
Endmember induction by Lattice Associative Memories
and Multi-Objective Genetic Algorithms

Manuel Graña∗and Miguel A. Veganzones

Grupo de Inteligencia Computacional, Universidad del País Vasco (UPV/EHU), Spain

Email:

∗Corresponding author

Abstract

Endmembers are the spectral signatures of the constituent materials of an scene captured with a hyperspectral

sensor. Endmember Induction Algorithms (EIAs) try to extract the endmembers of the scene from the

corresponding hyperspectral image. In this paper we benefit from recent theoretical results showing that a set of

Affine Independent vectors can be extracted from the rows and columns of Lattice Autoassociative Memories

(LAAM). In the Linear Mixing Model (LMM), endmembers are defined as the vertices of a convex polytope

covering the data. Affine Independence is a sufficient condition for a set of vectors to be the vertices of a convex

polytope, and thus to be considered as endmembers. Our basic procedure is the WM algorithm extracting the

endmembers from the dual LAAMs built to store the spectra of the hyperspectral image pixels. The set of

endmembers induced by this algorithm defines a convex polytope covering the hyperspectral image data.

However, the number of induced endmembers obtained by this procedure is too high for practical purposes,

besides they are highly correlated. We apply a Multi-Objective Genetic Algorithm (MOGA) to the optimal

selection of the image endmembers. Two fitness functions are used, the residual error of the unmixing process

and the size of the set of endmembers. From the MOGA’s Pareto front we decide the final set of endmembers

by examining the decrease in residual error obtained by increasing the number of endmembers. We propose a

faster MOGA where the error fitness function is replaced by a fitness function based on the correlation between

endmembers. We compare our process with a state-of-the-art EIA on well known benchmark images.
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1 Introduction

The high spectral resolution provided by current hyperspectral imaging devices facilitates identification of

fundamental materials that make up a remotely sensed scene [1, 2]. Specifically, the Linear Mixing Model

(LMM) [1] assumes that the spectral signature of one pixel of the hyperspectral image is a linear

combination of the endmember spectra corresponding to the aggregation of materials in the scene due to

reduced sensor spatial resolution. Therefore, sub-pixel resolution analysis aims to the extraction of the

fractional abundances of such endmembers inside the pixel.

Endmember spectra define a convex polytope1 in the high-dimensional space defined by the image pixel

spectra. The fractional abundance of the endmembers at each pixel correspond to the convex coordinates

relative to the convex polytope vertices. The set of endmembers can be defined on the basis of a priori

knowledge about the imaged scene. A library of known pure ground signatures or laboratory samples could

be used. However, if such knowledge is not available or it is not useful due to noise conditions, then the set

of endmembers must be induced from the hyperspectral image data by means of Endmember Induction

Algorithms (EIA) [3, 4]. The review in [3] emphasizeds the degree of automation to classify the algorithms,

while [4] looks at the diverse computational foundations, assuming that user interaction must be minimal

or null.

Lattice based EIA (L-EIA) are based on lattice computing techniques [5]. For instance, the works in [6–10]

are based on the notion of Strong Lattice Independence (SLI), following the conjecture in [11] that SLI

vectors are Affine Independent vectors and thus its convex hull defines a simplex. Using Lattice

Auto-Associative Memories (LAAM) [12,13] built from the hyperspectral image data, sets of SLI vectors

where induced and used as endmembers. Recent works [10] have shown how to obtain sets of Affine

Independent vectors from the rows and columns of the LAAM constructed using the hyperspectral data.

Specifically, the WM algorithm introduced in [10] computes the erosive and dilative LAAM, the hyperbox

enclosing the data, defined the minimum and maximum values of the data at each band, and transforms

the columns or rows of the erosive and dilative LAAMs to become the vertices of a convex polytope

covering the image data. This algorithm has several advantages: (1) it is very fast, (2) performs only

addition, substraction and max/min operations, (3) induced endmembers are directly related to the actual

data in the image. However, the WM algorithm always returns the same number of endmembers

p = 2 ∗ (L+ 1), where L is the number of spectral bands in the image. This number is too high for the

actual distinct constituent materials in hyperspectral images. Besides, these endmembers are highly
1The convex polytope is a simplex when it is defined by d+ 1 vertices, where d is the dimension of the space.
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correlated and identification of useful endmembers with some physical interpretation is tricky [14].

