-endmembers synthetic image



1. Compute the distances between the images in the database using the ground
truth endmembers. The distances are computed between images with the
same number of ground truth endmembers, and with all the remaining im-
ages.

2. Extract the endmembers from the images using the approach described in
section 2.

3. Compute the distances between the images in the database using the mor-
phologically independent induced endmembers. The distances are computed
between images with the same number of ground truth endmembers, and
with all the remaining images.

4. We consider the R closer images to each image in each case (ground truth
and morphologically independent induced endmembers) as the responses to
a potential query represented by the image.

5. The images that appear in both responses (based on the ground truth and
the morphologically independent induced endmembers) are considered as
relevant images, or correct responses.

In table 1 we present the results from the experiment with the 400 images, in
terms of the average number of correct responses. First row presents the results
when we pool together all the images, regardless of the number of ground truth
endmembers. The next rows present the results when we only try to search in
the subcollection of images with the same number of endmembers as the query
image. Each row corresponds to a different number of images in the response to
the query. The value of the noise gain was set to a = 0.5.

| [R=1]R=3]R=5|R=10]

All images [0.94]1.21|1.61| 2.96
2 Endmembers|0.81(1.55(2.27| 4.67
3 Endmembers|0.98|1.44|2.21| 4.96
4 Endmembers|0.99|1.53|2.36| 4.81
5 Endmembers|1.00(1.57(2.37| 4.74
Table 1. Average number of relevant images per query

In Table 1 it can be appreciated that the consideration of all the images as
responses to the query introduces some confusion and reduce the average num-
ber of correct images obtained in the query. This effect can be due to the fact
that the morphological independence algorithm can find a number of endmem-
bers different from the ground truth making it possible for the image to match
with images outside its natural collection of images. Then images with different
ground truth numbers of endmembers may become similar enough to enter in
their respective response sets.

When we restrict the search to the collections with identical number of ground
truth endmembers, all the results improve, except when R=1. We have that
near 50% of the responses are significative when R>1. The case R—1 can be



interpreted as the probability of obtaining the closest image in the database
according to the distance defined in section 3, or the probability of success. It
can be seen that it is very high, close to 1 for all search instances, except for the
case of 2 ground truth endmembers.

6 Conclussions and further work

We have proposed an approach to CBIR in homogeneous databases of hyper-
spectral images based on the collection of endmembers induced by an algorithms
that searches for morphologically independent vectors. We have performed an
experiment of exhaustive search on a collection of simulated hyperespectral im-
ages. The results are encouraging: almost 100% success in providing the closest
image in terms of the ground truth endmembers.

However these results only confirm the ability of the AMM based algorithm
to find a good approximation to the ground truth endmembers. We have still to
test the effect of additive noise on the results, and maybe to perform comparison
with other endmember extraction algorithms. Previous experiments comparing
the AMM based algorithm with Independent Component Analysis (ICA) [9,10]
and other algorithms have been favourable to the AMM algorithm [4,5].

It is possible to define other distances based on the endmembers extracted by
the AMM (or any alternative algorithm). For example, the Euclidean distance
between individual endmembers may be substituted by max/min distances. The
whole set of endmbembers may be evaluated according to the Haussdorf distance.
There are also diverse ways to evaluate the diverse number of endmembers found
in the images, introducing penalization terms.

We have not included yet any spatial element in the distance. One of the ob-
vious ways to do it is to compute the correlation between the abundance images,
matched according to the relative match of their corresponding endmembers.
The distance between images would include a spatial correlation term, with an
specific weight that must be tuned. If the images are homogeneous in their defi-
nition of the image domain, this correlation can be computed in the straightfor-
ward manner. However if they are of different sizes and/or the original capture
can not be assumed to be exactly registered, there is a combinatorial problem
to be solved, that of finding the optimal image domain transformation (transla-
tion, rotation, scaling) to register the two images being spatially matched. The
cost of this operation may be prohibitive in the context of large database index-
ing. Additional information, such as image coordinates, will serve to reduce this
computational problem.

Assuming that the image collection is homogenous we have avoided the prob-
lem of matching images from different sensors or images with different frequency
bands missing due to image preprocessing and noise. This is a main difficulty
for our algorithm, because we can not deal at present with missing data. The
only available way is to interpolate assuming local continuity of the observed
spectra. However, this solution may be hardly accepted by the remote sensing
user (geologist, agriculture engineer, biologist, etc).



There is a strong trend to introduce the human factor in the index construc-
tion loop. Some semantic information can be introduced in the system that way.
We have yet to devise a methodology to introduce the interaction with the user
when dealing with spectral information.
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