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abstract

This Thesis deals with digital image segmentation starting from a physi-
cal analysis of image formation under the Dichromatic Re�ection Model
(DRM), pursuing color constancy (CC) properties such as those shown
by the human vision system, as psychology vision research has demon-
strated. In order to provide robustness regarding illumination changes,
�rst we perform illumination correction. By estimating the illumination
chromaticity is possible to normalize the image respect to the illumina-
tion accomplishing some degree of CC in image processing. Afterwards,
it is possible to separate the di�use and specular image components.
Once the image is normalized, we proceed to the image segmentation,
where the key innovative tools introduced in this Thesis are a chromatic
gradient and a hybrid gradient de�ned over a new chromatic distance.
Most of this work is based on the identi�cation of Spherical coordinates
representation of the colors in the RGB cube, which allow to work with
image chromaticity in straightforward manner. Segmentation methods
proposed in this Thesis work in the image domain. Speci�cally, this
Thesis proposes two approaches, one is a region growing and the other
is a Watershed Transformation. First half of this thesis is focused on
RGB images whereas the second one is devoted to the extrapolation of
the segmentation methods to hyperspectral images through the use of
Hyperspherical coordinates.
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Chapter 1

Introduction

1.1 Thesis Context

The overall context of this Thesis is the processing of digital images for robust
segmentation. The kind of images treated are conventional RGB images and
hyperspectral images. The transition from low dimensional valued images
to high dimensional valued images introduces additional problems due to
the curse of dimensionality, and it is by no means trivial. Nevertheless, we
have had some success porting the same philosophy to obtain robust image
segmentation methods. The meaning of the word �robust� in this Thesis
is intimately associated with the Color Constancy property of the human
vision, and the branch of arti�cial vision that tries to reproduce it for the
design of improved digital image processing algorithms. Color Constancy
means that human can perceive the same color surface despite the changes
imposed by illumination e�ects. In this Thesis we have focused on avoiding
the false segmentations introduced by highlights and shadows in the images.
Highlights are image regions of high intensity due to the particular strong
re�ection of the illumination on some speci�c surface patch. Shadows are
dark image regions produced by the occlusion of some surface patch relative
to the illumination source. Highlights and shadows are primarily e�ect on the
achromatic component of the image, therefore, the main aim of the Thesis
has been to identify e�ciently the chromatic components of the image in
order to perform the image segmentation operations on them, thus avoiding
the e�ects on the achromatic component.

The works pursued in this Thesis have touched several aspects of image

1



2 CHAPTER 1. INTRODUCTION

processing, the two most salient are:

• The Dichromatic Re�ection Model, which has served as the guiding and
supporting model for most of the processes proposed and tested in this
thesis. The basic decomposition into di�use and specular components,
has served to predict the e�ects of the proposed algorithms, and to
explain sometimes the results obtained.

• The spherical coordinate representation, which provides the chromatic
characterization of the image. After computing this representation,
discarding all the e�ects of the illumination is immediately achieved by
discarding the luminosity component. Using this representation we do
not need to perform color space transformations for the extraction of
the chromatic information. We have found also straightforward to ex-
tend this approach to the hyperspectral image domain, contrary to any
other color space representation, whose high-dimensional correspondent
is not known. Therefore, the spherical coordinate representation is the
key for the de�nition of robust chromatic processing of hyperspectral
images.

The kind of image segmentation pursued is twofold. We have developed
approaches for region growing and gradient based segmentation, including
chromatic variations of the well known watershed algorithm. Robust region
based segmentation means that the identi�ed regions are chromatically ho-
mogeneous and no homogeneous chromatic region is partitioned in several
regions. Speci�cally, shadowed regions are expected to be ignored, and in-
cluded in larger regions of the same color, despite its low intensity. Highlight
regions are also expected to be ignored and included in the larger homoge-
neous regions. These goals are not easy to achieve, depending on factors such
as the quality of the camera, or the existence of motion artifacts (for instance
in robotic applications). For edge detection segmentation based on chromatic
gradients, the sought e�ect is the absence of spurious edges produced by the
shadow or highlight borders.

Finally, we have found that the chromatic processing is quite sensitive to
noise in the dark regions of the image. This e�ect is easy to explain taking
into account that small color perturbations in the vicinity of the space origin
may introduce large angular variations. To overcome this problem, we have
proposed hybrid approaches combining chromatic and achromatic distances.
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1.2 Thesis Framework

The scheme in Fig. 1.1 summarizes the works developed on RGB images
that are presented in the ensuing chapters. The basic �ow is that the input
image is subject to some preprocessing operations (light blue regions of the
scheme) previous to the segmentation (green) which produces the output
image. The paths that can be followed from input to output image correspond
to some of the approaches proposed, developed and tested.

One approach is to compute the specular free image (block label 8), re-
moving highlights and enhancing the chromatic content of the image, and
apply a simple thresholding approach (block label 9) to identify the regions
of interest. We have pursued such an approach in some robotic applications.

Other approaches may combine several processes, always based in the
spherical representation of the RGB color (block label 1):

• Perform the illumination source chromaticity estimation (block label
2), which allows the image chromatic normalization (block label 3) so
that the resulting image corresponds to the image obtained with a pure
white illuminant. This process is needed when the ensuing processes
assume white illumination.

• The normalized image can be subject to the separation of di�use and
specular components (block label 4) so that the di�use image can be
used for further robust region segmentation and the specular image can
be used to obtain some geometrical information.

• The normalized image can be used to compute the chromatic (or hy-
brid) gradient, which allows the detection of edges (block label 5).

• The watershed segmentation (block label 6) uses the chromatic gradient
image to perform the �ooding process and identify regions. It uses also
the chromatic distance for region merging into coherent color image
regions.

• The region growing (block label 7) uses the chromatic distance on the
normalized image to obtain the region segmentation in one pass over
the image.
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Figure 1.1: Schema of the �rst part of the thesis. On RGB images.
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Figure 1.2: Scheme of the second part of the thesis. On hyperspectral images.

All these processes are the subject of some chapter in this Thesis, were we
explain our attempts to de�ne and apply the above ideas to develop them.
The extension to the hyperspectral image domain is illustrated in Fig. 1.2.
Here we have a simple linear pipeline, where the input image is subject to
the computation of the hyperspherical coordinates for the subsequent pro-
cesses (block 10). The hyperspectral chromatic gradient is computed on this
representation after removal of the luminosity component (block label 11).
Finally, the watershed algorithm is computed on the gradient information
(block label 12). These processes are the subject of the last chapters of the
Thesis. In fact, the processing of hyperspectral images is the main avenue
for future works after the Thesis presentation.

1.3 Thesis Outline

Each of the chapters explaining the contributions of this Thesis has a spe-
ci�c conclusions section, therefore we do not introduce a �nal chapter of
conclusions and further work.

Chapter 2 contains introductory material about color, color spaces, the
Dichromatic Re�ectance Model, and image segmentation algorithms.

Chapter 3 contains four approaches to the problem of color image nor-
malization, including the separation of di�use and specular re�ectance com-
ponents supported by the DRM introduced in the �rst chapter.
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Chapter 4 contains two approaches to specular free image transformation,
the �rst one has been applied to a practical problem of detection and following
of robots in an scene.

Chapter 5 contains the de�nition and experimental results of a chromatic
gradient operator based on the chromatic distance de�ned on the angular
distance among the vector representation of the RGB color space points.

Chapter 6 contains the description of image segmentation contributions
performed on the basis of the chromatic distance de�ned on the spherical
coordinate representation of pixel coordinates in RGB color space. These
contributions are a robust region growing algorithm and chromatic watershed
segmentation algorithm.

Chapter 7 contains some introductory material on hyperspectral images
and the de�nition of chromatic ideas based on the hyperspherical coordinate
representation that is used in the ensuing chapters.

Chapter 8 contains gradient operator de�nitions on the hyperspectral
images, considering the hypersherical representation and a hybridization to
allow for improved edge detection in dark regions.

Chapter 9 contains the contributions on hyperspectral region segmenta-
tion using the chromatic gradient hyperspherical coordinates for watershed
segmentation.
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1.5 Symbols

Symbol Description
θ Zenith angle
φ Azimuth angle
Ψ Chromaticity

ΠΨ Chromatic plane, Maxwell plane
Λ Di�use chromaticity

Λsf Di�use specular free chromaticity
Γ Specular chromaticity
Isf Specular free image
Iest Illumination source chromaticity stimation
Inorm Normalized image respect to the illumination
Ld Di�use line
Ls Specular line
Lw Achromatic line
Πdc Dichromatic plane
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Chapter 2

Re�ectance, Color and

Segmentation

This chapter provides background ideas and de�nitions relevant to this The-
sis. Section 2.1 refers to illumination, the main factor on computer vision.
Section 2.2 discusses surface re�ectance. Section 2.3 introduces color and
color spaces, discussing in detail the RGB color space, and de�ning �chro-
maticity� which is a key concept in this thesis. Section 2.4 introduces a
spheric coordinate representation of colors in the RGB color space, provid-
ing a new but equivalent de�nition of �chromaticity�. Section 2.5 discusses
�color constancy� both for human vision and computer vision. Section 2.6 dis-
cusses re�ectance models, focusing on the the Dichromatic Re�ection Model
(DRM). Section 2.7 recalls from the literature a formal and general de�-
nition of image segmentation, gives a short review of current segmentation
approaches, and discusses the main segmentation issues. Section 2.8 discuss
about the state of the art on image gradient computation.

2.1 Illumination

Illumination is a main component in any vision systems, be it biological or
arti�cial. If the illumination is in the infrared spectrum, few animals could
see some things, and arti�cial systems need sensors designed for this light
wavelength interval to be able to detect some things. The same applies to
ultraviolet light, red light or any single-color (narrow-band) illuminant. The
reference to establish some performance benchmarks for vision systems is the

13
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human vision system (HVS), and the typical kind of illumination is the white
(wide-band) illumination provided by the Sun. But natural illumination is
not constant, it is di�erent from morning to evening, from summer to spring,
in sunny days or in cloudy days. Arti�cial illumination also shows strong
changes in arti�cial environments; shops, pubs, city ways, town streets, in-
dustrial environments, etc.

There are many works in the literature which estimate illumination prop-
erties in the visible spectrum. Hara [1] proposes a method for illumination
source position and re�ectance estimation from a single view without the
distant illumination assumption. Sato [2] introduces a method for recovering
an illumination distribution of a scene from image brightness inside shadows
cast by an object of known shape in the scene. Other works are focused only
in the estimation of the chromaticity of the illumination [3, 4, 5, 6].

2.2 Surface Re�ectance

There are many de�nitions of �re�ectance�, some times con�icting if coming
from di�erent sciences: optics, physics, radiometry, astronomy, and recently
computer science for visualization. We are interested in it from the point of
view of computer vision.

In digital image processing research, we can not ignore the physical e�ect
of the re�ectance, because it is our �a priori knowledge�. Unfortunately,
the re�ectance depends on the illumination and the surface properties, and,
therefore, this �a priori knowledge� is generally unknown. In computer vision,
we refer to the re�ectance phenomenon as the �surface re�ectance�.

The measurement of light is a �eld in itself, known as radiometry. A
brief and clear introduction to radiometry is exposed in Forsyth and Ponce
[7]. Fig. 2.11 shows the basic case of re�ectance where a beam of light
strikes a surface with an angle ω1 respect to the normal angle n , and the
outgoing beam leaves it with the same magnitude but at di�erent direction
ω2. Here, we can formulate some interesting questions; the outgoing beam
has the same energy over all the wavelength range as the incoming beam?
The angle between ω1 and n: is it the same as the angle between n and ω2?
The answer for both questions depends of the surface properties.

Generally some simplifying assumption have been done on the surface
nature: radiance leaving a point (irradiance) is due to the radiance arriving

1http://en.wikipedia.org/wiki/File:BRDF_Diagram.svg
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Figure 2.1: Surface re�ectance by BRDF

to this point, all light leaving at a wavelength is due to the incoming light to
this wavelength (surfaces only can absorb some light at some wavelength) ,
and �uorescent surfaces are ignored.

Surfaces are classi�ed into two main classes; specular surfaces and di�use
or lambertian surfaces. The specular surfaces (after the Latin word 'specu-
lum', a mirror) have a behavior like a mirror: all incoming radiance leaves
the surface without changes (ideally). The di�use surfaces or lambertian
surfaces (after Lamber ) have the property to absorb some of the incoming
radiance, and the outgoing beam follows the Lambert cosine law [8]. In a
di�use surface we can detect the surface color and textures.

Fig.2.2 helps to understand these kind of refectances. The sketch in Fig.
2.2(a)2 shows a light beam arriving the surface and interacting inside the
matter. The energy of some wavelengths of the light beam are absorbed by
the matter. The light beam leaves surface in a undermined direction. The
sketch in Fig. 2.2(b)3 shows the behavior of a lot of light beams striking a
surface, then the general re�ection can be modeled by the Lambert cosin law.
The sketch in Fig. 2.2(c) 4 shows the behavior of a specular surface. In this
case, the incoming light beam leaves the surface following the symmetrical
geometry respect the normal angle at the strike point.

2http://en.wikipedia.org/wiki/File:Di�use_re�ection.gif
3http://en.wikipedia.org/wiki/File:Re�ection_angles.svg
4http://en.wikipedia.org/wiki/File:Di�use_re�ection.PNG
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(a) (b) (c)

Figure 2.2: Di�use and specular re�ections

In nature most of the surfaces have a mixture of both re�ectances due
to the diversity of the surface composition, e.g. human skin could be matte,
however grease and sweat can originate highlights, and so on in the common
surfaces. Usually surfaces have not single component: Vegetables have a wax
layer and light can go trough them. Rocks and stones have di�erent material
composition with di�erent re�ectance properties. For computer vision and
visualization re�ectance models are used trying to explain the light behavior
in di�erent surfaces.