Genetic Algorithms (GA) are random optimization algorithms inspired on natural evolution, a population

of individuals evolves through mutation and crossover to maximize a fitness function. Multi-objective GA

(MOGA) are specific GAs dealing with the optimization of several objective functions. That is, MOGA’s

fitness function is vector valued [15–18]. A minimization multi-objective problem is stated as follows:

Given an n-dimensional variable vector x = {x1, . . . , xn} in the solution space X, find a vector x∗ that

minimizes the K objective functions z (x∗) = min
x

{z1 (x) , . . . , zK (x)}. The region of feasible solutions in

the solution space X is often specified by a collection of constraints, such as gj (x
∗) = bj for j = 1, . . . ,m.

An ideal solution that simultaneously optimizes each objective function is impossible to find in most cases

because of the mutual conflicts between objectives. Multi-objective optimization algorithms, in general,

provide a collection of solutions that are of equivalente quality, the Pareto optimal set of non-dominated

solutions, and their corresponding objective values which constitute the Pareto front. Solution x1

dominates solution x2 if z (x1) ≤ z (x2), where the vector partial order is defined component-wise. If a

single solution is sought, then an additional selection must be performed on the Pareto set of

non-dominated solutions. We propose the use of specific MOGA for the selection of the endmembers from

the large set of endmember candidates provided by the WM algorithm.

In this work, we propose and test a three step process for endmember induction which we call WM-MOGA.

First, we compute the set of candidate endmembers applying the WM algorithm. Secondly, we apply a

MOGA looking for an optimal set of endmembers minimizing both the residual error (RMSE) from the

unmixing process and its cardinality which amounts to minimizing the complexity of the solution. This

WM-MOGA process returns a set of solutions that form a Pareto front on the solutions space formed by

the two objective functions. Thirdly, we apply an Occam razor threshold criterion [19] to select the optimal

set of induced endmembers as in [20]. To speed up the MOGA phase we use an alternative definition of the

objective functions, minimizing the maximum correlation between endmembers. This MOGA does not need

to compute the unmixing process for each individual and, therefore, it is several orders of magnitude faster.

We test the WM-MOGA process on real hyperspectral scenes and compare it against the random search

approach [20] based on the N-FINDR algorithm [21]. For validation, we calculate the correlation between

the fractional abundances of the optimal endmembers induced by both, the WM-MOGA and the

N-FINDR, and the available ground truth class spatial distribution. As WM-MOGA is an unsupervised

process, the assignment of an abundance image to a ground truth class implies computing all possible

combinations and selecting the best match.

3



The paper is organized as follows. In sections 2 we review the WM algorithm. Section 3 introduces the

proposed WM-MOGA approach for endmember induction. In section 4 we define the experimental

research, and in section 5 we analyze the results. Finally, we give some conclusions in section 6. Appendix

A describes the N-FINDR algorithm. Appendix B reviews the specific MOGA applied to the problem.

2 WM Algorithm

The WM algorithm [10] is a Lattice-EIA that builds a convex polytope containing the data. Algorithm 1

shows a pseudo-code specification for the WM algorithm. Given an hyperspectral image H , it is reshaped

to form a matrix X of dimension N × L, where N is the number of image pixels, and L is the number of

spectral bands. The algorithm starts by calculating the least hyperbox covering the data, B (v,u), where v

and u are the minimal and maximal corners, respectively, whose components are computed as follows:

vk = min
ξ

xξ
k and uk = max

ξ
xξ
k; k = 1, . . . , L; ξ = 1, . . . , N . (1)

Next, the WM algorithm computes the dual erosive and dilative Lattice Auto-Associative Memories

(LAAMs), WXX and MXX :

WXX =
N∧
ξ=1

[
xξ × (−xξ

)′]
and MXX =

N∨
ξ=1

[
xξ × (−xξ

)′]
, (2)

where × is any of the ∨� or ∧� operators. Here ∨� and ∧� denote the max and min matrix product [12, 22],

respectively, defined as follows:

C = A ∨� B = [cij ] ⇔ cij =
∨

k=1,...,L

{aik + bkj} , (3)

C = A ∧� B = [cij ] ⇔ cij =
∧

k=1,...,L

{aik + bkj} . (4)

Next, the columns of WXX and MXX are scaled by v and u, forming the additive scaled sets

W =
{
wk

}L

k=1
and M =

{
mk

}L

k=1
:

wk = uk +Wk; mk = vk +Mk, ∀k = 1, . . . , L, (5)

where Wk and Mk denote the k-th column of WXX and MXX , respectively.
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Algorithm 1 Pseudo-code specification of the WM algorithm.
1. L is the number of the spectral bands and N is the number of data samples.

