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Abstract. Detection of Alzheimer's disease based on Magnetic Reso-
nance Imaging (MRI) still is one of the most sought goals in the neu-
roscienti�c community. Here, we evaluate a ensemble of classi�ers each
independently trained with disjoint data extracted from a partition of
the brain data volumes performed according to the 116 regions of the
Anatomical Automatic Labeling (AAL) brain atlas. Grey-matter prob-
ability values from 416 subjects (316 controls and 100 patients) of the
OASIS database are estimated, partitioned into AAL regions, and sum-
mary statistics per region are computed to create the feature sets. Our
objective is to discriminate between control subjects and Alzheimer's
disease patients. For validation we performed a leave-one-out process.
Elementary classi�ers are linear Support Vector Machines (SVM) with
model parameter estimated by grid search. The ensemble is composed of
one SVM per AAL region, and we test 6 di�erent methods to make the
collective decision. The best performance achieved with this approach is
83.6% accuracy, 91.0% sensitivity, 81.3% speci�city and 0.86 of area un-
der the ROC curve. Most discriminant regions for some of the collective
decision methods are also provided.

1 Introduction

Alzheimer's Disease (AD) is one of the most important causes of disability in
the elderly and with the increasing proportion of elderly in many populations,
the number of dementia patients will rise also. Due to the socioeconomic im-
portance of the disease in occidental countries there is a strong international
e�ort focus in AD. In the early stages of AD brain atrophy may be subtle and
spatially distributed over many brain regions, including the entorhinal cortex,
the hippocampus, lateral and inferior temporal structures, as well as the anterior
and posterior cingulate.

Machine learning methods have become very popular to classify functional
or structural brain images to discriminate them into two classes: normal or a
speci�c neurodegenerative disorder [1]. The development of automated detec-
tion procedures based in Magnetic Resonance Imaging (MRI) and other medical
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imaging techniques [2] is of high interest in clinical medicine. It is important
to note that these techniques are aimed to help clinicians with more statistical
evidence for the diagnosis, it is not intended to substitute any other existing
diagnosis procedure.

Most published classi�cation methods working on MRI data train a sin-
gle classi�er. However, it is challenging to train only a global classi�er that
can be robust enough to achieve good classi�cation performance, mostly due
to noise and small sample size of neuroimaging data. Other studies using en-
semble of classi�ers on brain anatomical MRI can be found in the literature.
In [3] they propose a classi�cation method via aggregation of regression algo-
rithms fed with histograms of deformations generated from the Open Access
Series of Imaging Studies (OASIS) database obtaining a 0.04 test error rate. An-
other study shows a local patch-based subspace ensemble method which builds
multiple individual classi�ers based on di�erent subsets of local patches with
the sparse representation-based classi�er obtaining an accuracy of 90.8% on the
ADNI database [4]. In [5] subsets of ranked features from neuroimaging data are
used to in an ensemble of linear Support Vector Machine (SVM) classi�ers ob-
taining 0.94 of Area Under the Receiver Operating Characteritic (ROC) Curve
(AUC) when detecting a AD patients vs. control subjects.

In this paper we use modulated Grey-Matter (GM) maps partitioned ac-
cording to the regions from the Automatic Anatomical Labeling (AAL) atlas
to create datasets of statistical features of these GM maps within each of these
regions for each subject. These datasets are put into a leave-one-out with grid
search process for classi�er validation. After that, an ensemble collective deci-
sion is made in order to obtain a classi�cation result. We report the results of
an ensemble of linear Support Vector Machine (SVM) classi�ers.

Section 2 gives a description of the subjects selected for the study, the image
processing, feature extraction details, cross-validation and classi�er algorithms.
Section 3 gives the classi�cation performance results and in section 4 we provide
conclusions of this work and further research suggestions.

2 Materials and Methods

In summary the procedure we have followed in this work was: (1) segment the
subjects in 3 tissue volume estimation maps, (2) nonlinearly register each sub-
ject to the MNI template, (3) calculate the Jacobian determinant of the cor-
responding displacement �elds, with this, (4) modulate the GM partial volume
estimation maps. (5) Extract from the GM voxels inside each region of interest
(ROI) in the AAL atlas a set of statistical values and �nally, (6) use the feature
set of each ROI in a leave-one-out classi�cation procedure with parameter grid
search. In �gure 1 we show a pipeline of the experiment procedure.

The implementation of the feature extraction, classi�cation and result mea-
sures have been done in Python with scikit-learn [6]. The source code and prepro-
cessing scripts are freely available for download in



Fig. 1. Flow diagram of the feature extraction and ensemble of classi�ers.

http://www.ehu.es/ccwintco/index.php/Usuario:Alexsavio. The data can also
be shared through an email to the corresponding author.

