
Abstract—Defining lattice computing as the class of algorithms 
that either apply lattice operators inf and sup or use lattice 
theory to produce generalizations or fusions of previous 
approaches, we find that a host of algorithms for data 
processing, classification, signal filtering, have been produced 
over the last decades. We give a fast and brief review, which by 
no means could be exhaustive; with the aim of showing that this 
area has been growing during the past decades and to highlight 
the ones that we think are broad avenues for future research. 
Although our emphasis is on Artificial Neural Networks and 
Fuzzy Systems in this review we include Mathematical 
Morphology as a notorious instance of Lattice Computing. 1 
 

I INTRODUCTION 
 
The main road of definition computational algorithms in 
many aspects of Computer Science, including 
Computational Intelligence, works on the algebra of the real 
numbers, the addition and the multiplication R,+,⋅( ). 
However there have a parallel line of works working on 
other algebras, like R,∧,+( ) or its dual R,∨,+( ), where the 
role of the addition is taken by the lattice operation inf or 
sup, and the multiplication role is taken by the addition. 
These works have evolved into the application of Lattice 
Theory as a framework to define new approaches and 
algorithms that either generalize previous ones [1] or fuse 
existing approaches [2]. We call this broad class of 
algorithms and knowledge representation methods Lattice 
Computing. Of course, the works reviewed didn’t refer 
themselves as belonging to this category. 

If we categorize, at a very abstract level, the kind of 
processes realized in Computational Intelligence as:  
 

• Filtering: maps of objects (i.e. signals) in a high 
dimensional space into objects of the same space, 
i.e. F : RN → RN . 

• Dimension reduction: maps of objects in a high 
dimensional space into ones in a lower dimension 
space, i.e. F : RN → Rd ; d << N . 

• Classification: Mapping objects in a (high 
dimension) space into categories, where the 
construction can be done in a supervised or 
unsupervised (clustering) way, i.e. 

  F : RN → Ω;Ω = ω1,",ωc{ }. 
There have been instances of Lattice Computing 

algorithms falling on all these categories. Filtering roughly 
corresponds to Mathematical Morphology applied to image 
and signal processing [3-5], which has been quite successful 
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and with a large body of literature. In fact this success has 
been the source of inspiration for researchers trying to 
extend this approach to Computational Intelligence problems 
and applications. There have been many attempts and 
proposals of the construction of classification systems based 
on Lattice Computing ideas. They fall in a no man’s land 
between Artificial Neural Networks and Fuzzy Systems. The 
results reported by these classifiers sometimes improve 
conventional classifiers and sometimes fall behind. There are 
few instances of dimension reduction based on Lattice 
Computing ideas, may be [6-9] are  the only works falling in 
this category.  

A lattice is a partially ordered set (poset) any two of 
whose elements have a supremum and an infimum. The inf 
and sup operations are binary relations that give, 
respectively, the infimum and the supremum of any pair 
objects in the set. The classical reference on Lattice Theory 
is the book[10]. Perhaps the first extensive work that 
proposed computations with lattice operations is the 
definition of the Minimax Algebra [11] in the context of 
operational research problems. The following historical 
landmark is the introduction of Mathematical Morphology in 
[3]. Image algebra [12-14] is another early attempt to define 
lattice computing methods devoted to image processing. The 
Fuzzy-ART architecture [15, 16] maybe the  earliest Lattice 
Computing learning approach. Recent works [2, 17, 18] 
identify the algebraic lattice structure as a central concept for 
a whole family of methods and applications. In short, the 
Lattice Computing approach has served to bridge the gap 
between computational paradigms as diverse as fuzzy 
systems, morphological signal processing and artificial 
neural networks [19-27].  

In section 2 we comment on the problems and the 
approaches followed to implement learning procedures in 
Lattice Computing algorithms. In section 3 we comment on 
some of the approaches that we find more promising and in 
section 4 we finish with some conclusions.  
 