2. Calculate v = [v1, . . . , vL] and u = [u1, . . . , uL],

vk = min
ξ

xξ
k;uk = max

ξ
xξ
k

for all k = 1, . . . , L and ξ = 1, . . . , N ,

3. Compute the LAAMs

WXX =

N∧
ξ=1

[
xξ × (−xξ

)′]
;MXX =

N∨
ξ=1

[
xξ × (−xξ

)′]

where × is any of the ∨� or ∧� operators.

4. Build W =
{
w1, . . . ,wL

}
and M =

{
m1, . . . ,mL

}
such that

wk = uk +Wk;mk = vk +Mk; k = 1, . . . , L.

5. Return the set V = W ∪M ∪ {v,u}.

Finally, the set V = W ∪M ∪ {v,u} contains the vertexes of the convex polytope F (X) ∩ B (v,u) which

covers the convex hull of the data, C (X), as a subset:

X ⊂ C (X) ⊂ F (X) ∩ B (v,u) . (6)

The WM algorithm returns the set V as the set of induced endmembers. The algorithm is simple and fast

but the number of induced endmembers, the amount of column vectors in V , can be too large for practical

purposes. Furthermore, some of the endmembers induced that way can show high correlation even if they

are affine independent. To obtain a meaningful set of endmembers, we search for an optimal subset of V in

the sense of minimizing the unmixing residual error and the number of endmembers.

3 WM-MOGA

The WM-MOGA is a three step process specified in pseudo-code by Algorithm 2. WM-MOGA starts by

computing a set of candidate endmembers using the WM algorithm. Given an hyperspectral image H , it is

reshaped to a matrix X of size N × L, where N is the number of pixels in the image, and L is the number

of spectral bands. Applying WM algorithm to X obtains a set of candidate endmembers, denoted

EWM =
{
e1, . . . , ep

}
. The second step of WM-MOGA finds the optimal subset of endmembers in terms of

unmixing residual error and complexity, by using a Multi-Objective Genetic Algorithm (MOGA) [15,16,18]
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to calculate the Pareto front and Pareto set of non dominated solutions P =
{
E1, . . . , Eq

} ⊆ P (EWM),

where P (EWM) is the power-set of EWM. We define two fitness functions. One is the unmixing residual

error of equation ((7)) denoted by fRMSE (E),

fRMSE (E) = RMSE(E,X) =
1

N

N∑
i=1

(xi − Eαi)
2 , (7)

where xi is the i-th pixel in the hyperspectral image X , and αi is the vector of fractional abundances for

the ith pixel calculated by Full Constrained Least Squares Unmixing (FCLSU) [23]. The second fitness

function is a measure of the solution complexity given the relative size of the set of endmembers as

specified in equation ((8)), denoted by f|·| (E),

f|·| (E) =
|E|

|EWM| , (8)

where |·| denotes the cardinality of a set. The MOGA requires to encode the problem so each individual in

the search population represents a solution. A k-th individual chromosome is defined as a binary vector

bk = {b1, . . . , bp}; bi ∈ {0, 1}; ∀i = 1, . . . , p; being p the number of candidate endmembers returned by WM

algorithm. If bi = 1, the i-th candidate endmember ei ∈ EWM belongs to the set of induced endmembers,

Ek, corresponding to bk. Appendix B gives the details of the NSGA-II algorithm [17] that we have applied

to this problem.

The final third step applies the Occam razor [19] to select the size set of endmembers where the reduction

in the unmixing residual error obtained accepting another endmember is below a given threshold. Sorting

the solutions Ei ∈ P by their cardinality so that i =
∣∣Ei

∣∣, the Occam razor condition is specified in

equation ((9)) for a given selection threshold ε on the difference of relative errors between consecutive

solutions according to the number of endmembers:

E∗ (ε) = argmin
P

{∣∣∣∣∣fRMSE
(
Ei+1

)
fRMSE (Ei)

− fRMSE
(
Ei

)
fRMSE (Ei−1)

∣∣∣∣∣ < ε

}
. (9)

The algorithm returns E∗ (ε) as the final set of induced endmembers from the hyperspectral image X .