2.3 Color and Color Spaces

Color is an important descriptor for visual object recognition [9], however
it is a subjective value, a human perception feature, always under research
[10]. Color perception derives from the �ltering of the light spectrum by
the spectral sensitivities of the light receptors in the retina. Colors may
be de�ned and quanti�ed by the degree of stimulation of these cells. These
physical or physiological quanti�cations of color, however, do not fully explain
the psychophysical perception of color appearance. Color categories and
physical speci�cations of color are also associated with objects, materials,
light sources, etc., based on their physical properties such as light absorption,
re�ection, or emission spectra.

De�ning a color space, colors can be identi�ed and be quantitatively
described by their coordinates. There are two kind of color spaces. First,
the �additive color spaces� created by addition of primary colors (Red, Green
and Blue) where all colors are represented as a sum of dimensional units:
examples are the RGB, sRGB, RGBa, HSV,HSI, HSL, CIE l*a*b, and CIE
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Figure 2.3: Rendering of the RGB color space in the range [0-255]. Left,
the view of the boundary color planes intersecting at the black color cor-
responding to the space origin. Middle, view of the boundary color planes
intersecting at the white color. Right, one speci�c color point and its RGB
coordinates.

L*u*v color spaces. Second, the �subtractive color spaces� created by the
superposition of secondary color (Cyan, Magenta , Yellow and Black) each
absorbing its respective wavelength. These spaces are used in paints, inks
and printing systems. The most famous is CMYK . There are also some
speci�c color spaces for speci�c devices like NTCS for TV sets.

2.3.1 RGB

Most of this thesis work is done on the RGB color space [11]. Fig. 2.35 shows
the RGB cube in the range [0-255]. In general, RGB is de�ned on the Natural
(discrete) range [0-255] because 28 = 256 and �rst computers work with 8 bits
providing enough quality for the human vision on screens. We are going to
work in the Real (continuous) range [0-1] for a better precision. In this color
space the three orthogonal lines represent the primary colors (Red, Green
and Blue) which give the name to this space. The other three orthogonal
lines have the secondary colors (Cyan, Magenta and Yellow). These six
lines begin on the origin [0,0,0] and �nish on its respective extrema. The
achromatic line, corresponding to the gray scale, begins on the black color
at the space origin [0,0,0] and �nishes on the white corner with coordinates
[255,255,255] or [1,1,1], depending on the color space scale chosen.

5http://upload.wikimedia.org/wikipedia/commons/0/03/RGB_farbwuerfel.jpg
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Color

Chromaticity
{
Hue

Saturation

Intensity

Figure 2.4: Decomposition of color concepts

2.3.2 Chromaticity

Color is decomposed into Chromaticity and Intensity. Chromaticity refers
to the quality color information regardless of the intensity. Intensity relates
to the energy, the amount of photons received by unit surface. In the HSI
family of color spaces, chromaticity is de�ned by the pair (H,S) of Hue and
Saturation. Hue relates to the di�erence between colors, corresponding to
the perceived wavelength class, e.g. measures the di�erence between red and
blue. Saturation one represents the relative mixture with white. These ideas
are drawn on the schema of Fig.2.4. If we interpret color on RGB like vectors,
previous ideas can be explained as follow: Intensity is the vector magnitude,
Saturation is the orthogonal distance to the achromatic line, and Hue is the
rotational distance around the achromatic line to the Red corner.

In RGB Chromaticity corresponds to the normalized RGB values r =
R

R+G+B
, g = G

R+G+B
and b = B

R+G+B
, so that r+ g+ b = 1. Therefore, one of

the normalized coordinates is redundant and can be discarded. Usually, the
pair (r, g) is used as the chromaticity. The e�ect of computing the normalized
RGB values is that all color pixels are projected into the Maxwell triangle
[12], shown in Fig. 2.5. This triangle is the region of the plane de�ned by
the points {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)} lying inside the RGB cube. We will
name this plane chromatic plane, denoting it by ΠΨ.

2.4 Spherical Coordinates

RGB is most used color space in computer vision, despite its lack of percep-
tual continuity. Without changing the color space, we can obtain a quite dif-
ferent representation of the color information by using an equivalent system
of coordinates to specify the location of the color in the RGB color space. In
this Thesis we have used extensively this alternative representation. Denote
c = {Rc, Gc, Bc} the point in the RGB color space corresponding to an image
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Figure 2.5: Maxwell triangle

pixel's color. The vector going from the origin up to this point, shown in Fig.
2.6, can be represented using spherical coordinates c = {θc, φc, lc}, where θ
is zenithal angle, φ is the azimuthal angle and l is the vector's magnitude.

As said before, in the RGB color space, chromaticity Ψc of a color point
is represented by its normalized coordinates rc = Rc

Rc+Gc+Bc
, gc = Gc

Rc+Gc+Bc
,

bc = Bc

Rc+Gc+Bc
, such that rc + gc + bc = 1. Therefore, chromaticity corre-

sponds to the projection onto the chromatic plane ΠΨ of Fig. 2.5 , along
the line de�ned as Lc = {y = k·Ψc; k ∈ R}. In other words, all the points in
line Lc have the same chromaticity Ψc, which is a 2D representation equiv-
alent to one provided by the zenithal and azimuthal angle components of
the spherical coordinate representation of the a color point. Given an image
I (x) = {(R,G,B)x ;x ∈ N2} , where x refers to the pixel coordinates in the
image grid domain, we denote the corresponding spherical representation as
P (x) = {(φ, θ, l)x;x ∈ N2}, which allows us to use (φ, θ)x as the chromaticity
representation of the pixel's color.

2.5 Color Constancy

Color Constancy (CC) is the mental ability to identify chromatically equiva-
lent homogeneous surfaces under illumination changes [13, 14]. This mental
ability is still an open neupsicological research topic [10]. The CC property is
complementary to the ability to detect the color discontinuity represented by
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Figure 2.6: The vector corresponding to a color point in the RGB space

the chromatic edges (CE) under illumination changes. CC, Relational Color
Constancy and CE can be viewed as di�erent and complementary aspects
under the neurological and retinal activity [15]. Measurements on human
subjects lead to the conclusion that retinal processing is not enough to ex-
tract chromatic features and chromatic based structural image information.
Some works demonstrate that CC analysis is done in the visual cortex, in
the areas V4 and V4A [13]. Assuming the analogy with the human vision
biology, arti�cial vision systems need no trivial processing to ensure CC re-
sults on the processing real images. Dark scenes are critical for CC, because
dark image regions are usually very noisy, that is, the signal to noise ratio
is very high due to the low magnitude of the visual signal. In these regions,
the ubiquitous thermodynamical noise has an ampli�ed e�ect that distorts
region and edge detection ensuring CC conditions.

In computer vision, CC refers to the automatic removal of the illumina-
tion e�ects. There are two main approaches to deal with it. On the one
hand, by speci�c image �ltering, such as the algorithm proposed by Spitzer
[16] based on local and remote retinal adaptation mechanisms (gain control).
Geusebroek [17] proposes a physics-based method, valid for Lambertian re-
�ectance, considering spatial and spectral derivatives of the image formation
model to derive object re�ectance properties independently of the spectral
energy distribution of the illuminant. On the other hand, estimating the
illuminant chromaticity, normalizing afterwards the image relative to the il-
lumination chromaticity, so that the transformed image illumination would
be pure white color. Yoon [18] uses the r − g chromaticity looking for the
chromatic lines, R. Tan [4] proposed a method using the inverse intensity
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space and the Hough transform. Most of these methods are grounded on
DRM [19]. Other approaches try to obtain segmentation procedures which
are inherently robust to illumination e�ects [20, 21].

2.6 Re�ectance Models

A re�ectance model is a mathematical model which try to explain the surface
re�ection of a speci�c kind of materials under a speci�c kind of illumination.
Still, we haven't got an universal re�ection model that explains the re�ection
of light on any surface. Therefore there are a lot of re�ectance models trying
to explain the re�ectance phenomenon. Mainly we can group them in the
following categories:

• Models used for image processing (photo retouching and color restoring,
they are inspired in human vision)

• Models used for visualization (games, virtual reality and synthetic im-
ages)

• Models used for computer vision (we want to extract information about
the scene from the images)

The �rst category encompasses re�ectance models inspired in the human (or
mammalian) perception, based in the more recent bio-medical discoveries
about vision from the neural and ophthalmological points of view, focused
on retina response and visual cortex function understanding. The most used
model of this category is Retinex [22, 23] which is directly inspired in the
human vision, speci�cally in the function of rods and cones retinal cells. It is
used mainly for color image restoration, but it is too sensitive to changes in
the color of nearby objects to serve as an adequate model of color constancy
in the human vision system [24]. Recently, new models have been proposed,
such as the Neuromorphic model introduced by Hong and Grossberg [25].

The second category is composed of the re�ectance models used for vi-
sualization, that is for the generation of synthetic digital images. The most
used model is the Bidirectional Re�ection Distribution Function (BRDF)
[26] which expresses the ratio between the irradiance and surface radiance
depending of the point of view and direction of the illumination. As an
improvement of this model Torrance & Sparrow [27] add a pseudo-spheric
globe on the specular component. A further improvement of both models
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have been proposed by Ragheb and Edwin [28] allowing the simulation of
a wax (or glass) layer over surfaces. The Bidirectional Texture Functions
(BTF) are used to simulate textures [29, 30] allowing to synthesize images of
objects showing di�use and specular re�ections. However, these models are
not enough to simulate all surfaces, e.g. human vision system is very exact
discriminating the human skin. No one of the previous models are adequate
to simulate images of human faces. Bidirectional Surface Scattering Distribu-
tion Function (BSSRDF) [31] allows the simulation of light behavior through
epidermis. A well parametrized BSSRDF function has been introduced by
Jensen & Donner[32] which can simulate all kinds of human skins.

The third category includes re�ectance models that can be applied in
computer vision. These models are grounded in physical models, allowing
the use of real measurements for model calibration, etc. The �rst and most
widely used model is BRDF [33, 34]. By observing a homogeneous surface,
we can measure the BRDF re�ection parameters using a scatterometer [35],
even in the infrared [36]. Another important re�ection model in this category
is the Dichromatic Re�ection Model (DRM) introduced by Shafer [37]. It
has been widely used to separate di�use and specular components, and for
the estimation of the illuminant chromaticity. An evolution of this model
is the DRM under bi-illuminant conditions [38]. This model tries to help
understanding illumination changes in chromatic edges.

2.6.1 DRM

We can formulate digital image taken with a camera is de�ned on DRM as:

I(x) = wd(x)

ˆ

Ω

S(λ, x)E(λ)q(λ)dλ+ ws(x)

ˆ

Ω

E(λ)q(λ)dλ (2.1)

where:

• I = {Ir, Ig, Ib} is the color of an image pixel obtained through a camera
sensor.

• x is the two dimensional coordinate vector of the pixel site in the image
domain.

• q = {qr, qg, qb} is the three element vector of sensor sensitivity at the
red, green and blue spectral bands.
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• wd(x) and ws(x) are the weighting factors for di�use and specular com-
ponents, respectively. They depend on the geometric structure of the
scene corresponding to the pixel at location x.

• S(λ, x) is the di�use spectral re�ectance.

• E(λ)is the illumination spectral power distribution function, which is
independent of the pixel spatial location x assuming an uniform illu-
mination color.

• The integral is computed over the entire light visible spectrum Ω.

In reduced form, Eq. (2.1) becomes the Dichromatic Re�ection Model (DRM)
introduced by Shafer [37]. It explains the perceived color intensity I ∈ R3 of
each pixel in the image as the addition of two components, one di�use com-
ponent D ∈ R3 and a specular component S ∈ R3. The di�use component
refers to the chromatic properties of the observed surface, while the specular
component refers to the illumination color. The mathematical expression of
the model, when we have only one surface color in the scene, is as follows:

I(x) = md(x)D +ms(x)S, (2.2)

where md and ms are weighting values for the di�use and specular compo-
nents. Equivalently, Eq.(7.1) can be expressed in spherical coordinates as:

I(x) = (θD, φD, lD(x)) + (θS, φS, lS(x)),

where Λ = (θD, φD) is the di�use chromaticity,

lD(x) =
√

(md(x)DR)2 + (md(x)DG)2 + (md(x)DB)2,

and Γ = (θS, φS) is the specular chromaticity and

lS(x) =
√

(ms(x)SR)2 + (ms(x)SG)2 + (ms(x)SB)2.

For a scene with several surface colors, the DRM equation must assume that
the di�use component may vary spatially, while the specular component is
constant across the image domain:

I(x) = md(x)D(x) +ms(x)S, (2.3)
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which is expressed in spherical coordinates as:

I(x) = (θD(x), φD(x), lD(x)) + (θS, φS, lS(x)), (2.4)

where Λ(x) = (θD(x), φD(x)), and

lD(x) =
√

(md(x)DR(x))2 + (md(x)DG(x))2 + (md(x)DB(x))2,

and Γ = (θS, φS) and

lS(x) =
√

(ms(x)SR(x))2 + (ms(x)SG(x))2 + (ms(x)SB(x))2.

In Eq. (2.4) the chromaticity of the specular component θS, φS is space
invariant, meaning that the illuminant source chromaticity is the same for
all the illuminants. This is the most common situation in practice, where we
have one colored illumination source irradiating over a scene with objects of
di�erent colors.

Figure 2.7: Dichromatic re�ection model

The RGB color space has some advantages versus the HSI family of color
spaces when working with DRM. First, the DRM is de�ned as a linear com-
bination in an Euclidean space. The hue component of the color represen-
tation in the HSI color family is an angle, corresponding to a value in a
non-Euclidean subspace. Consider the image in Fig.2.8(c) and the distribu-
tion of its pixels in the color space. In Fig. 2.8(a) we can see the distribution
of the pixels in the HSV color space. On the one hand pixels with low inten-
sity value are very separated from each other. When intensity increases pixel
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(a) (b) (c)

Figure 2.8: Distribution of the pixel colors of the ball image in the HSV color
space (a) and in the RGB color space (b)

colors fall in a line (the chromatic line) in the HSV color space. On the other
hand specular pixels are placed in a curved, horn-like shape. Comparing
with Fig. 2.8(b) the linearity is lost, hence the di�culty to formulate DRM
in HSV parameters.