II LEARNING AND PARAMETER ESTIMATION 

 
Construction by learning is the induction of the system 
parameters from the available data. The key to the success of 
the Artificial Neural Networks paradigm is the development 
of easy to implement, robust (up to some degree) methods to 
estimate the parameters of the system: backpropagation, 
competitive learning algorithms, among others. These 
algorithms were designed as gradient descent procedures for 
a given energy or cost function. Some Lattice Computing 
proposals had tried to follow this same pattern [28-31]. For 
instance, [29] tries to minimize the MSE of the output, [28] 
tries to maximize an equality index between the output and 
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the desired output of the system. The major difficulty in 
these approaches is the discontinuity of the min and max 
functions. These discontinuity has been avoided proposing 
continuous approximations to them [28, 29, 32] that allow to 
obtain close expressions that give approximations of the 
gradient. Some approaches had added complications, such as 
the need to express the clause structure in a way that allows 
differentiation in [32]. Besides the construction of 
classification systems, there have been works [33, 34] tried 
to define gradient descent algorithms for the estimation of 
the morphological filter structural element. In fact, [34, 35] 
proposes a class of mixed morphological/linear systems 
which are trained with an algorithm analogous to the error 
backpropagation.  

Some authors have tried to apply non-differential learning 
approaches, based on heuristic reasoning. For instance, there 
have been attempts to mimic the perceptron rule for lattice 
based morphological networks [36-38]. Among the heuristic 
approaches, one of the earliest and most successful is Fuzzy-
ART [15, 16] which applies an ad-hoc heuristic category 
growing learning procedure. The learning procedure 
produces hyperrectangles covering the data, corresponding 
to the categories. These hyperrectagles grow monotonically 
as the learning proceeds, only stopped by the application of 
the vigilance parameter. Both the resolution of the result and 
the number of categories found depend on this vigilance 
parameter. The learning process is highly dependent on the 
order of presentation of the data [39], and still research is 
going on the setting of the algorithm parameters.  

Another approach to build up systems is that of the 
Morphological Associative Memories [40-45].  It is very 
easy and does not involve gradient descent algorithms. It 
consists on the morphological (lattice) analogy to the 
construction of linear associative memories and Hopfield 
networks. Most of the theoretical work on their behavior 
have been devoted to explain their behavior and to 
understand the shape and properties of their fixed point 
subspaces[22, 44, 46-49]. The related dendritic 
morphological neural network [38, 50, 51] has a learning 
algorithm based on the incremental refining of the covering 
of the sets in the classes to be discriminated.  
 

III REVIEW OF SOME APPROACHES 

The goal of this review is to give a flavour of some of the 
avenues of work and research in this broad area which we 
find most involving and promising of future results. It can 
not be exhaustive, as some fields like Mathematical 
Morphology have a large number of works. 
 
A Mathematical Morphology 

In image and signal processing a big class of tasks to be 
solved are related to noise removal and/or to segmentation. 
The basic morphological operators are the erosion and 
dilation operators, while the basic morphological filters are 
opening and closing. Sophisticated morphological 
procedures like texture segmentation, granulometries, 
watershed segmentation, etc. are compositions of these 
filters. One of the venues of research is the definition of 

appropriate lattice ordering of high dimension spaces, such 
are color spaces and other vector spaces found in images, so 
that filters can be generalized to them. The other venue of 
interest from our point of view is that of defining new 
morphological operators and filters [2, 27, 52, 53] and the 
approaches to estimate appropriate structural elements [4, 5, 
34, 35, 54, 55].  

Lattice Theory was already used to formalize 
morphological operators [27]. The use of Lattice Theory in 
[2, 53] to generalize the erosion and dilation operators and 
the rigorous construction of adjoin operator pairs to 
systematically construct generalized opening and closing 
operators is a breakthrough that paves the way for new 
research areas. The embedding of fuzzy intersection and 
union norms into the morphological framework gives new 
fuzzy morphological openings and closings with enhancing 
noise removal and edge detection properties.  

In the mean time, there have been proposals for adaptive 
morphological operators sometimes mixed with linear 
operators, using gradient descent algorithms for structural 
element estimation [34, 35, 55], and they were applied to 
image restoration and character recognition.  

Another example of the fusion of ideas are the 
Morphological Shared-weight networks [33] were proposed 
for target recognition in images. There a morphological hit-
or-miss transform is implemented through a shared-weight 
network and its structural elements are adaptively estimated 
to obtain an optimal target recognition.  
 