3.1 WM-MOGA-CORR

Much of the computational cost of the MOGA is due to the computation of the fractional abundances α

for each population individual at each generation. We propose a faster approximation in which MOGA

looks for subsets of endmembers that minimize the maximum of the between endmembers correlation while
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Algorithm 2 Pseudo-code for the WM-MOGA process
1. Apply WM (X) to obtain EWM =

{
e1, . . . , ep

}
2. Apply MOGA (EWM) to obtain the Pareto set of solutions P =

{
Ei, i = 1, . . . , q

}
3. Apply the Occam razor selecting E∗ (ε) = argmin

P

{∣∣∣∣ fRMSE(Ei+1)
fRMSE(Ei) − fRMSE(Ei)

fRMSE(Ei−1)

∣∣∣∣ < ε

}

4. Return E∗ (ε)

keeping as much endmembers as possible. This is done by substituting the unmixing error fitness function

in equation ((7)) by a fitness function based on the maximum correlation between the endmembers,

fCORR (E) = max {cij ; ei, ej ∈ E} , (10)

where cij is the Pearson’s correlation between endmembers. Thus, we try to minimize the maximum

correlation between endmembers. This fitness function is far less computationally expensive than the

fitness function fRMSE of equation (7). The solution complexity related fitness function of equation ((8))

can not be applied in conjunction with the correlation based fitness function of equation (10) because it

leads to the trivial result of a single endmember. Instead, we use its inverse:

f|·|−1 (E) =
|EWM|
|E| . (11)

We call this approximation to the WM-MOGA using fitness functions
{
fCORR, f|·|−1

}
WM-MOGACORR.

Note that the optimality criteria for the set of endmembers sought is the minimization of the unmixing

residual error and number of endmembers. The approximation WM-MOGACORR does not attempt to

minimize these criteria directly, but nevertheless the quality of its achieved solution will be evaluated on

the basis of the unmixing residual error.

4 Experimental design

We first present the hyperspectral data used on the experiments and then, we describe the experimentation

methodology. The experiments have been run using the MATLAB2 implementation of NSGA-II [17]. The

number of individuals in the population was set to 100 for the WM-MOGARMSE and 1000 for the

WM-MOGACORR. To perform the comparison we calculate the correlation between the fractional

abundance images corresponding to the optimal sets of endmembers induced by the different approaches
2http://www.mathworks.com/products/matlab/
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and the groundtruth classes from the different hyperspectral scenes. All the hyperspectral scenes and code

of the algorithms and methods implemented are freely accesible from the Computational Intelligence group

website34.

4.1 Hyperspectral data
4.1.1 The Indian Pines scene

The Indian Pines scene was gathered by AVIRIS sensor over North-western Indiana and consists of

145× 145 pixels and 224 spectral reflectance bands in the wavelength range 0.4–2.5µm. This scene contains

two-thirds agriculture, and one-third forest or other natural perennial vegetation. There are two major

dual lane highways, a railway line, as well as some low density housing, other built structures, and smaller

roads. Since the scene is taken in June some of the crops present, corn, soybeans, are in early stages of

growth with less than 5% coverage. The ground truth available is designated into sixteen classes with

variable number of samples for each class (see table 1). We have reduced the number of bands to 200 by

removing bands covering the region of water absorption: [104− 108], [150− 163], 220. Indian Pines data

are available through Purdue’s university MultiSpec site5. Figure 1 shows a sample band and the ground

truth of Indian Pines dataset.

4.1.2 The Salinas scene

This scene was collected by the 224-band AVIRIS sensor over Salinas Valley, California, and is

characterized by high spatial resolution (3.7-meter pixels). The area covered comprises 512 lines by 217

samples. As with Indian Pines scene, we discarded the 20 water absorption bands, in this case bands

[108− 112], [154− 167] and 224. It includes vegetables, bare soils, and vineyard fields. Salinas groundtruth

contains 16 classes. Figure 2 shows a sample band and the groundtruth of Salinas dataset, and table 2

shows the groundtruth classes and their respective sample numbers.