2.6.2 Geometry in RGB induced by the DRM

From the DRM we can deduce some interesting features of the distribution
of the pixels in the RGB cube. In Fig. 2.9 we illustrate the main expected
e�ects for a single color image (disregarding the black background) with a
bright spot due to the illumination source. According to DRM we need to
know only two colors: D corresponding to the observed surface and S corre-
sponding to the illumination source. Drawing a line in the RGB cube passing
over these colors and the RGB origin (black), we obtain two chromatic lines
Ld and Ls, respectively. These two lines de�ne a chromatic plane in RGB
illustrated as the stripped region in Fig. 2.9a. All the image pixels must
fall in this plane, discounting additive Gaussian noise perturbations, accord-
ing to DRM equation 7.1 for image colors D and S. Looking to the image
pixel distribution inside the chromatic plane, we obtain the plot in Fig. 2.9b,
whose axes are the chromatic lines Ld and Ls. We have that non-specular
pixels fall close to the di�use line Ld, while specular pixels go away from
the origin and the di�use line parallel to the specular line Ls. There is an
intensity threshold for the pixels having a signi�cative specular component
(ms(x) >> 0 ). This threshold is the albedo of the material in the scene.
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For intensities greater than the albedo, pixels fall away from the Ld di�use
line along the direction of Ls.

(a) (b)

Figure 2.9: Expected distribution of the pixels in the RGB cube according
to DRM for a single color image.

When there are more than one color in the image, we can expect sev-
eral di�use lines, so that the we can base our image segmentation on this
observation. All these lines cross the RGB origin, therefore the pixel polar
coordinates of di�use pixels contain much information relative to underly-
ing re�ectance regions. For an scene with several surface colors, the DRM
equation assumes that the di�use component may vary spatially: I(x) =
md(x)D(x) + ms(x)S. However, the specular component is space invariant
in both cases, because the illumination is constant for all the scene. Fi-
nally, assuming several illumination colors we have the most general DRM
I(x) = md(x)D(x) + ms(x)S(x) where the surface and illumination chro-
maticity are space variant.

2.6.3 Angular chromatic distance

For di�use pixels having a small specular weight ms(x), of the image ex-
pressed on the DRM, the zenith φ and azimuthal θ angles are almost con-
stant, while they are changing for specular pixels, and dramatically changing
among di�use pixels belonging to di�erent color regions. Therefore, the an-
gle between the vectors representing two neighboring pixels I (xp) and I (xq),
denoted ∠ (Ip, Iq), re�ects the chromatic variation among them. For two pix-
els in the same chromatic regions, this angle must be ∠(Ip, Iq) = 0 because
they will be collinear in RGB space. The angle between Ip, Iq is calculated
according to the equation:
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∠(Ip, Iq) = arccos

 I (xp)
T I (xq)√

‖I (xp)‖2 + ‖I (xq)‖2

 . (2.5)

2.7 Image Segmentation

Image segmentation is among the foremost topics in image processing and in
computer vision. It is the �rst step in most computer vision system pipelines,
so that the whole system performance may be heavily dependent on the
segmentation results. Popular instances of segmentation methods for color
images proposed in the literature are based on watershed transform [39, 40,
41, 42, 43], and on clustering procedures [44, 45, 46, 47]. Unfortunately
previous gradient detectors are not enough for color image segmentation,
because there not exists an universally accepted color gradient de�nition.

The image segmentation process de�nes a partition of the image domain
F according to some pixel property [48, 49]: If P (x) is some homogeneity
predicate de�ned on groups of connected pixels, then the image segmentation
is a partition of the set F into connected regions (S1, S2, ..., Sn) such that⋃n
i=1 Si = F with ∀i 6= j, Si ∩ Sj = ∅, and each pixel in a region ful�lls the

same property, i.e. ∀x, y ∈ Si;P (x) = P (y).

2.7.1 Current segmentation approaches

Image segmentation can be carried out in two di�erent ways. First, pixel
based segmentation performs clustering in the color space. In this approach,
the pixels corresponding to a color cluster may be aggregated into several
disconnected regions in the image domain. Second, region based segmentation
takes into account the pixel neighborhood, working in the image domain.

In color images, a straightforward pixel based segmentation may be done
using the classical k-means algorithm [47, 50]. There are three major dif-
�culties in this approach: (1) determining the optimal number of clusters
to be created, (2) choosing the initial cluster centroids, and (3) handling
color distributions characterized by arbitrary cluster shape, cluster density,
and the number of points in di�erent clusters. Dae-Won [50] proposes an
automatic initialization of the fuzzy c-means for color clustering. More re-
cently, the same idea has been applied on hyperspectral images [47], where
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the pixel feature vector is de�ned by its spectral signature. In both cases, the
shortcoming is the dependence on the color space, spectral signature for hy-
perspectral images or the strategy for dimensional reduction. This drawback
comes from the distance used in the fuzzy c-means, usually the euclidean dis-
tance. In this way, Oussalah[51] uses a divergence distance, which builds a
bridge to the notion of probabilistic distance. A good idea for image segmen-
tation, is to take into account a pixel distance and the neighborhood, such
as [52] where for clustering uses c-means and for the neighborhood Random
Markov Fields.

Mathematical morphology (MM) is a region based segmentation methods
grounded in the Lattice Theory [53, 54, 55]. First introduced as a shape based
tool for binary images, MM has become a powerful non-linear image anal-
ysis technique with operators for image segmentation, image �ltering, and
feature extraction in binary or gray-scale images. The de�nition of morpho-
logical operators is based in a totally ordered set that is a complete lattice
structure: for any two elements in a lattice, we can determine if they are
equal or one is bigger than the other one. The extension to color spaces of
the results from grayscale morphology are not trivial, and highly dependent
on the de�nition of a suitable distance and the appropriate selection of the
color space. Hanbury [56, 57, 58] presents MM operators on the CIElab and
HSL color spaces, introducing the IHSL color space. Angulo [59] applies this
technics extracting information from cartographic images.

Watershed transformation algorithm is a MM method, therefore it is a
region based segmentation method. It was introduced by Beucher [43] three
decades ago. This algorithm has a topological inspiration, interpreting a
gray-scale image as a topological function that gives the elevation at each
point in the image domain [43, 42, 41]. The watershed transformation per-
forms a �ooding process where each region is a catchment basin. The ref-
erence gray-scale image for segmentation is the gradient image, therefore,
the basins correspond to smooth regions between edges regardless of image
intensity. The original algorithm has been improved in the literature based
on the construction of the gradient image. Wang [60] proposes a multiescale
morphological gradient, avoiding over-segmentation by the detection of iso-
lated local minima. To avoid over-segmentation, �region merging� processes
can be applied. Dagher [61] presents Waterballoons which are a mixture of
�balloon snakes� and watershed. On each local minimum of the gradient im-
age an active contour is initialized, so that the �ooding process is replaced by
snake-surface growing. This strategy avoids isolated small regions, such as
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points, which can be assumed as a noise consequence. Other improvements
of the standard watershed are focused on the speed-up. An original idea is to
apply a raining simulation instead of the �ooding process [39] to �nd faster
the image edges. Other approaches reduce the computational cost optimizing
the algorithm in the neighborhood looking for shorter paths [40, 42].

A di�cult task is the evaluation of the segmentation method. Each person
has di�erent perception of segmentation quality. Di�erent applications may
perform better using di�erent segmentations, therefore the criteria of a good
segmentation are often application-dependent. A review of measures for the
validation of segmentation process in [62] lacks measures for color images and
multi or hyperspectral images.

Segmentation can be stated as a supervised learning process. A handicap
for the validation of segmentation methods is that usually the ground truth
is unknown, or we have scarce information about it. Therefore it may be
di�cult or impossible to to measure the classi�cation error. For example, in
earth observation when the location of agricultural crops is known, we can
apply supervised segmentation. When ground truth knowledge is expensive
it is possible to apply 'active learning'. In active learning the user provides
incrementally the training samples that lead to the greatest improvement of
the classi�er. We can see an example for RGB images in Fiji6 and a plugin
for image segmentation named 'Advanced Weka Segmentation'7.

2.7.2 Main segmentation issues

There are four main sources of problems in image segmentation: illumination,
noise, edge ambiguity and computational cost. In this section we discuss
those topics, o�ering some ideas about how we have addressed these problems
when developing our segmentation algorithm along the Thesis.

Illumination in real environments: both real and arti�cial illumina-
tion sources introduce some important problems in image understanding.
Because of highlights or shadows, both depending on the illuminant posi-
tion, a surface of a scene can produce a lot of di�erent image perceptions.
In digital image processing, it is very usual to assume a uniform chromatic
illumination because it makes easier to deal with the problems derived from

6http://�ji.sc/wiki/index.php/Fiji
7http://�ji.sc/wiki/index.php/Advanced_Weka_Segmentation
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the illumination. Our approach works on a chromatic representation derived
from a spherical coordinate interpretation of the RGB color space which is
rather insensitive to achromatic variations in the image pixel colors. That
means that we avoid highlights introducing falsely detected regions. Dark
image regions, such as object shadows, are characterized by the fact that
small pixel color perturbations introduce strong chromatic shifts. Therefore,
the chromatic representation is useless in these regions. We will try to imitate
the human vision system (HVS), shifting our computation of pixel distance
from color to grayscale representation in dark regions.

Noise: there are two main sources of image noise, introduced, on one hand,
by thermal noise of the camera and robot motion, and, on the other hand, by
lossy compression algorithms. The chromatic representation is rather insen-
sitive to additive noise in high intensity regions. However, it is very sensitive
to it in dark image regions. We look for robust segmentation processes in all
cases.

Edge ambiguity: The proposed segmentation algorithm is region-oriented,
therefore edge detection is obtained indirectly as the boundaries between de-
tected regions. An edge appears where two neighboring pixels have di�erent
properties. Therefore, any edge detector is always based on the de�nition of
a distance between pixel properties. If this distance is bigger than a given
threshold, we can declare that there is an edge between the pixels, otherwise
they belong to the same region. A chromatic representation helps to avoid
spurious edge detection due to highlights. Usually, color transition around
highlights is smooth while in true boundaries between surfaces the chromatic
information changes dramatically.

Computing time: Most image segmentation methods are not designed
with real time applications in mind, therefore they have high computational
costs. However, for some applications like robotics, computing time is critical
because these applications have to run in real time. Our algorithm performs
only one-pass over the image, processing each pixel only once. The order
of pixel processing is row-wise therefore we use the 4-WN neighborhood for
pixel processing. We look for algorithm implementations that may obtain
real-time performance on o�-the-shelf personal computers for small images.
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2.8 Image Gradient Computation

The detection of edges provides a way to �nd shapes in images, because they
give knowledge about the localization of object boundaries. Edge detection is
the dual process to region segmentation, we can identify an image region by
drawing the edges surrounding it. An image edge is a line whose neighboring
pixels have a signi�cant gray level variation among them. Isolated points with
strong di�erences in their neighborhood are sometimes referred as edgels.

Edge detection is based on the examination of the image spatial deriva-
tives at each point in the image domain. The gradient magnitude and orien-
tation give the edge magnitude and direction. Another well-known second-
order derivative method for edge detection is the Laplacian operator, given
the addition of the second derivatives in all directions; therefore, it is an
isotropic edge detector. These tools may be combined, for instance using
the magnitude of the gradient vector as edge detector and the sign of the
Laplacian to determine if the edge pixel belongs to the dark or the light side
of the border.

Well-known methods based on he �rst derivative are the Sobel [63] and
Prewitt [64] convolution operators. Sobel and Prewitt apply a threshold on
the gradient magnitude to decide whether a point is a edge or not. The
Canny [65] edge detection approach avoids edgels, therefore all line edges are
connected. Canny's algorithm uses the direction of the gradient vector to �nd
the nearest edge point, so that the output is compound by convex regions,
whereas Sobel and Prewitt approached follows the mathematical de�nition
of gradient but these ones not use the gradient direction. Roberts operator
[66] was one of the �rst contributions on edge detection, it marks only the
edge points without their direction. This operator is fast and has good results
when working with binary images. Kirsch masks [67] also known as 'compass'
because they are de�ned by using a simple mask and rotating in the eight
main directions (North, Northwest, West, Southwest, South, Southeast, East
and Northeast). Robinson masks [68] follow the same compass idea but in
this case by using one of the Sobel masks. These aforegoing methods are
performed in the eight neighborhood but they could be extended easily to a
bigger neighborhood.

It is signi�cantly more di�cult to analyze edges in multichannel images
(color images, multi-spectral and hyper-spectral images) [69]. A straightfor-
ward approach to edge detection on his kind of images is to compute the
gradient vector on each channel and obtain an spectral gradient by linear
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combination of the single-channel gradients. However, each channel has dif-
ferent information of the image, so that the single-channel gradients at a
point may have con�icting information, for instance, the sum of all channels
gradient direction could be 0 though the single-channel gradients are non
null. To overcome this shortcoming, the following expression can be used
S = JTJ , where J is the Jacobian matrix and S is a diagonal matrix. If only
one member of S is non-zero, then is is called a perfect edge and it gives de
direction of the variation. However, usually this diagonal matrix has more
non-zero members, as a consequence of image noise. The trace of S is a
measure of the edge strength.

Nowadays, edge detection remains an active research topic. For example
Ségonne[70] presents a novel framework to exert topology control over a level
set evolution. It is an active contour which works in a three dimensional
space and have excellent results in medical image segmentation. Respect
to the evolution of the traditional gradient based methods, McIlhagga [71]
discuss about Canny's work. He improves it solving two problems. First, he
provides a more accurate localization criterion, and second, the width of the
optimal detector is limited by considering the e�ect of the neighboring edges
in the image.