2.1 Data

In this study we use all the subjects of a public available brain MRI database,
the �rst Open Access Series of Imaging Studies (OASIS) [7]. These subjects
were selected from a larger database of individuals who had participated in MRI
studies at Washington University, they were all right-handed and older adults
had a recent clinical evaluation. Older subjects with and without dementia were
obtained from the longitudinal pool of the Washington University Alzheimer
Disease Research Center (ADRC). This release of OASIS consists of a cross-
sectional collection of 416 male (119 controls and 41 patients) and female (197
controls and 59 patients) subjects aged 18 to 96 years (218 aged 18 to 59 years
and 198 subjects aged 60 to 96 years). Further demographic and image acquisi-
tion details can be found in [7].

This database includes at least 3 raw anatomical MP-RAGE images from
each subject as well as post-processed images: (a) corrected for inter-scan head
movement and rigidly aligned to the Talairach and Tournoux space [8], (b) trans-
formed to a template with a 12-parameter a�ne registration and merged into
a 1-mm isotropic image, (c) skull-stripped and corrected for intensity inhomo-
geneity and (d) segmented by tissue type. To carry out our experiment we have
started with the volumes from (c).

2.2 Preprocessing

The spatial normalization of each subject of the database is performed with the
FMRIB Software Library (FSL) FNIRT [9]. A four step registration process with
increasing resolution and a scaled conjugate gradient minimization method has
been performed using the default parameters, nearest neighbour interpolation
and the standard Montreal Nationa Institute (MNI) brain template.

In this registration process the subject S is nonlinearly registered to a tem-
plate T , and a displacement vector −→u (−→r ) is obtained such that S (−→r −−→u )
corresponds with T (−→r ), where −→r denotes the voxel location. The Jacobian
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matrix in this case describes the velocity of the deformation procedure in the
neighboring area of each voxel and it is de�ned by

Ji =

 ∂(x−ux)/∂x ∂(x−ux)/∂y ∂(x−ux)/∂z
∂(y−uy)/∂x ∂(y−uy)/∂y ∂(y−uy)/∂z
∂(z−uz)/∂x ∂(z−uz)/∂y ∂(z−uz)/∂z

 . (1)

The determinant of the Jacobian matrix is the most commonly used scalar
measure of deformation for tensor-based brain morphometry analyses (TBM)
[10]. The determinant of the Jacobian matrix Ji is commonly used to analyze the
distortion necessary to deform the images into agreement. A value det (Ji) > 1
implies that the neighborhood adjacent to the displacement vector in voxel i
was stretched to match the template (i.e., local volumetric expansion), while
det (Ji) < 1 is associated with local shrinkage.

Apart, we segment the subjects with FSL FAST [11] into 3 volumes with esti-
mation maps of brain tissues: grey (GM) and white (WM) matter and cerebral-
spinal �uid (CSF). In this case we are interested in the GM maps, which we
multiply by the Jacobians from the non-linear registration in order to get a
modulated GM map in the standard MNI space. Subsequently these maps are
smoothed with a 2mm Full-Width Half-Maximum (FWHM) Gaussian �lter and
used for feature extraction. A visual check has been performed for all images in
every processing step carried out in this experiment.

2.3 Feature extraction

The Automatic Anatomical Labeling (AAL) atlas [12] is used to partition the
GM maps into 116 brain anatomical regions. In this study we extract of each
AAL anatomical region from each subject GM map 7 statistical measures: the
maximum voxel value, the minimum, the mean, the variance, the median, the
kurtosis and the skewness. Resulting in 116 sub-datasets of 416 subjects with 7
features each. One classi�er for each of these, together, perform as an ensemble.

2.4 Support Vector Machines

The Support Vector Machine (SVM) [13] algorithm used for this study is in-
cluded in the libSVM software package [14][6]. Given training vectors xi ∈
Rn, i = 1, . . . , l of the subject features of the two classes, and a vector y ∈ Rl
such that yi ∈ {−1, 1} labels each subject with its class, in our case, for example,
patients were labeled as -1 and control subject as 1. To construct a classi�er, the
SVM algorithm tries to maximize the classi�cation margin. To this end it solves
the following optimization problem:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (2)

subject to yi(w
Tφ(xi)+ b) ≥ (1− ξi), ξi ≥ 0, i = 1, 2, . . . , n. The dual optimiza-

tion problem is



min
α

1

2
αTQα− eTα,

subject to yTα = 0, 0 ≤ αi ≤ C, i = 1, . . . , l, where e is the vector of all ones,
C > 0 is the upper bound on the error, Q is an l×l positive semi-de�nite matrix,
Qij ≡ yiyjK(xi,xj), and K(xi,xj) ≡ φ(xi)

Tφ(xj) is the kernel function that
describes the behavior of the support vectors. Here, the training vectors xi are
mapped into a higher (maybe in�nite) dimensional space by the function φ(xi).
C is a regularization parameter used to balance the model complexity and the
training error.