4.2 Methodology

Research questions explored in this paper are the following ones: (a) is it possible to obtain a reduced set

of endmembers from the WM algorithm using a search process based on the quality and size of the set of

endmembers?, (b) is it possible to speed up the search process using indirect information such as the

correlation between endmembers?, (c) how those endmember induction processes compare with a
3http://www.ehu.es/ccwintco/index.php/GIC-source-code-free-libre
4http://www.ehu.es/ccwintco/index.php/GIC-experimental-databases
5https://engineering.purdue.edu/~biehl/MultiSpec/
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state-of-the-art algorithm?. We have defined the WM-MOGA and WM-MOGACORR algorithms to answer

the first two questions. The experimental results provide answers to the last question. We compare the

WM-MOGA (denoted WM-MOGARMSE in the figures) and WM-MOGACORR processes with a recent

random search approach based on N-FINDR [20] which runs the N-FINDR algorithm several times for

increasing values of the number of desired endmembers, p, and then applies the Occam razor specified by

equation ((9)) to determine the optimal set of endmembers E∗
N-FINDR (ε).

It is important to note that the endmember induction processes are unsupervised, therefore the meaning of

the endmembers found and their relation to the ground-truth classes is unknown. However, we want to

support our work on the knowledge of a given ground-truth for the benchmark images. The evaluation

process looks for the best match between the abundance images produced by the unmixing and the image

regions identified with each class in the ground truth6. We compute all the possible spatial correlations

between them, obtaining a matrix of correlation indices. The examination of this matrix gives information

about the discovery of the ground-truth classes, which endmembers are associated to them and the

uncertainty or ambiguity of this association.

5 Results

We first provide the plots of the unmixing residual error versus the number of endmembers of the solutions

found by the WM-MOGA, WM-MOGACORR and N-FINDR based approach of [20]. Note that the Pareto

front of WM-MOGACORR refers to the correlation between endmembers, not to the unmixing residual

error. However the selection of the solution is based on the same criteria for all algorithms. Figures 3 and 4

show these plots for the Indian Pines and Salinas images, respectively. The curve corresponding to the

WM-MOGA is smooth because the MOGA searches for the Pareto front based on these criteria. The

curves corresponding to WM-MOGA-CORR and N-FINDR are more irregular, with several local minima.

The Occam razor tries to determine the optimal solution based on the relative error decrease according to

equation 9. We plot in figures 5 and 6 the relative error fRMSE(Ei)/fRMSE(Ei−1) evolution for the algorithms.

It can be appreciated that the WM-MOGA provides a smooth relative error curve that allows an easy

setting of the threshold parameter of the Occam razor and gives sensible results in the selection applying

ε = 10−2. For the WM-MOGA-CORR selection of the definitive threshold required inspection of the

relative error curve, a threshold ε = 10−2 gives sensible results for the Indian Pines image, but ε = 10−1 is

required for the Salinas image. The N-FINDR approach gives very irregular relative error curves, however
6We do not have knowledge of the ground truth endmembers.
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the standard threshold ε = 10−2 gives sensible results for both images. The result of these selection

decisions are shown in figures 7 and 8 for the Indian Pines and Salinas images, respectively. It can be

appreciated that WM-MOGACORR provides more uncorrelated endmembers than the other approaches.

For a qualitative evaluation of the results, we provide in figures 9 and 10 the thematic maps and the

images containing the maximum abundance value per pixel for each of the tested approaches. The

thematic maps are computed as follows. We compute the correlation coefficient between each abundance

image and each binary image corresponding to a ground-truth class spatial distribution. We assign to each

endmember the set of ground truth regions with positive correlation coefficients. For each pixel we select

the endmember with the maximal abundance value and we assign to the pixel the linear combination of the

colors of ground-truth positively correlated with the endmember abundance, i.e. the orange color

corresponds to the mixture of red and yellow. We remove the background class in these computations. It

can be appreciated examining the thematic maps in figures 9(b,d,f) and 10(b,d,f) that the

WM-MOGACORR provides more clean recognition of the ground-truth class areas in both Indian Pines and

Salinas, maybe due to its emphasis in uncorrelated endmembers. Besides, there is little correspondence

between the classes and the endmembers in all cases: most of the ground truth regions are not recognized

in their original spatial localization. Attending to the abundance coefficients shown in figures 9(c,e,g) and

10(c,e,g) there are few pixels with a pure endmember matching, most abundance values are moderate

implying some degree of mixture of the real classes. We found that, in average, the WM-MOGACORR

provides the greater values of the abundance coefficients, improving over WM-MOGA and N-FINDR.