Chapter 3

Component Separation

The works in this chapter have in common the use of the DRM to postulate
di�erent techniques addressing related problems of image correction. First,
we consider the problem of illumination source chromaticity (ISC) estimation
for chromatic normalization of the image [3] based on the spherical coordi-
nate representation. The chromatic normalization can be a preprocessing for
the remaining processes dealt with in this chapter. Second, we deal with the
problem of estimation of a regularized illumination �eld over all the image
[72] which can be applied to perform illumination intensity correction pre-
vious to segmentation. Third, we propose a bayesian approach for image
component separation [73]. Fourth and �nal contribution is the proposition
of a geometrical approach in the RGB color space for component separation
[74].

This chapter's outline is as follows: Section 3.1 presents a review of the
state of the art on illumination correction. Section 3.2 describes a method
for illumination source chromaticity estimation on RGB spherical coordinate
representation. Section 3.3 proposes a method to reduce the highlights using
an evolutionary algorithm. Section 3.4.2 shows a Bayesian approach. Section
3.5 describes a geometrical method for separation of di�use and specular
component. Section 3.6 gives the conclusions of our works on illumination
correction.

33
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3.1 State of the Art

Following the Dichromatic Re�ectance Model (DRM) the information about
the illumination source is contained in the specular component of the image,
hence the detection and separation of the di�use and specular components
of the image is required for illumination correction methods. Besides bright
spots and highlights are considered as a kind of image noise for some applica-
tions. The detection of the specular image component solves two problems.
On the one hand, the specular component of an image depends also on the
geometrical properties of the image, so this information may be used too for
'shape from shading' 3D data reconstruction from images [75, 76, 77]. On the
other hand, we can remove the specular component from the original image
obtaining a di�use image giving an estimation of the true chromatic surface
properties. Specular re�ection reduction by using a multi-�ash mechanism
is reported in [78] . The main drawback of this method is that it requires
a complex hardware setup to obtain many images taken with synchronized
�ash devices. Other advance technics use only an image giving a re�ectance
estimation [1].

The estimation of the illumination source chromaticity (ISC) [79] is a
necessary step for color image normalization which is a critical step for con-
stant color perception either in biological human perception [13, 10] or in the
design of robust arti�cial vision systems [80]. Highlights correspond to image
pixels with a high specular component. Therefore, if an image does not have
a bright area were the specular component is strong relative to adjacent im-
age regions, it is not possible to make ISC estimation by any means. Color
normalization to a reference ISC, usually white, allows the robust estima-
tion of re�ectance components, and subsequent segmentation of the image.
Most ISC estimation algorithms [81, 79] work on the normalized RGB color
space (r + g + b = 1). Methods grounded [5, 6, 4] in the DRM only need
one image. Kuk-jin method [5] takes pro�t of the DRM and uses chromatic
lines estimation by local ratios. Roby Tan method [4, 82] uses the inverse
intensity space and by the Hough transform can estimate the illumination
chromaticity. Ebner [6] estimates the illuminant chromaticity by segmenta-
tion and �ltering looking for dichromatic lines performing a linear regression
on the x- and y-coordinates in CIE XYZ chromaticity space.

Separation of di�use and specular image components is another hot topic
[20, 74, 83, 84, 85, 86]. Mallick [20] presents a photometric stereo method
for non-di�use materials that does not require an explicit re�ectance model
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or reference object. By computing a data-dependent rotation of RGB color
space, the specular re�ection e�ects can be separated from the approximately
Lambertian di�use re�ection e�ects in surfaces that can be modeled with
dichromatic re�ectance. Hui-Liang [83] proposes a method to separate re-
�ections in a color image based on the chromaticity error analysis and ap-
propriate selection of body color for each pixel. By solving the least-squares
problem of the dichromatic re�ection model, re�ection separation is imple-
mented on a single pixel level, without requiring image segmentation and
even local interactions between neighboring pixels. R. Tan method [84] is
based solely on chromaticity, without requiring any geometrical information.
One of the basic ideas is to iteratively compare the intensity logarithmic dif-
ferentiation of an input image and its specular-free image. Umeyama [85]
shows a method where di�use and specular components of surface re�ec-
tion can be separated as two independent components applying Independent
Component Analysis to the images observed through a polarizer of di�erent
orientations. Kuk-jin method [87] proposes a specular-free two-band image
that is a specularity-invariant color image representation, so that re�ection
components separation is achieved by comparing local ratios at each pixel
and making those ratios equal in an iterative framework. Recent solutions
[88, 75] require uniform illumination and the identi�cation of constant color
regions, working on synthetic �clean� images.

3.1.1 Motivation

An application framework for the contributions in this chapter is the work on
the design of multirobot systems for highly unstructured environments, such
as shipyards, where a potentially critical role is that of observer or monitoring,
corresponding to a member of the team located in a position where it can
monitor all the environment and serve this information to the remaining
members of the team. This robot will be static once it has reached the
surveillance position, so that images will be relatively static also. That means
that illumination conditions will vary slowly and it is possible to perform
illumination estimation and correction under real time constraints. The Fig.
3.1 shows two views of a ship hold that illustrate the point of view of the
images used in the experiments reported below. Naturally, the kind of images
obtained contain a lot of speculaties, because of the presence of water and
metal surfaces.
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Figure 3.1: Synthetic images of a ship hold. The images used in the experi-
ments were taken from the upper aperture of the hold.

3.1.2 Specular-Free Image

Computation of the specular free image is critical for the detection of the
re�ectance component. An specular free image, is a geometrical transfor-
mation of a image such, the returned image hasn't got specular component:
ms (x) = 0. We use the Specular-Free Two-Band method proposed by [5].
The process consists in subtracting to each pixel color bands the value of its
minimum band. The image is geometrically identical to the original .

3.2 Illumination Source Chromaticity Estima-

tion

In this section we propose a novel method that uses spherical coordinates in
the RGB color space for ISC estimation. We test our method on synthetic
images whose ISC is known. This allows a quantitative comparison with a
state of the art algorithm, showing that the proposed algorithm improves over
the competing algorithm. This method does not need any previous image
segmentation and its computational complexity is linear in the number of
pixels, therefore it is suitable for real time.

3.2.1 Method

The proposed ISC estimation method is illustrated in Fig. 3.2. The objects
in the Fig. 3.2(a) are labeled as (1), (2) and (3). These object labels are
used in Fig. 3.2(b),(c) and (d) for easy tracking the results of each step of
the algorithm in each of the �gures. The process' �rst step is the detection
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(a) (b)

(c) (d)

Figure 3.2: (a) Original Synthetic Image, (b) Specular regions detected in
the original image, (c) distribution of spherical coordinates of specular pix-
els, (d) linear regressions of each specular region and ISC detected as their
intersection.

of the specular pixels in the image. Second, we extract the ISC information
from the spherical coordinates of the pure specular pixels, according to the
DRM.

The detection of specular pixels is performed as follows [89]:

1. Compute the specular free image, i.e. using the method in [5].

2. Compute the pixelwise di�erence between the specular free and original
image intensities,

3. Detect specular pixels setting a threshold on this di�erence image.

The specular regions identi�ed in Fig. 3.2(a) are shown in Fig. 3.2(b) as
black colored connected components (blobs).

The second step of ISC estimation is to compute the spherical coordinates
in RGB space of the specular pixels' color. We construct a 2D representation
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using the Zenith and Azimuth angle values. In this representation, specular
regions correspond to elongated shapes due to the transition between the pure
ISC to the surface color that occurs in those regions. Fig. 3.2(c) shows the
Zenith-Azimuth representation corresponding to the pixels in the specular
regions identi�ed in Fig. 3.2(b). For each connected specular region we
compute independently a linear regression. Fig. 3.2(d) shows the regression
lines computed for the region corresponding regions in Fig. 3.2(c). The
intersection between those lines corresponds to the estimation of the ISC's
spherical coordinates of the illuminant: θS, φS.

To obtain the corresponding ISC's normalized RGB coordinates, ΨISC we
compute the intersection of the line determined by θS, φS with the chromatic
plane ΠΨ. To perform the image color normalization to the pure white illumi-
nant, it su�ces to compute the di�erences between the Zenith and Azimuth
of the white color and the estimated ISC: 4θS = θS − π

4
and 4φS = φS − π

4
.

Applying this correction to the spherical coordinates of the pixels in the image
we obtain the image colors under a pure white ISC. A Scilab implementation
of the algorithm is available at http://www.ehu.es/ccwintco/index.php/GIC-
source-code-free-libre.

3.2.2 Experimental results

We apply the proposed approach and Tan's method [4] to synthetic images
generated rendering a known surface under a known ISC. Therefore, we can
compute the squared error of the estimations given by the algorithms to
achieve a quantitative comparison of both approaches. Fig. 3.2(a) shows an
instance of the synthetic test images.

The experimental images have been generated as follows:

1. We select three ISC values (left column in Table 3.1) as the means of
the Gaussian distribution of ISC, with standard deviation σ = 0.05.

2. We generate 30 samples of these ISC Gaussian distributions

3. We generate the synthetic images using a common re�ectance image

4. We apply both our approach and the competing method to estimate
the ISC from the synthetic images.

5. Finally, we compute the estimation error for each image and give sep-
arate mean estimation errors for each separate Gaussian distribution.
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Proposed Method R. Tan Method

ΨISC Ψ̃ISC ē Ψ̃ISC ē
r = .28 r = .2684 r = .2664
g = .32 g = .3102 .010790 g = .3403 .052410
b = .40 b = .4212 b = .3733
r = .32 r = .3301 r = .3232
g = .40 g = .4061 .006410 g = .4118 .052410
b = .38 b = .2637 b = .2627
r = .40 r = .3824 r = .4062
g = .32 g = .3246 .005964 g = .3321 .008008
b = 28 b = .2929 b = .2595

Table 3.1: Experimental ISC, estimated vales of the normalized RGB and
the estimation errors.

The error is computed as the angle between the true and the estimated
ISC divided by the maximum possible error π

2
. Table 3.1 contains the

average ISC estimation Ψ̃ISC and the mean error ē for each method.
It can be appreciated that our approach improves always over Tan's
method.

3.3 Evolutive Parametric Approach

Assuming the DRM, we propose here a global correction of specularity e�ects
by means of parametric illumination gradient images obtained by �tting 2D
Legendre polynomials to the specular component of the images by a tailored
Evolution Strategy (ES). Legendre polynomials have applied successfully to
intensity inhomogeneity correction in Magnetic Resonance Imaging [90], as
a parametric model of the inhomogeneity �eld that can be estimated by an
energy minimization method like the ES. Our approach mimics that one,
applying it to the dichromatic model. We obtain a specularity bias that can
be used to normalize the images easing further segmentation and detection
processes. Due to the slow change in natural illumination, we expect that the
estimated bias would valid for several frames, reducing the time constraint
for real life application.
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Figure 3.3: Flow diagram of the process of estimating bms.

Figure 3.4: Illumination correction using the specular �eld bms.

3.3.1 Description of the approach

Fig. 3.3 shows a �ow diagram describing the process to obtain a specularity
�eld. The captured image I that is chromatically normalized by the ISC
estimation Iest computing the ratio Inorm = I

Iest
. To obtain a Specular-

Free image [91] (SF ), we use the Specular Free Two Band method [87].
Computing the derivatives of the logarithm of SF and Inorm, we obtain
the di�use pixels. From them we select the most representative k classes
{µ1, ..., µk}, corresponding to chromatic regions in the image. Finally, the
ES estimates the parameters of the 2D Legendre polynomials that gives the
estimation of the smooth re�ectance �eld bms. Fig. 3.4 shows the �ow
diagram computing the correction of the image removing the specular �eld
bms estimated before. The following sections provide a detailed description
of the steps in this process.

3.3.2 Image chromatic normalization

Before trying to separate specular and di�use image components it is neces-
sary to carry out a process of normalization, because the separation process
needs the specular component to be pure white color. The value of the
ISC Iest which can be obtained by some methods [5, 92, 6, 4, 81], included
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the one described in the previous section. Image chromatic normalization is
computed as Inorm = I

Iest
, where the ratio is computed at each band indepen-

dently (it is not a vector operation). After normalization, we ca assume that
the image specular component Γ is pure white [1, 1, 1], therefore the DRM is
as follows

Inorm(x) = m′d(x)Λ′(x) +ms(x)[1, 1, 1],

because if the ISC is a close approximation to the specular chromatic com-
ponent of the original image Iest w Γ then the ratio would correspond to the
white color Γ

Iest
' [1, 1, 1], therefore, the DRM of the normalized image is:

Inorm(x) =
md(x)Λ(x) +ms(x)Γ

Iest
=
md(x)Λ(x)

Iest
+
ms(x)Γ

Iest
,

so that, we have:

md(x)Λ(x)

Iest
+ms(x)

Γ

Iest
=
md(x)Λ(x)

Iest
+ms(x)[1, 1, 1],

where
md(x)Λ(x)

Iest
= m′d(x)Λ′(x),

then we can write:

Inorm(x) = m′d(x)Λ′(x) +ms(x)[1, 1, 1],

when working in normalized RGB, this expression becomes:

Inorm(x) = m′d(x)Λ′(x) +ms(x)/3.

3.3.3 Intensity logarithm di�erentiation

Pure di�use pixels are characterized by the lack of contribution of the spec-
ular component in DRM:

ms (x) = 0,

detection of pure di�use pixels allows the detection of the specular pixels.
Pure di�use pixels allows us estimate the chromaticity of the surface.

If we compute the logarithm of the chromatically normalized image fol-
lowed by its spatial di�erentiation, we have (in normalized RGB color coor-
dinates):

∂

∂x
log(Inorm(x)) =

∂

∂x
log

(
m′d(x)Λ′(x) +

ms(x)

3

)
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For pure di�use pixels we have that:

∂

∂x
log(Inorm(x)) =

∂

∂x
log (m′d(x)Λ′(x)) .

Assuming that two neighboring pixels have the same di�use chromaticity
thenΛ′ does not depend of the spatial coordinate x, therefore:

∂

∂x
log(Inorm(x)) =

∂

∂x
log (m′d(x)Λ′)

=
∂

∂x
(log (m′d(x)) + log (Λ′))

=
∂

∂x
log (m′d(x)) .