B Morphological Associative Memories 

The works on Image Algebra [12-14] were the prelude to 
the proposal of morphological neural networks, in the form 
of morphological perceptron [36-38] and of associative 
memories [40, 42, 56]. They were proposed for the storage 
of binary and gray patterns, with the aim of recovering the 
original clean image from noisy copies, which is an image 
restoration process. Also grayscale morphological 
associative memories are used in [57] to pre-process the data 
prior to classification with a simple Nearest Neighbour 
approach 

The good properties of Morphological Autoassociative 
Memories (later renamed Lattice Autoassociative Memories) 
were hindered by their sensitivity to specific kinds of noise 
(erosive or dilative noise), so that a big deal of effort was 
addressed to obtain robust versions [22, 41, 43-45, 48, 49, 
57-61]. These efforts produced a new kind of memories in 
the frontier between associative morphological memories 
and fuzzy systems [22, 23, 25, 26].  

Our own works on spectral unmixing of hyperspectral 
images [9, 62] have led to the use of the convex coordinates 
produced by unmixing process as features for classification 
purposes [6-8]. The sample data points are expressed relative 
to the so-called endmembers in hyperspectral image 
processing. The idea of endmember is that they represent 
instances of pure elements, so that all the other elements in 
the image correspond to mixtures of these pure elements. 
Endmembers are vertices of a polygonal convex set covering 
data cloud. This is a new kind of feature extraction that we 
think deserves further research. 



It happens that Autoassociative Morphological Memories 
[40, 42, 56, 63] have specific noise sensitivities that allow 
the detection of endmembers in the data from hyperspectral 
images  [9, 62]. Working ways to enhance the robustness of 
Associative Morphological Memories against all kinds of 
noise [58, 60, 61] led to the definition of “morphological 
independence” and latter to “lattice independence” which 
turns out to be related to affine independence [49], a 
condition to be fulfilled by sets of endmembers. So we 
proposed an algorithm exploiting the Autoassociative 
Morphological Memories sensitivities to extract the 
endmembers from the data sample [9]. It is possible also to 
obtain these endmembers trough the construction of the 
Autoassociative Morphological Memories [49]. 

The dendritic neuron [38, 51, 59] is a further development 
of the Morphological Neural Netwoks were the biological 
model is a dendrite and the learning procedure is an 
incremental procedure that is show to converge, with some 
similarities to the Fuzzy-ART learning algorithm.  
 
C Fuzzy Lattice Neurocomputing 
The Fuzzy Lattice Neurocomputing paradigm [1, 17, 64, 65] 
arises from the generalization of Fuzzy-ART [15, 16]. The 
generalization comes from the use of a general measure of 
inclusion and definition of the vigilance parameter in terms 
of the diagonal of the generalized object. The general data 
structure that allows the modelling of several classical 
structures is called Fuzzy Interval Number [66, 67]. It allows 
the manipulation of rather different data objects in a 
common lattice framework. These ideas have matured to 
propose lattice computing as a framework for new inference 
systems [68] and for new version of well known algorithms, 
such as the the grSOM (granular SOM) [21], the grARMA 
(granular ARMA)[20], the unification of SOM and ART 
algorithms [69]. The authors also propose FLNMAP as the 
generalization of the supervised Fuzzy ARTMAP [70]. 
 
The works on Fuzzy Lattice Neurocomputing [1, 64-66, 68, 
71-75] had a lot of applications in classification and 
prediction: [76-78] bone drilling for epidural anaesthesia, 
[79] text classification, [75, 80] air quality monitoring. The 
FIN structure is a promising way to produce new 
generalized algorithms able to deal with heterogeneous data 
structures, different from the conventional Euclidean spaces. 
 

IV CONCLUSSIONS 

 
The aim of this paper was to give a glimpse of the 
computational field composed of algorithms that employ in 
any a way sup and inf operators and can be, therefore, put 
into the framework of lattice theory.  The focus on lattices 
reveals the existence of a profound parallelism between 
areas as divergent as Fuzzy Systems, Mathematical 
Morphology, Min-max Algebra and Artificial Neural 
Networks.  
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