Finally, to asses the degree of ground-truth class discovery by the endmembers we plot the maximum

correlation coeficient per abundance and per ground truth class in figures 11 and 12 for the Indian Pines

and Salinas images, respectively. Examining the maximum correlation per ground truth class (figures 11(a)

and 12(a)) the results are not exactly equal in both images, however the trends are similar. We find that

the WM-MOGA provides the best identification of the class almost for all of them. For some classes

WM-MOGACORR performs better, for a couple of classes N-FINDR is the best detector. We can say that

WM-MOGA compares well or improves the ground-truth class detection over N-FINDR. Also the

correlation aproximation of WM-MOGACORR gives surprising good detections of some ground truth

classes, and in general is a good approximation to the detection obtained by WM-MOGA. Examining the

maximum correlation per abundance image (figures 11(b) and 12(b)), we find the same kind of results. For

most of the induced abundances, the WM-MOGA provides the best correspondence to some ground-truth

class. The approximation provided by the WM-MOGACORR, which is several orders of magnitude faster,
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does a good job of finding meaningful endmembers, but it finds many endmembers so that there is a tail of

irrelevant endmembers little correlated with the ground-truth classes.

6 Conclusions

The WM Algorithm proposed by Ritter at al. [10, 14] is a fast procedure to obtain a set of affine

independent vectors which are the vertices of a convex polytope covering the sample data. Applied to

hyperspectral images, WM Algorithm produces a large set of candidate endmembers. We propose the

application of an specific MOGA minimizing the unmixing residual error and the number of endmembers,

followed by an Occam razor selection on the Pareto front to obtain an appropriate set of endmembers

tailored to the data. The WM-MOGA compares well to a recent state-of-the-art endmember induction

heuristic [20] in terms of the correlation of the induced abundance images with the given ground truth class

spatial distribution. Furhtermore, we propose an approximation to the MOGA which does not need to

compute the linear unmixing based on the individual chromosoms at each generation. This fast process

identification of the ground truth classes compares well with the reference heuristic. However, it

overestimates the set of endmembers, including some redundant or irrelevant endmembers. Future work

will be addressed to improve the fast approach introducing new regularization fitness functions to obtain

smaller sets of endmembers of equivalent quality.
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A N-FINDR

Algorithm 3 presents the N-FINDER [21] pseudo-code. The N-FINDER algorithm works by growing a

simplex inside the data, beginning with a random set of pixels. The vertices of the simplex with higher

volume are assumed to identify the endmembers. Previously, data dimensionality has to be reduced to

p− 1 dimensions, being p the number of endmembers searched for.

Let E be the matrix of endmembers augmented with a row of ones

E =

[
1 1 . . . 1
e1 e2 . . . ep

]
, (12)

where ei is a column vector containing the spectra of the i-th endmember. The volume of the simplex

defined by the endmembers is proportional to the determinant of E
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Algorithm 3 N-FINDR algorithm
1. Apply Principal Component Analysis (PCA) to reduce the data dimensionality. Keep the first p − 1

principal components.

2. Randomly select p vectors from the data to initialize the set of induced endmembers E.

3. Calculate the volume of the simplex v = V (E) (13). vactual = v.

4. For each endmember ek, k = 1, . . . p:

(a) For each data vector xi, i = 1, .., N :

i. Form a new matrix E′ by substituting the endmember ek by the data vector xi.
ii. Calculate the volume of the simplex v′ = V (E′).
iii. If v′ > vactual then E′ becomes E. vactual = v′.

5. If vactual > v then v = vactual. Go to step 4.

V (E) =
abs (det (E))

(p− 1)!
. (13)

The N-FINDER starts by selecting an initial random set of pixels as endmembers. Then, for each pixel and

each stored endmember, the endmember is replaced with the spectrum of the pixel and the volume

recalculated by equation (13). If the volume of the new simplex increases, the endmember is replaced by

the spectrum of the pixel. The procedure ends when no more replacements are done. The N-FINDER is a

greedy algorithm, prone to fall in local maxima of the volume function.

B NSGA-II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) [17] is a fast and elitist multi-objective

genetic algorithm. The NSGA-II algorithm starts by creating a random initial parent population P0, which

is sorted based on non-domination such that a rank is assigned to each solution according to its level of

non-domination (rank 1 corresponds to non-dominated solutions in the Pareto front). Conventional

tournament selection, recombination and mutation operators for binary chromosomes are used to create an

offspring population Q0 of size N .