If we compute the logarithm of the Specular-Free image, followed by its
spatial di�erentiation, we have that

∂

∂x
log
(
Isf (x)

)
=

∂

∂x
log
(
m′d(x)Λsf (x)

)
=

∂

∂x

(
log
(
m′d(x)Λsf (x)

))
=

∂

∂x

(
log
(
m′d(x) + Λsf (x)

))
.

Assuming again that two neighboring pixels have the same di�use chro-
maticity, Λsf does not depend of the spatial coordinate x, then

∂

∂x
log
(
Isf (x)

)
=

∂

∂x

(
log
(
m′d(x) + Λsf

))
=

∂

∂x
log (m′d(x))

Therefore, to test for a di�use pixel we compute:

∆(x) =
∂

∂x
log(Inorm(x))− ∂

∂x
log
(
Isf (x)

)
.

If ∆(x) = 0 then x is a di�use pixel.

3.3.4 Evolutionary strategy

To build a ES for a given problem, the �rst step is to propose an energy
function whose minimization would solve our problem. This energy function
is straightforward to formulate from the DRM
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Etot =
∑

x∈Inorm

(Inorm(x)− bms(x, p)− µk(x))2 , (3.1)

where the illumination bias modeling the specular component �eld over all
the image is given by the 2D Legendre polynomials, built as:

bms(x, p) =
l∑

i=0

l∑
j=0

pi,jP (i)P (j),

where P (i)P (j) denote products of 1D Legendre polynomials. The
maximum degree of the Legendre polynomials determined the smoothness
of the specular �eld. The higher the polynomial degrees, the greater the
variations allowed in the �eld.

If we introduce the dichromatic model into the energy function of Eq.3.1,
we have

E(x) = (m′d(x)Λ′(x) +m′s(x)− bms(x, p)− µk)2,

so that

E(x) = (m′d(x)Λ′(x)− µk)2,

therefore the energy is proportional to the di�use component of the image:

E(x) u (m′d(x))2

The search space is de�ned by the values of the 2D Legendre polyno-
mials linear coe�cients which specify the shape of the specular �eld. The
energy expression in Eq. (3.1) includes class representatives µk of the surface
re�ectance given by the application on samples of the image di�use pixels
of some clustering process (i.e. k-means). Image pixels must be classi�ed
according to the reference class before performing the bias search by the ES.
The expression in Eq. (3.1) corresponds to the error between the normal-
ized and illumination bias corrected image and the expected color given by
the clustering process. It is assumed that scene contains a small number of
chromatically di�erent surfaces.
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Figure 3.5: From left to right: Original image, the estimated specular bias
composed of polynomials of degree up to 2, and the corrected image obtained
removing the specular �eld.

To search for the optimal parameters of the Legendre 2D �eld, we use an
(λ+ µ)-ES. Each individual in the ES is a matrix of coe�cients of the Legen-
dre polynomials. Mutation is provided by random Gaussian perturbations of
constant variance. The starting point is population of 50 individuals, which
are the seeds for the process. We select the best 20 individuals in an elitist
selection process to be the parents for the next generation.

3.3.5 Experimental results

Fig. 3.10 shows the original full image of a ship hold being watered for
cleaning. It also shows the recovered image when the highest degree of the
Legendre polynomials composing the bias illumination �eld is 2. Fig. 3.6
shows the bias and the recovered image when the highest polynomial degree is
3. Comparing these �gures we can appreciate how increasing the model order
the estimated illumination bias tends to �t also the variations in re�ectance.
Lower order models obtain more robust estimations of the illumination bias.
Fig. 3.7 and 3.8 show the e�ect of the algorithm on the region containing
the images of the human operators.

The resulting image after illumination correction is darker than the origi-
nal image, but it retains all the geometric information, which can be observed
computing the spatial gradient of the images. The e�ect on the hold �oor
is that we get a constant intensity (color) image of it. The almost specular
region on the lower left corner is greatly enhanced, making it more similar to
the remaining �oor surface. One of the goals of this work is to obtain robust
segmentations of objects lying in the surface of the ship hold. It can be ap-
preciated in Fig. 3.7 and 3.8 that the human operators are easily segmented
despite the darkening of the image.
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Figure 3.6: From left to right: The estimated specular bias composed of
polynomials of degree up to 3, and the corrected image obtained removing
the specular �eld.

Figure 3.7: Detail from �gure 4 images. From left to right: original image, es-
timated specular bias, corrected image obtained removing the specular �eld.

Figure 3.8: Detail from �gure 5 images. From left to right: original image,
estimated specular bias, corrected image obtained removing the specular bias.
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3.4 Bayesian Re�ectance Component Separa-

tion

This section proposes a Bayesian approach [93] to the estimation of the spec-
ular component of a color image based on DRM. We postulate a priori and
likelihood energies according to image construction model, composed to for-
mulate an a posterior i energy modeling the re�ectance estimation process.
We postulate the a priori distribution based on the fact that the derivatives
of the logarithmic images of both di�use image and specular free must be
equal in order to have pure di�use pixels [91]. Minimization of the a posteri-
ori energy gives the desired re�ectance estimation. Works on re�ectance map
estimation usually need to impose some assumptions like the knowledge of a
color segmentation of the image, the detection of color region boundaries or
color discontinuities, or the knowledge of the decomposition into linear basis
functions of the surface color. The approach presented here does not impose
any such assumption and does not need previous segmentations of the image.

3.4.1 Separation method

We will base our Bayesian model in the derivative of the logarithm of the
normalized image respect to ISC and the specular free transform [4, 91]. We
remind the reader that the pure di�use pixels can be characterized by the
following relation:

4(x) = d log(I′(x))− d log(Isf (x)) = 0, (3.2)

where

d log(Isf (x)) =
∂

∂x
log(Isf (x)),

and

d log(I′(x)) =
∂

∂x
log(I′(x)),

where the logarithm is computed pixel wise, and the spatial derivative can
be computed in several ways, for instance in [82] it is computed on the scalar
value image given by the summation of the three channels. It can be easily
veri�ed that

d log(I′(x)) =
∂

∂x
log(m′d(x)) = d log(Isf (x))
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for pure di�use pixels if the di�use chromaticity of neighboring pixels is
the same. That means that the method works well inside homogeneous
color regions, and needs the estimation of color region boundaries. When
4(x) > 0 in Eq. (3.2) and the pixel is neither at a color boundary nor
a pure specular pixel, then it has some specular component that can be
removed to get the di�use re�ectance component. The method proposed in
[91] follows from an heuristic observation about the distribution of pixels in
the maximum chromaticity versus (normalized illumination color) intensity
space. Non di�use pixels are decreased in intensity iteratively to search for
the pure di�use pixel value.

3.4.2 Bayesian modeling

In this section, we change some notation elements for a better clarity of
discourse. Given an image f and a desired unknown response of a compu-
tational process d, Bayesian reasoning gives, as the estimate of d, the image
which maximizes the a posteriori distribution P (d|f) ∝ e−U(d|f), where the
a posteriori energy can be decomposed into the a priori U(d) and likelihood
(aka conditional) U(f |d) energies U(d|f) = U(f |d) + U(d). The Maximum
A Posteriori (MAP) estimate is equivalent to minimize the posterior energy
function

d∗ = arg min
d
U(d|f) (3.3)

The likelihood energy U(f |d) measures the discrepancy between the input
image f and the solution d. The a priori energy U(d) is a model of the
desired solution, usually built as a Random Markov Field (RMF), so that
the a priori energy can be built up as the summation of the local energies
at the pixels, which are expressed as summations over the set of cliques
including the pixel, weighted by the local potential parameter. The a priori
energy usually incorporates any desired constraint, such as smoothness, into
the model.

We assume a Gaussian likelihood distribution plus a Chromaticity preser-
vation constraint, therefore the likelihood energy has the following expression:

U(d|f) =
m∑
i=1

(fi − di)2

2σ2
+

m∑
i=1

(
Ψf
i −Ψd

i

)2

,

where fi and di are the RGB pixel values a the i-th pixel position for the
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observed and desired image, respectively. Also, Ψf
i and Ψd

i denote the chro-
maticity pixels of the observed and desired image, respectively.

The a priori energy is built up from two components. The �rst term is
the Chromaticity continuity:

UΨ(d) =
m∑
i=1

∑
j∈Ni

∑
c∈{r,g,b}

(
Ψd
i,c −Ψd

j,c

)2
.

The second term models the estimation of the derivatives in Eq. (3.2) as
the cliques of the RMF. That is, we assume that the local energy at pixel di
is de�ned as

U4 (di) =
(
d log(di)− d log(dsfi )

)2

,

where dsfi is the i-th pixel of the specular free image, computed as described
above, and d log(.) in means the local estimation of the derivative, which is
approximated as follows:

d log(di) =
1

#N

∑
j∈Ni

log(
I(xj)

I(xi)
),

where Ni is the local neighborhood of pixel di, and #N is its cardinality.
After some manipulations, the local derivative component of the a priori
energy is derived as:

U4 (di) =

∑
j∈Ni

∑
c∈{r,g,b}

log
dj,cd

sf
i,c

di,cd
sf
j,c

2

.

This local energy is equivalent to the Kuk-Jin ratio criterion [87]. The deriva-
tive component of the a priori energy is, therefore, the addition of these local
energies:

U4 (d) =
m∑
i=1

U (di) ,

and the a priori energy is given by:

U (d) = U4 (d) + UΨ (d) .
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Figure 3.9: Evolution of the energy function in an instance run of the algo-
rithm

3.4.3 Experimental results

In this section we report some experimental results applying the Bayesian
approach described above. The starting value for the energy minimization
process is set to f = d (0) = I′. Each iteration step of the energy mini-
mization involves the computation of the specular free image dsf (t) of the
current hypothesis d (t) of the optimal estimation d∗. Instead of using a
Monte Carlo minimization technique [93], such as Simulated Annealing, we
have employed a simple heuristic to determine the new hypothesis d (t+ 1),
consisting in the reduction of the intensity of the pixels preserving their chro-
maticity components relative ratios. Although simple, this strategy does in
fact produce a minimization of the energy function, as can be appreciated
in Fig. 3.9, where we plot an instance of the energy function evolution. We
have tested our approach on some images already tested by some authors in
the literature i.e. [82, 91] among others. Fig. 3.10 shows the result over a
well known test image with two colors and two light sources. Our algorithm
does not include any modeling of the underlying color regions in the scene,
such as in [82], so it can be appreciated that the almost pure specular pixels
can not be corrected, because there almost no chromatic information left in
them. To improve our approach we will be including a color map �eld in
the model, to be able to assign those pixels the most likely color. The Fig.
3.11 shows an image with a more complex surface geometry. Our estimation
of the di�use re�ectance component recovers the underlying geometry, with
some blurring e�ects.
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Figure 3.10: From left to righ, the original image, the estimated di�use
re�ectance component, and the estimated specular component

Figure 3.11: From left to right, the original image, the estimated di�use
re�ectance component, and the estimated specular component
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3.5 A geometrical Method Image Component

Separation

The approach presented here is based on observed properties of the distri-
bution of pixel colors in the RGB cube according to DRM. We estimate the
lines in the RGB cube corresponding to the di�use and specular chromatici-
ties. Then the specular component is easily removed by projection onto the
di�use chromaticity line. Besides, the specular component is computed by a
straightforward di�erence. The proposed algorithm does not need any addi-
tional information. The process is as follows: �rst we estimate the chromatic
lines; second, we perform the separation process, estimating the di�use im-
age component; third, we compute the specular image component. We show
some computational results on well known benchmark images.

3.5.1 Pixel distribution on RGB color space

Following DRM we can classify image pixels into: Di�use pixels: showing
the observed surface color, with an almost null specular component. Specular
pixels: whose specular component is much bigger than the di�use component.
Placement of di�use and specular pixels is qualitative di�erent in the RGB
cube. Let us focus on the pixels in the proximity to the black-white cube
diagonal, de�ned as

Lw = {(r, g, b) = P + sw;∀s ∈ [0, 1]}

where P = (0, 0, 0) and w = (1, 1, 1). Given a uniform color region without
any specular component, its representation in the RGB cube would be a line,
the di�use chromaticity line for this region. Given a uniform color region in
the image with high specular component, it must appear like a line parallel
to line Lw or close to it. Specular image regions have RGB representations
far from the color space origin. However, due to noise, lines appear as an
elongated point clouds. Finally, a uniform color region (color constancy)
with some non negligible specular component must show a V shape. The
point cloud beginning in the coordinate origin and going away from line Lw
contain the di�use points, while the ones close to line Lw are the specular
ones. Using this knowledge, we can �lter out the specular component and
retain the di�use component.
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3.5.2 General description of the method

We assume that the observed surface is decomposable into patches of homo-
geneous chromatic characteristics. The proposed method has the following
phases:

1. Chromatic line estimation: estimate the di�use line Ld and the specular
line Ls .

2. We compute the parameters of the chromatic plane Πdc in the RGB
cube, and we project all the pixel colors into this plane. This step
involves some additive noise removal.

3. Component separation: We compute the pure di�use image component
and the specular image component.

3.5.3 Chromatic line estimation

In Fig. 3.12 we have a plot of the pixels in the image of Fig. 3.13 in the
RGB cube. Let us denote them {Ii; i = 1, ...,M}. We can easily appreciate
the two main directions in the data. The most clear is the one corresponding
to the di�use line Ld which rises from the coordinate system origin. The
second, less de�ned, appearing at the end of the di�use elongation, is the
specular direction identi�ed by the specular line Ls.

To estimate the di�use line, we start selecting the less bright pixels in
the image region corresponding to the surface, which will have the greatest
di�use component. We plot them in the RGB cube and we estimate the
best linear regression on the RGB data. In fact, we perform a Principal
Component Analysis [94] (PCA) which give us the direction of the chromatic
line −→u . Therefore the di�use chromatic line is de�ned as

Ld = {(r, g, b) = P + s−→u ; ∀s ∈ R} .