The option we choose to address the problem with the optimization function
when unbalanced datasets are present is to adjust a weight for each class with a
value inversely proportional to class frequencies. This converts the optimization
equation 2 into:

min
w,b,ξ

1

2
wTw + uyC

l∑
i=1

ξi, (3)

where uy is the weight value for a given class y.
The chosen kernel function results in di�erent kinds of SVM with di�erent

performance levels and the choice of the appropriate kernel for a speci�c appli-
cation is a di�cult task. In this study we only tested for a linear kernel, another
kernel type and its parameter values in the grid search increased exponentially
the experiment computation time.

2.5 Cross-validation and parameter grid search

A leave-one-out cross-validation is carried out to calculate the results. In each
validation fold, one subject is kept out, a grid search through classi�ers parame-
ters is performed against the training set and the kept out subject is then tested
against the previously trained classi�er with best performance in the grid search.
In this grid search we perform a 3-fold cross-validation against the training set
using each possible combination of parameter values. The parameter value grid
for SVM was C in [1e− 3, 1e− 2, 1e− 1, 1, 1e1, 1e2, 1e3].

2.6 Ensemble decisions

After obtaining the result from all the classi�ers in the ensemble we have to make
an aggregate decision to have only one class decision. Here we test 6 ensemble
majority voting decision criteria using (1) all of the ROI classi�ers, the 20 with
best average (2) training AUC and (3) training F1-score, (4) an a priori set
of temporal brain regions and hippocampus only in the left hemisphere known
to be a�ected by AD, (5) another set of brain regions which include temporal
and parietal areas of the brain, cingulum, insula and hippocampus from both
hemispheres and (6) the same previous set of regions plus frontal lobe regions.
In �gure 2 we show the regions included in each of these a priori ROI maps.



Fig. 2. Slices of the MNI standard template showing the a priori maps of a�ected
regions in the left temporal area (left), corresponding to mild AD (middle) and to
normal AD (right) used for ensemble decision.

3 Results

In this section we present the linear kernel SVMs performance using the leave-
one-out cross-validation. We report accuracy ((TP + TN) /N), sensitivity (TP/ (TP + FN)),
speci�city (TN/ (FP + TN)) and area under the ROC curve (AUC) [15] for each
ensemble decision. In table 1 we show the classi�cation performance of the en-
semble with linear SVMs.

Accuracy Sensitivity Speci�city AUC

Majority Voting 83.6 75.0 86.4 80.7
Best 20 Training AUC 83.6 91.0 81.3 86.2

Best 20 Training F1-score 83.2 90.0 81.0 85.5
Left Hem. AD ROIs 82.4 81.0 82.9 81.9
Mild AD ROIs 82.0 74.0 84.5 79.9
Normal AD ROIs 83.2 79.0 84.5 81.7

Table 1. Support Vector Machine accuracy, sensitivity, speci�city and ROC area of
the leave-one-out cross-validation classi�cation results.

The best classi�cation performance is obtained using the majority voting of
the 20 highest training AUC classi�ers.

We performed the same experiments using Decision Trees (CART) [16] and
Random Forests [17], and also against other deformation measures as the Jaco-
bian determinant and trace, displacement vector magnitude and geodesic anisotropy,
more detailed in [18]. Nevertheless we did not obtain in any of them a sensitiv-
ity measure > 70%, which led us to discard those results. The parameter grid
search values used for CART was criterion Gini or Entropy and maximum depth
[None, 10, 20, 30], and for the RF we tested for number of estimators in [3, 5,
10, 30, 50, 100] and maximum number of feature to consider for best split [N ,√
N , log2(N), automatic, 1, 3, 5, 7], where N is the number of features.



3.1 Discriminant ROIs

In �gure 3 we show the 20 regions that have obtained best training AUC and
F1-score during the leave-one-out. Most of the ROIs coincide with the manually
selected ROIs, mainly with left hemisphere ROIs and frontal lobes.

Fig. 3. Slices of the MNI standard template where the 20 best training AUC (left) and
F1-score (right) ROIs are colored.

4 Conclusions

In this paper we report classi�cation results of an ensemble of SVM classi�ers
against GM data partitioned with the AAL atlas. The sample is the complete
cross-sectional OASIS database. For each subject, the modulated GM data is
partitioned into 116 regions and 7 statistical values from each are used as fea-
ture vectors. The results are in agreement with most of our previous classi�cation
experiments [1,18,19]. Although classi�cation approaches using whole-brain fea-
tures showed better performance.

It was of our interest to see the performance of the experiments which used a

priori knowledge ROI maps against those experiments with supervised methods
of feature selection. Unsupervised feature selection methods will most probably
show worse classi�cation performance than those which are supervised, but lead
to more generalized systems and less �tted to the experimental database. We
are aware that registration and segmentation errors can lead to biases in the
accuracy of the classi�ers. In addition, atrophy in brain structures can be inter-
preted as a late stage of AD and functional MRI could be used instead to detect
previous stages of the disease. As future work we will be trying to successfully
apply ensembles to deformation features, but we could also �nd more interesting
approaches including functional MRI data.
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