Algorithm 4 gives the pseudo-code for a single NSGA-II generation. First, a combined population

Rt = Pt

⋃
Qt of size 2N is formed. Elitism is ensured because the best individuals from the parents and

ofsprings are always retained. Then, Rt is sorted according to non-domination level using a fast sorting

algorithm. The non-dominated set of solutions in F1 are included in new population Pt+1. Once F1 is

removed from Rt, then the solutions in F2 are the new set of non-dominated solutions in Rt −F1, and are
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Algorithm 4 NSGA-II algorithm iteration
1. Combine parent and offspring population: Rt = Pt

⋃
Qt

2. Calculate all the non-dominated fronts of Rt: F = (F1,F2, . . .) = fast-non-dominated-sort (Rt)

3. Do until filling the parent population: |Pt+1|+|Fi| ≤ N

(a) Calculate crowding-distance in Fi: crowding-distance-assignment (Fi)

(b) Include i-th non-dominated front in the parent population: Pt+1 = Pt+1

⋃Fi

(c) Check the next front for inclusion: i = i+ 1

4. Sort in descending order using the crowding-comparison operator �n: Sort (Fi,�n)

5. Choose the first (N − |Pt+1|) elements of Fi: Pt+1 = Pt+1

⋃Fi [1 : (N − |Pt+1|)]
6. Use crossover and mutation to create a new offspring population Qt+1

7. Increment the generation counter: t = t+ 1

thus included in the new population Pt+1. This procedure is repeated adding subsequent non-dominated

fronts in the order of their ranking until reaching the required number of solutions N . Often, not all the

solutions in the last considered front Fl are included. The solutions of the last front are sorted in

descending order using the crowded-comparison operator �n which favours solutions with lower (better)

non-domination rank and, if both solutions belong to the same front, favours the solution located in a

lesser crowded region. Best solutions are choosed up to fill Pt+1, which is now used for crossover and

mutation to create a new offspring population Qt+1 of size N . The overall complexity of the algorithm is

O
(
MN2

)
which is governed by the non-dominated sorting part of the algorithm. The diversity among

non-dominated solutions is introduced by using the crowding-comparison procedure, which makes

unncessary any niching parameter.
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(a) (b)

Figure 1: (a) Indian Pines sample image, band 170. (b) Indian Pines ground truth.

(a) (b)

Figure 2: (a) Salinas sample image, band 170. (b) Salinas groundtruth.
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Figure 3: Indian Pines image. Plot of the unmixing residual error versus the number of endmember for the
Pareto set of non-dominated solutions found by WM-MOGA and WM-MOGA-CORR, and the solutions
found by the N-FINDR based approach of [20].
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Figure 4: Salinas image. Plot of the unmixing residual error versus the number of endmember for the Pareto
set of non-dominated solutions found by WM-MOGA and WM-MOGA-CORR, and the solutions found by
the N-FINDR based approach of [20].
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Figure 5: Indian Pines image. Relative error fRMSE(Ei)/fRMSE(Ei−1) for the solutions obtained by WM-MOGA
and WM-MOGA-CORR, and N-FINDR in figure 3.
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Figure 6: Salinas image. Relative error fRMSE(Ei)/fRMSE(Ei−1) for the solutions obtained by WM-MOGA and
WM-MOGA-CORR, and N-FINDR in figure 4.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 9: (a) Indian Pines ground-truth. Thematic maps obtained by linear combination of the color tags of
the ground truth regions with maximal correlation relative to the abundance images (b) WM-MOGA, (d)
WM-MOGA-CORR, (f) N-FINDR. Maximal abundance value per pixel (c) WM-MOGA, (e) WM-MOGA-
CORR, (g) N-FINDR.
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(b)

Figure 11: Indian Pines image. Maxima of the correlation coefficients between ground truth classes and
induce abundance images. (a) maxima per ground-truth class, (b) maxima per endmember.
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Figure 12: Salinas image. Maxima of the correlation coefficients between ground truth classes and induced
abundance images. (a) maxima per ground-truth class, (b) maxima per endmember.
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# Class Samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

Table 1: Indian Pines ground truth classes and number of samples collected for each class.
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# Class Number of samples
1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11271
9 Soil_vinyard_develop 6203
10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

Table 2: Salinas groundtruth classes and number of samples for each class.
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