Analogously, we select the brightest pixels, obtaining a mean point Q in the
RGB cube and the largest eigenvector −→v for the specular color, therefore the
specular chromaticity line is expressed as follows

Ls = {(r, g, b) = Q+ t−→v ;∀t ∈ R} .
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Figure 3.12: Synthetic image plotted in the three-dimensional RGB space

3.5.4 Image regularization

Once we know the chromatic lines, we build the dichromatic plane Πdc in R3

which is the best planar approximation to the color distribution in RGB. It
can be expressed as follows:

Πdc = {(r, g, b) = P + s−→u + t−→v ;∀s, t ∈ R} ,

The plane normal vector is
−→
N : −→u × −→v , where × denotes the conventional

vector product. To remove noise and regularize the image colors we project
the pixel's colors into this dichromatic plane Πdc. For each pixel color Ii in
the RGB cube, we compute the line

Li =
{

(r, g, b) = Ii + k ~N ;∀k ∈ R
}
,

which is orthogonal to the dichromatic plane Πdc. To regularize Ii we compute
its projection Ici as the intersection of Li with Πdc.

3.5.5 Component separation

Recalling the DRM I(x) = md(x)D +ms(x)S our goal is to bring the pixels
to the di�use chromatic line, that is ∀x : ms(x) = 0. We proceed as follows:

• For each regularized image point Ici lying in the plane Πdc we draw the
line

Li = {(r, g, b) = Ici + t−→v ;∀t ∈ R}
where −→v is the specular line direction vector.



54 CHAPTER 3. COMPONENT SEPARATION

• The pixel di�use component corresponds to the intersection point Idi
of this line with the di�use line

Ld = {(r, g, b) = P + s−→u ;∀s ∈ R}

existing because they lie in the same plane Πdc and they are not parallel
lines.

• We have obtained Id(x) = md(x)D so that ∀x, : m(x) = 0, and the
resulting image Id(x) is purely di�use, without specular components.

• Obtaining the specular image component is then trivial if we recall the
DRM de�nition:

Is (x) = I(x)− Id(x) = I(x)−md(x)D = ms(x)S.

3.5.6 Experimental results

The experimental demonstration of our approach is shown in Figs. 3.13
and3.14. The �rst is a synthetic image (generated using Blender), and
the second is a natural image. Both are monochromatic. Original im-
age is the leftmost image in both �gures. Following our approach we ob-
tain the di�use and specular images, shown at the center and rightmost
images, respectively, in both �gures. Both original images can be down-
loaded from http://www.ehu.es/ccwintco/index.php/Images. The natural
image has been used as benchmark by several researchers [91, 82]. The vi-
sual results are comparable or better than the state of the art results in
[91, 82]. As we know the original surface color (r = 0.790, g = 0.347 and
b = 0.221) in the synthetic image, we can compute an estimation of the error
committed by our estimation of the di�use image. If we denote Q the original
color, the error is the distance of this point to the di�use line, computed as
d(Q,Ld) = || ~PQ−⊥( ~PQ, ~u)||, where ⊥(~a,~b) denotes the projection operator.
In the images shown in Fig. 3.13 the error committed is 0.0116. Variations
in the error are due to the di�use region pixel selection.

http://www.ehu.es/ccwintco/index.php/Images
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Figure 3.13: Synthetic image, di�use image and specular image

Figure 3.14: Natural image, di�use image and specular image

3.6 Chapter Conclusions

This chapter gather four works that have in common the separation of the
image into di�use and specular components for normalization and image
correction, with the aim of improving ensuing segmentation results. Though
there is a common ground on the DRM, these works come from diverse
computational backgrounds and have diverse goals, however we have ordered
them according to their potential composition in a complete system. First,
we presented a method for the illumination source chromaticity estimation,
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which can be used for the image chromatic normalization. Second, we present
a method for the estimation of the illumination �eld for image correction.
Third, we present a bayesian and a geometrical approaches for specular and
di�use component separation.

Bayesian method which does not need any additional assumption, such
as models of the colors in scene o previous color segmentations of the image.
It converges linearly by intensity reduction in the ISC line. Finally we have
propose a geometrical method for separate the di�use and specular compo-
nents. This method is faster that other ones and provides excellent results.
A further work is to extend this model to multi-chromatic surfaces.

Illumination Source Chromaticity The method for Illumination Source
Chromaticity (ISC) estimation is accurate, and its complexity is linear in the
number of pixels, therefore it is suitable for real time. It works on the spher-
ical coordinates of the specular pixels of the image, which is a small fraction
of the whole image. It does not lose luminosity information, because it is
preserved in the magnitude component of the spherical representation which
is not a�ected by color normalization. It can be applied in real time. It is the
�rst step in any segmentation model that let us normalize the images respect
to the illumination chromaticity obtaining robustness respect to illumination
changes. We have shown in computational experiments that it improves over
state of the art competing algorithms.

Evolution Strategy for Parametric Illumination Field Estimation

We have shown an image correction approach based on the modeling of the
specular component of the image as bias �eld obtained as the linear compo-
sition of 2D Legendre polynomials. Model �tting is done by a (λ + µ)-ES
on the space of the linear coe�cients of the Legendre polynomials. The ap-
proach is based on the dichromatic re�ectance model. The e�ect is that we
can remove strong specularity e�ects from di�cult scenes, such as the ship
hold treated as example, allowing more robust segmentation of objects in the
image. The method could be applied to static robotic monitoring in teams of
robots, where the illumination gradient image could be computed once and
applied to successive frames until the illumination conditions change drasti-
cally. The method could be useful for the detection of image regions with
di�erent chromatic properties.
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Bayesian Component Separation We have presented a Bayesian ap-
proach to the problem of re�ection component separation. As in previous
works, our approach works with only one image [91] and does not need any
additional assumption, such as models of the colors in scene o previous color
segmentations of the image. We compute the specular free image, which can
be done on the �y for each hypothesis. We have tested the approach apply-
ing a simple heuristic to provide new hypothesis from the previous iteration,
with quite encouraging results. From the experiments we detect the need
to incorporate a color map �eld in the A Priori model, so that the color of
almost purely specular pixels can be recovered more easily. The problem of
diverse color illumination sources may be the subject of further works.

Geometrical Component Separation The geometrical component sep-
aration for mono-color images is very e�ective, fast and robust. It has
been inspired in the spatial distribution suggested by DRM so that it is
well theoretically grounded despite its simplicity. It consists in the estima-
tion of the di�use and specular lines as the principal components of di�use
and specular point clouds, respectively, selected from the image by hand.
Contrary to other approaches [78, 85] our approach does not need speci�c
hardware devices, and only needs one image. Our approach's complexity
time is linear in the image size O (M), while others [87, 91] are quadratic
O(M2). Our approach does not need a Specular Free image, it provides
almost simultaneously both image components. Future work will address
the extension of this approach to images containing several surface colors,
i.e. I(x) = md(x)D + ms(x)S, and to images with illumination sources of
di�erent colors, i.e. I(x) = md(x)D +ms(x)S(x).
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Chapter 4

Specular Free Images

Specular free (SF) images are equivalent to the original image but with their
specular component removed. Computation of specular free images are nece-
sary steps for some processess such as image component separation or illu-
mination source chromaticity estimation for chromatic normalization. This
chapter contains two algorithms approaching this issue from di�erent points
of view. First, we introduce a SF transformation (denoted SF2) based on the
pseudo-norm of the saturation [95]. The second SF transformation (denoted
SF3) is based in the angular de�nition of the color saturation following DRM
behavior in RGB. SF3 applies the intensity depending of the pixel chromatic-
ity. This SF image is applied on natural and synthetic images. The processes
are grounded in the DRM. Both SF transformations are de�ned on the HSV
color space.

The chapter's outline is as follow: Section 4.1 introduces specular free
image transformations. Section 4.2 presents the SF2 method and some ex-
perimental results. Section 4.3 presents the SF3 . Section 4.4 gives the
chapter conclusions.

4.1 Specular Free Image Transformations

There are scarce works on SF transformation, which were introduced by
Roby Tan [82] and Kuk-jin Yoon [87] more or less at the same time. In
the �rst approach, the basic idea is to make the saturation constant for
all surface colors while retaining their hue values. In other words, if these
images preserve their hue and saturation, then preserve the chromaticity,
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therefore they change only the intensity respect to the original image. In the
approach of Kuk-Jin, the transformation project all RGB points within the
nearest plane using the achromatic direction. In both cases, specular free
transformations are geometrical and injective transformations in the RGB
color space where the output image, the specular free image has not specular
component.

4.2 A Color Transformation

We expect that in pure color regions the color representation of the pixels
in the RGB cube will fall far from the achromatic line. On the other hand,
we want to penalize specular regions, those close to achromatic line and far
from the coordinate system origin. A main feature of achromatic line is that
the three coordinates of its points are equal r = g = b, and r, g, b ∈ [0, 1].
For pixels close to this region, we r u g u b; r, g, b ∈ [0, 1]. As the pixels fall
away from this line, the di�erences among their components are greater. We
use this di�erence as the intensity of the processed image. As we want to
preserve the chromatic information, only the intensity is modi�ed, boosting
the di�use pixels and nullifying the specular pixels. The new intensity of
the pixels is computed as di�erence between the maximum and minimum of
their RGB components:

I(x) = max{r, g, b}(x)−min{r, g, b}(x)

This new intensity replaces the V component in the HSV representation,
thus preserving the chromatic content of the pixel. We show in Algorithm 4.1
an implementation for SciLab. The image obtained after the SF2 transforma-
tion is characterized by the absence of re�ections, substituted by dark spots.
Also the di�use regions are boosted in the image. With an straightforward
analysis we can �nd all the di�use regions.

4.2.1 Experimental results

The need to detect color regions stems from its conventional use in sig-
naling: red for danger, blue and green for informative, yellow for danger
advice. In robotic contexts, working on arti�cial environments, we must
bene�t from this information source by the robust detection of signaling
symbols drawn in the basic colors. We have performed experiments in
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Algorithm 4.1 Scilab code for SF2

//I is a RGB image
// IR is the transformed image
Function IR = SF2(I)
New_Intensity = (max(I,3) � min(I,3));
Imghsv = rgb2hsv(I);
Imghsv(:,:,3) = New_Intensity;
IR = rgb2hsv(Imghsv);

Endfunction

three di�erent contexts: �rst the detection of markers in real scenes, sec-
ond the process of synthetic images, and third the detection of robots in
real time. All the results can be viewed in the following web address:
http://www.ehu.es/ccwintco/index.php/SMC

4.2.1.1 Landmark detection

The de�nition of the experiment is as follows: The place is a lab corridor,
with arti�cial illumination of diverse intensity and uniform color. Landmarks
are DIN A4 sheets of di�erent colors: red, cyan, yellow and blue. We use a
conventional web cam Phillips SPC 900NC/00. From each image (recorded
in a MPEG �le) we �nd the SF2 images, and there we �nd the markers.

In Fig. 4.1 we have three images from the described scenario. The ones
on the left are the closest ones to the camera, the ones on the right are the
farthest ones. Notice variations in illumination along the corridor. In Fig.
4.2 we show the SF2 images as follows: left corresponding to the middle one
in Fig. 4.1 , middle after the analysis of the intensity and to the right a zoom
of the previous one, showing that one mark is missing. In table 4.1 we show
the detections performed on each mark, where 'x' means good detection and
'+' incomplete detection.
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Figure 4.1: Natural images for landmark detection.

Figure 4.2: Specular free images obtained by SF2.

Milestone 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Distance (m) 2.6 4 6 8.4 10.8 12.8 14.5 17.3 20.7 26.02 31.7 36 41.9 46 50

Label 1 x x x x x x x x x x x + x

Label 2 x x x x x x +

Label 3 x x x x x x x x x x x x + x

Label 4 x x x x x x x x x x +

Table 4.1: Measurements
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Figure 4.3: Synthetic images for the experiments. Upper row, original im-
ages. Lower row, images after SF2.

4.2.1.2 Synthetic images

The SF2 transformation has been applied to natural and synthetic images.
Synthetic images have the advantage that we know with precision the color
and geometry of the surface, as well as the illumination color. Fig. 4.6 shows
some of these images, in the top row we place the original image and on the
bottom the computed SF2 images. First image is a monochromatic image,
containing a green toroidal surface. The second is a Voronoi tessellated
toroidal surface painted with random colors. Last image is a bi-chromatic
oval. We observe that SF2 images remove completely all the re�ections,
canceling the specular component. In the Voronoi tessellated ring surface,
besides canceling brights spots, colors have been enhanced.

The SF2 method has been ideated for robotic contexts. In Fig. 4.8 we
show results on three natural images. The two �rst ones are customary
marks in the previously described experiment, and the last one is used by
other researchers in the literature of specular correction. The �rst two scenes
show the enhancement of the markers in the image. In the last case we see
that the bright spots are cleanly removed, retaining the original color.
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Figure 4.4: Natural image experiments. Upper row, original images. Lower
row, SF2 output images.

Figure 4.5: Robot detection. Left, original image. Right, the resulting image
segmentation. Middle, the result of the SF2 process.

4.2.1.3 Real robot detection

The last experiment is the detection of small robots (SR1) in a real scene and
real time. The robots are yellow color against a yelowist background, making
visual detection tricky. The �oor is very bright with many bright spots front
above illumination. Besides, robot's upper part contains the printed board
and some �xing for the cable being carried. The robots have lots of shadows,
thus only a small part of the robot can be clearly detected as pure yellow.
Fig.4.5 contains three images: �rst the capture from the scene, second its SF2
image, third the SF2 image intensity analysis to detect the robots. The web
address http://www.ehu.es/ccwintco/index.php/SMC contains the original
video. We must point out that illumination is not constant, there are doors,
windows, etc.
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4.3 Hybrid Color Space Transformation to Vi-

sualize CC

This section presents a hybrid and non linear transformation of the RGB im-
age based on the assignment of the chromatic angle of the pixel (computed
in the RGB space) as the luminosity value in the HSV space. The image is
preprocessed to remove the specular component. The chromatic angle was
de�ned on the basis of DRM, having thus a physical interpretation support-
ing it. In the HSV color space the intensity is represented in the V value,
changing it does not change the pixel chromatic information. Thus, to visu-
alize CC we assign constant intensity to the pixels having common chromatic
features, by assigning the chromatic angle as the V value in HSV space.

4.3.1 Regularized region intensity

The basic idea of our approach is to assign a constant luminosity to the
pixels inside an homogeneous chromatic region. To do that we must combine
manipulations over the two color space representations of the pixels, the HSV
and RGB. The process is highly non linear and it is composed of the following
steps:

1. Isolate the di�use component removing specular components (ms =
0): we are interested only in the di�use component because it is the
representation of the true surface color. We use the method presented
in [91] to perform the di�use and specular component separation.

2. Transform the di�use RGB image into the HSV color space.

3. Compute for each pixel in the image the chromaticity angle as the angle
between the gray diagonal line in the RGB space, going from the black
space origin to the pure white corner, and the chromaticity line of the
pixel.

4. Assume the normalized chromaticity angle as the new luminosity value
in the HSV space pixel representation.

In an homogeneous chromatic region, all pixels fall on the same di�use
line

Ld =
{

(r, g, b) = O + sΨ;∀s ∈ R+
}
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where O = [0, 0, 0] and Ψ = [Ψr,Ψg,Ψb] is the region's chromaticity ex-
pressed in Euclidean coordinates. The chromatic reference is the achromatic
(pure white) line Lpw which is de�ned as

Lpw =
{

(r, g, b) = O + su;∀s ∈ R+
}

where O = [0, 0, 0] and u = [1, 1, 1]. Therefore, if all pixels is a region belong
to the same chromatic line, the angle between each pixel and the line Lpw
must be the same, and the result of this angular measurement is a constant
for whole region. Our approach normalizes this measure in his domain of
de�nition (the RGB cube) and assume it as the constant luminosity value V .
This method is expressed with the equation:

V new(x) =
∠ (I(x),u)

arccos(ϑ)
(4.1)

where the denominator arccos(ϑ) is the normalization constant corresponding
to the maximum angle between the extreme chromatic lines of the RGB space
(red, green or blue axes) and the pure white line. Algorithm 4.2, shows a
Matlab/Scilab implementation of the method, where ϑ takes the value 1

3
and

arccos(ϑ) = 0.9553166.

Algorithm 4.2 Regularized Region Intensity computatoin

function IR = SF3(I)
Idi� = imDi�use(I); // look for the di�use component
new_intensity = angle(Idi�, [1 1 1]); // return a matrix of chromatic

angles
Ihsv = rgb2hsv(Idi�);
Ihsv(:,:,3) = new_intensity; // assign the normalized angles as image

intensity
IR = hsv2rgb(Ihsv);

endfunction

4.3.2 Experimental results

We present the results from three computational experiments. The �rst one
using a synthetic image and the remaining using natural images. Fig. 4.6
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displays the �rst experimental results. Fig. 4.6(a) is the original image. Fig.
4.6(b) is the di�use image obtained applying the method in [82]. Fig. 4.6(c)
is the result applying our proposed method in Fig. 4.6(a). Fig. 4.6(d) display
the result applying the method in Fig. 4.6(b). It can be appreciated that our
method is able to identify the main chromatic regions even without compo-
nent separation (Fig. 4.6c), with some artifact due to the bright re�ections.
After removal of these re�ections, the method has a very clean identi�cation
of the chromatic regions.

(a) (b)

(c) (d)

Figure 4.6: Synthetic image results (a) original image, (b) di�use component
of the image, (c) our method on image (a), our method on image (b).

For the next experiments we use natural images that have been used by
other researchers previously. The Fig. 4.7 and 4.1 show the experimental
results. In both cases the sub-�gure (a) has the original image, sub-�gure
(b) shows the di�use image, sub-�gure (c) displays the results applying our
proposed method to the original image (a), sub-�gure (d) show the results
applying our method in the di�use image (b). In both experiments we can
see a similar e�ect of applying specular correction. The images (c) obtained
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(a) (b)

(c) (d)

Figure 4.7: Natural image results, (a) original image, (b) di�use component
of the image, (c) our method on image (a), our method on image (b).

without component separation, show a better chromatic preservation, al-
though with some degradation in the regions corresponding to the specular
brights. The images obtained after di�use component identi�cation [82] are
less sensitive to specular e�ects, however they show some chromatic region
oversegmentation. It is important to note that no clustering process has been
performed to obtain these images.
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(a) (b)

(c) (d)

Figure 4.8: Natural images, (a) original image, (b) di�use component of the
image, (c) our method on image (a), our method on image (b).

4.4 Conclusions

Specular free images are a powerful tool to overcome the noise introduced
by highlights. This chapter presents two specular free transformations. The
�rst one, computes the saturation seudo-norm of the pixels. It is very fast,
allowing for real time response in arti�cial vision environments. It removes
e�ciently the specular component of the image, retaining and enhancing the
original colors, because it preserves chromatic information in the HSV color
space.

The second method substitutes the intensity component in the HSV color
space representation of each pixel in the image by a normalized angular
distance between the pixel color and the achromatic line. The transformation
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preserves the pixel chromaticity and assigns a constant intensity to the pixels
in a homogenously colored region. The result is a new image with strong
contrast between chromatic homogeneous regions, and good visualization of
these regions as uniform regions in the image. This method performs very
well in dark regions, which are critical for most CC methods and image
segmentation based on color clustering processes. SF image is a new topic
in computer vision or image processing which can help to solve task related
with to avoid specular e�ects on images. We advocate its application and
further improvements.



Chapter 5

Chromatic Gradient

This chapter presents a color image spatial gradient with good color con-
stancy preservation properties. The approach does not need a priori infor-
mation or color space transformations. It is based on the angular distance
between pixel color spherical coordinate representation in the RGB space.
It is naturally invariant to intensity magnitude, implying high robustness
against bright spots produced be specular re�ections and dark regions of low
intensity [96].

The sructure of the chapter is as follows: Section 5.1 revisits the color
constancy in the RGB space. Section 5.2 recalls the linear gradient detection
basics. Section 5.3 describes the chromatic gradient. Section 5.4 gives some
experimental results. Section 5.5 provides the chapter conclusions.

5.1 Color Constancy in the RGB Space Revis-

ited

We recall that Color Constancy (CC) is our ability to perceive the same color
despite changes in illumination. The basic CC is the robustness against
changes in illumination intensity. CC is fundamental problem in arti�cial
vision [18, 80, 97], which has been the subject of neuropsicological research
[13]. CC can be very in�uential in Color Clustering processes [81, 98, 46].
In the arti�cial vision framework, CC assumes some color space, involving
the illumination source chromaticity estimation [84, 18] and the separation
of di�use and specular image components [91, 87, 83]. We have observed in
previous chapters that chromaticity in the RGB space is characterized by
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a straight line crossing the RGB space's origin, determined by the φ and
θ angles of the polar coordinates of the points over the line. The plot of
the pixels in a chromatically uniform image region appear as straight line in
the RGB space, which we call the di�use line Ld. If the image has surface
re�ection bright spots, the plot of the pixels in these regions appear as another
line Ls intersecting Ld.

For di�use pixels having a small specular component weight ms(x) in
DRM, the zenithal φ and azimuthal θ angles are almost constant, while they
are changing for specular pixels, and dramatically changing among di�use
pixels belonging to di�erent color regions. Therefore, the angle between
the vectors representing two neighboring pixels Ip and Iq, denoted ∠ (Ip, Iq),
re�ects the chromatic variation. For two pixels in the same chromatic regions,
this angle is ∠(Ip, Iq) = 0 because they will be collinear in RGB space.

5.2 Linear Gradient Operators

The notion of CC is closely related to the response to the gradient opera-
tors [17]. Regions of constant color must have low gradient response, while
color edges must have a strong gradient response. To set the stage for our
chromatic gradient proposition, we need to recall the de�nition of the image
gradient

G[I(i, j)] =

[
Gi

Gj

]
=

[
∂
∂i
I(i, j)

∂
∂j
I(i, j)

]
, (5.1)

where I(i, j) is the image function at pixel (i, j). For edge detection, the
usual convention is to examine the gradient magnitude:

G (I) = |Gi|+ |Gj|. (5.2)

For color images, the simplistic approach to perform edge detection is to drop
all color information, computing the intensity Intensity = (Red + Green +
Blue)/3 (sometimes computed as Intensity = .2989 ∗Red+ .587 ∗Green+
.114 ∗ Blue), and then convolve the intensity image with a pair of high-
pass convolution kernels to obtain the gradient components and gradient
magnitude. The most popular edge detectors are the Sobel and the Prewitt
detectors, illustrated in Fig.8.1. We build our own operators along similar
kernel patterns. To take into account color information, the easiest approach
is to apply the gradient operators to each color band image and to combine
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Figure 5.1: Convolution kernels for the (a) Sobel and (b) Prewitt edge de-
tection operators.

the results afterwards: G(I) = [G(Ir) +G(Ig) +G(Ib)]/3 . Fig. 5.2 show the
results of applying those basic approaches to edge detection on a synthetic
image. It can be appreciate how the gradient magnitude ampli�es noise on
one hand when we combine the color band gradient magnitudes, and how
the color edge is not detected by the edge operator applied to the intensity
image, because the two color regions have quite near intensity values. The
edge magnitude computed by the straightforward approaches is also misled
by the specular surface re�ections, which highlighted as can be appreciated
in Fig.5.2(d).

5.3 Chromatic Gradient

We �rst introduce a distance between pixel color values which preserves chro-
matic coherence having some color consistency properties. Then we formulate
the gradient operators built upon this chromatic distance.

5.3.1 A chromatic distance in RGB

First, we convert the RGB Cartesian coordinates of each pixel to spherical
coordinates, with the black color as the RGB space origin. Let us denote

the Cartesian coordinate image as I =
{

(r, g, b)p ; p ∈ N2
}
and the spherical
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(a) (b)

(c) (d)

Figure 5.2: (a) Original synthetic RGB image, (b) Intensity image, (c) Gra-
dient magnitude computed on the intensity image, (d) gradient magnitude
combining the gradient magnitudes of each color band

coordinate as P = {(φ, θ, l)p; p ∈ N2}, where p denotes the pixel position.
We discard the l because it does not contain any chromatic information. For
a pair of image pixels p and q, the color distance between them is de�ned as:

∠(Pp, Pq) =

√
(θq − θp)2 + (φq − φp)2, (5.3)

that is, the color distance corresponds to the Euclidean distance of the Az-
imuth and Zenith angles of the pixel's RGB color polar representation. This
distance is not in�uenced by the intensity and, thus, will be robust against
specular surface re�ections.

5.3.2 Chromatic gradient operators

Notice that the linear convolution operators are computing distances be-
tween pixels to compute the derivative. We substitute the direct di�erence
by the chromatic distance introduced above to obtain pseudo-convolution
operators. We formulate a pair of Prewitt-like gradient pseudo-convolution
operations on the basis of the above distant. Note that the ∠(Pp, Pq) dis-
tance is always positive. Note also that the process is non linear. The row
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pseudo-convolution is de�ned as

CGR (P (i, j)) =
1∑

r=−1

∠ (P (i− r, j + 1) , P (i− r, j − 1)) ,

and the column convolution is de�ned as

CGC (P (i, j)) =
1∑

c=−1

∠ (P (i+ 1, j − c) , P (i− 1, j − c)) ,

so that the color distance between pixels substitutes the intensity subtraction
of the Prewitt linear operator. The color gradient image is computed as:

CG(P ) = CGR (P ) + CGC (P ) (5.4)

5.4 Experimental Results

To demonstrate the e�ciency of our proposed approach, we show three exper-
imental results. Two of the experiments are done on synthetic images whose
ground truth is know. Fig. 5.3 contains two synthetic images Fig. 5.3(a)
and 5.3(b) which are chromatically identical. The image in Fig. 5.3(a) hs
constant intensity inside each color region, while the image in Fig. 5.3(b)
contains a central square with lower intensity (0.8), preserving the chromatic
content of Fig. 5.3(a). Applying the Prewitt operator to each color band
of Fig. 5.3(b) we obtain the detection shown in Fig. 5.3(c), while applying
our color edge detection of Eq. (8.2) we obtain the detection in Fig. 5.3(d).
It is clear that our approach has superior CC properties and an improved
intensity invariant detection of color edges.

The second computational experiment was performed on the image shown
in Fig. 5.2(a). This image has a strong specular re�ection region, and two
color regions with a black background. We have tested a Sobel like and a
Prewitt like variation of the basic schema of Eq.(8.2). The Fig. 5.4 gives
the results of the RGB band combined detection and our approach. It can
be appreciated that our approach discovers the edge even in very dark areas,
it is also robust against specular re�ections, which the linear operators do
confound with color edges. The color edge between the two regions is better
detected in both cases by our approach.
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(a) (b)

(c) (d)

Figure 5.3: Results of the color edge detection on a synthetic image with
nine uniform chromatic regions and a variation of intensity. (a) Original
color distribution, (b) lower intensity central square, (c) Prewitt detection
on RGB bands, (c) our approach in equation (8.2).

Final results are given on a natural image, shown in Fig. 5.5. This image
contains many color regions, with specular re�ections, shadows and light
e�ects. Fig. 5.6 shows the results of the linear operators based on the Sobel
and Prewitt masks. Besides the lower response of the Prewitt operator, it
can be appreciated the high sensitivity to specular re�ections and low color
constancy. All bright spots are interpreted as color edges. In the Fig. 5.7 we
show the results of our approach under two variations of the neighborhood
considered. The 4 neighborhood follows the same pattern of Eq. (8.2) but
over a reduced set of neighboring pixels. Again our approach is very robust
against specular re�ectance. Bright spots do not appear to be detected.
Dark regions of the image are equalized in their results relative to brighter
regions. A very signi�cative result is the detection of color edges even in
the almost black background. A drawback that appears in our approach is
the high spurious detection in the black background. This is due to the high
angular variations induced by noise. It could be avoided by a simple intensity
thresholding.
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(a) (b)
Sobel

(c) (d)
Prewitt

Figure 5.4: Color edge on the synthetic image of Fig.5.2(a) with two color re-
gions. (a) The Sobel operator over the RGB bands with specular component,
(b) our approach in a Sobel-like structure, (c) the Prewitt linear operator,
(d) our approach in a Prewitt like structure.

Figure 5.5: Natural image



78 CHAPTER 5. CHROMATIC GRADIENT

(a) (b)

Figure 5.6: Results of the linear operators on the natural image (a) Sobel
detector, (b) Prewitt detector

(a) (b)

Figure 5.7: Results of our approach on the natural image (a) taking 8 neigh-
bors, (b) taking 4 neighbors
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5.5 Conclusions

This chapter presents an innovative chromatic gradient computation, which
has some Color Constancy properties, giving good detection of Color Edges.
The method is grounded in the DRM which is a widely accepted image
model for re�ectance analysis. The method is intensity invariant, and, thus,
is robust against the bright spots of specular re�ections. It does not imply
or need color segmentation, on the contrary can provide good color region
separation with little assumptions. It works on the RGB space, which the
most common color processing space.
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Chapter 6

Color Image Segmentation

Contributions

In this chapter we deal with color image segmentation using the chromatic
decomposition de�ned in previous chapters. The chapter contains results
from two di�erent points of view: region growing and Watershed Transfor-
mation. The region growing segmentation method makes use of the chromatic
distance de�ned on the spherical representation of the color coordinates, en-
riched with an hybridization that improves the results in the dark regions of
the image, working on a 4-NW neighborhood in order to speed-up compu-
tations. The watershed based segmentation uses a hybrid gradient de�ned
on the spherical coordinates, as an improvement to the gradient operator
de�ned in the previous chapter. Both approaches have been tested on well
know benchmark images. Both methods' hybridization consists in shifting to
work with scalar intensity based distances and gradients to better deal with
the noise in dark image regions.

Section 6.1 presents a region growing segmentation algorithm. Section 6.2
gives experimental results of this algorithm on benchmark images. Section
6.3 introduces the Watershed Transformation. Section 6.4 presents a new
watershed segmentation algorithm based on the chromatic gradient. Section
6.5 gives experimental results of this approach. Finally, Section 6.6 gives the
conclusions of the works presented in this chapter.

81
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6.1 Chromatic Region Growing

This section presents a region growing image segmentation algorithm work-
ing on the spherical interpretation of the RGB color space. The algorithm
uses a hybrid chromatic distance inspired in the human vision system (HSV)
that shifts its emphasis from the chromatic to the grayscale distance depend-
ing on the pixel's luminance value. For dark areas, the chromatic distance
is too much unstable so that the gray scale distance is used instead. Color
constancy properties of this segmentation can be easily deduced from the
dichromatic re�ection model (DRM). The segmentation doesn't need pre-
processing steps, such as illuminant source color estimation. The approach
is strongly robust regarding highlights and dark spots, and it is amenable
to work in real time on a robotic platform. We give results on benchmark
databases and robot camera images. A public implementation is made avail-
able for independent test of the algorithm image segmentation results. We
assign one region label to each and all image pixels, where each label corre-
sponds to a connected region characterized by a chromaticity vector, which
is computed along with the segmentation. Therefore, two separated regions
with the same chromatic representation will have two di�erent labels. The
algorithm's output are a bi-dimensional matrix of integer labels and a bidi-
mensional matrix of chromatic vectors corresponding to the identi�ed image
regions.

We introduce a new hybrid distance to measure the similarity between
pixel colors, which is used in a one-pass pixel region labeling algorithm. This
hybrid distance is a mixture of an intensity di�erence and a chromatic dis-
tance based on the spherical representation of the RGB color space, inspired
in the sensitivity of the HSV. Its de�nition allows to parameterize the al-
gorithm's noise tolerance, and to tune it for optimal color edge detection.
Furthermore, it is easy to see that the chromatic component of this dis-
tance has some inherent color constancy, analyzing its behavior under the
dichromatic re�ection model (DRM). The labeling algorithm uses only the
four north-west (4-NW) topological neighbors of the current pixel, because
it process each pixel onces and does not perform any spatial relaxation pro-
cesses. According to [49] �the image segmentation problem is basically one
of psycho-physical perception, and therefore not susceptible to a purely ana-
lytical solution�. The parameters of the mixture of the hybrid distance allow
a �ne tuning of the algorithm to the characteristics of the image being seg-
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mented. To allow for independent test of our algorithm we make available1

a C# implementation, using Emgu 2 running on windows platforms.

6.1.1 The chromatic distance

Image segmentation detects an edge between two neighboring pixels when
they have di�erent color properties [60]. The simplest edge detectors are
based on spatial gradients of the image intensity, i.e. the Sobel or Pre-
witt convolution kernels. These approaches ignore the chromatic informa-
tion leading to poor color edge detection. To improve this approach, the
convolution masks can be extended to color representations using hybrid dis-
tances [99]. The core of all edge detection methods is the de�nition of an
appropriate distance between pixel colors.

According to the DRM model, the di�use image component is expressed
by the angular components (θ, φ), which are almost constant in regions with
homogeneous chromatic properties. It is independent of the luminosity coor-
dinate, therefore independent of the illumination assuming an uniform chro-
matic illumination. If we use only the di�use component for edge detection,
black-white borders may be undetected because both colors belong to the
same achromatic line, and hence they have the same chromaticity. On the
other hand it is important to avoid the e�ect of highlights, because they
do not correspond to a true surface. Fig.6.1 illustrates the problem of false
image regions in the image due to highlights that do not correspond to real
objects in the scene.

Figure 6.1: Image with highlights

1http://www.ehu.es/ccwintco/index.php/Hybrid_Image_Segmentation. In the
sources, the method name corresponding with this paper is �fastSegmentation2�

2http://www.emgu.com/wiki/index.php/Main_Page
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Figure 6.2: Chromatic activation function α(x)

Fortunately, some di�erences exist between image edges due to highlights
and those due to true boundaries between di�use color surfaces. When two
surface regions of di�erent chromatic properties are adjacent, this chromatic
di�erence is clear and detectable measuring the di�erence on the zenithal
and azimuthal angles of the spherical representation of pixel colors. In the
highlights, the chromaticity of pixels changes smoothly, so it is possible to
�lter out false edge detection setting a threshold on the chromatic distance
based on the di�use color component. For the human vision system, the main
di�culty is to detect a color accurately in dark regions. In fact, chromaticity
in dark regions is very unstable because it ampli�es small color perturbations
due to noise. According to the human vision system, in regions with poor
illumination it is more appropriate to use the luminance component. In the
human eye's retina we have two kind of photoreceptor cells; rods and cones.
The �rst one is an luminance detector and the other one is a chromatic detec-
tor. Both need di�erent energy for his activation. Rods need few energy for
its activation, for this reason under poor illumination human vision becomes
grayscale. Cones needs more energy, for this reason color are detected better
with a good illumination.

Fig. 6.2 shows the activation function α (x) of the chromatic distance
component of the proposed hybrid distance. For luminance values below
a, the chromatic component of the distance is inactive, for intensity values
in the interval [a, b], we smoothly change the contribution of the chromatic
component of the hybrid distance from zero to its maximum c ≤ 1 according
to a sinusoidal function. Finally, for intensity values above b its contribution
is always c. The three parameters a, b, c are in the range [0, 1].

The function α(x) on the image intensity de�nes the degree of mixing
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of the grayscale and chromatic distances. The Eq.6.1 is the mathematical
expression of α(x) :

α(x) =


0 x ≤ a
c
2

+ c
2

cos
(

(x−a)·π
b−a + π

)
a < x < b

c x ≥ b

, (6.1)

We de�ne the hybrid distance between the color of two pixels p, q as
follows:

dH(p, q) =

(
1− α

(
lp + lq

2

))
·dI(p, q) + α

(
lp + lq

2

)
· dC(p, q), (6.2)

where lp, lq are the intensity l in spherical coordinates of the pixels p and
q, respectively, dI is a grayscale intensity distance computed as dI(p, q) =
|lp − lq|, and dC is the chromatic distance computed as

dC(p, q) =

√
(θq − θp)2 + (φq − φp)2. (6.3)

The foregoing Eq. (6.2) follows a human vision system inspiration, where
the �rst term express the behavior of the rod retinal cells which are sensitive
to intensity. They need few energy for its activation. On the other hand,
the second term express the behavior of cone retinal cells which can detect
chromaticity. They need more energy for its activation. The alfa function
depends on the mean image intensity of the pixels being compared.

6.1.2 Proposed region growing segmentation method

The segmentation method proposed in this section combines the spherical in-
terpretation of the RGB space and the aforegoing hybrid distance expressed
in the Eq.(6.2). Edge detection can be accomplished applying a threshold
on the distance between pixels. In order to decrease the computing time, we
use a 4-WN neighborhood as illustrated in Fig.6.3. This structure allows to
obtain acceptable results processing only once each pixel. This method trav-
els over the image by rows, hence the 4-WN neighbors of a pixel are always
labeled. Our segmentation method is explained by the following algorithm .
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Figure 6.3: 4-WN Neighbors of pixel site x.

Algorithm 6.1 Support functions

function create_new_label(x)=
begin

L (x) = newlabel. /create a new region label/

ΨL(x) = Ψ (x) . /update region label chromaticity/

end

function evaluate_neighbor(x)=
begin
/this function is used when there is only a neighboring label/

d← min {dH(x, y) |y ∈ N4 (x)}
if d < δ /some neighbor's color is similar enough/

L(x) = `; /assign region label/

Ψ` = 1
|R`|
∑

y∈R`
Ψ (y) /update region label chromaticity representation/

else

create_new_label(x)
end
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6.1.3 Algorithm

Algorithm 6.2 Image Segmentation Algorithm

Input: Ω (x) the color image in spherical coordinates
Threshold δ, distance parameters values a, b, c

-Initialize the pixel labels ∀x;L (x) = Ø
-The �rst region is composed of the �rst pixel x0 = (0, 0): L (x0) = newlabel.
The region chromaticity is that of the �rst pixel ΨL(x0) = Ψ (x0) .
for each x do

if L4 (x) = {`} /there is only one region label in N4 (x)/

evaluate_neighbor(x)
else

D ← {dC (L (y) , L (z)) |y, z ∈ N4 (x) &L (y) 6= L (z)}
for all Di < δ /region merging/

L (y) = merge (y, z) /merge both regions into L (y) /

ΨL(y) = 1

|RL(y)|
∑

y∈RL(y)
Ψ (y) /update region chromaticity rep./

end for
if L4 (x) = {`} /there is only one region label in N4 (x)/

evaluate_neighbor(x)
else /regions can not be merged/

d← min {dH(x, y) |y ∈ N4 (x)}
if d < δ /assign to region with the lower distance/

L(x) = L (y) s.t. dH(x, y) = d;
ΨL(x) = 1

|RL(x)|
∑

y∈RL(x)
Ψ (y) /update region chromaticity /

else /current pixel can not be assigned to existing regions/

create_new_label(x)
end for

This algorithm returns a bi-dimensional matrix of integer labels. While per-
forming the computation, we also need to relate each label with a chromatic-
ity and the amount of pixels labeled with it. That is necessary because each
time that we assign a new pixel to a label we must update the label's chro-
maticity. The chromaticity of a label is the average chromaticity of all pixels
labeled with it.

The most critical parameter of this algorithm is the distance threshold
δ. The segmentation granularity and the noise tolerance depends on it. For
small threshold values we obtain a lot of regions, and, conversely, with a high
value we obtain few big coarse regions. On the other hand, the parameters
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a, b, c of function α(x) as speci�ed in Eq. (6.1) allow to tune the hybrid
distance dH(p, q). In the limit cases, when b = 0 and c = 1 it becomes a pure
chromatic distance. If a = 1 it becomes a pure intensity distance.

The Algorithm 6.2 gives the details of our method. In this algorithm L (x)
denotes the region label of pixel x, L4 (x) denotes the set of labels of the 4-
WN neighbors of pixel x, that can be expressed as L4(x) =

⋃
x′∈N4(x) L (x′),

where N4 (x) the 4-WN neighborhood of pixel x illustrated in Fig. 6.3. The
algorithm may be applied to any color image Ω (x) represented in RGB spher-
ical coordinates. It needs the speci�cation of the distance dH (x, y) that gives
a measure of the similarity between pixel colors Ω (x) and Ω (y). We build a
map Ψ` = (θ`, φ`) assigning to region labeled ` a chromatic value. We denote
R` the current set of pixels labeled in region `, R` = {x s.t. L (x) = `}, the
number of pixels in a region is its cardinality |R`|. Function newlabel cre-
ates a new region label. Function merge (`1, . . . , `n) creates as a side e�ect
the union of the regions R`1 ∪ . . . ∪ R`n relabeling pixels accordingly with a
new created label `, returning the new label as the function value. To avoid
tedious repetition of multiple similar de�nitions of the distances when they
applied to pixels or to region chromatic representations, the de�nition of the
chromatic distance of Eq. (6.3) is extended to the case when two regions
of labels `1 and `2 are the function parameters computing the distance over
their chromatic representations Ψ`2 and Ψ`2 of as follows:

dC(`1, `2) =

√
(θ`1 − θ`2)

2 + (φ`1 − φ`2)
2. (6.4)

6.2 Chromatic Region Growing Results

In this section we present some computational results of the algorithm de-
scribed in section 6.1.3. The algorithm's parameter are set to some nominal
values: δ = 0.02, a = 0.2, b = 0.4 and c = 0.5. According to these values,
for the dark regions whose normalized intensity is less than 0.2 we use only
the intensity distance, whereas for pixels with an intensity greater than 0.4
we use a hybrid distance where intensity and chromaticity have the same
importance. In order to validate our approach, we have tested the pro-
posed algorithm �rstly with the well-known Berkeley database [100], and,
secondly, with images obtained from the camera of a real robot Nao, Alde-
baran Robotics, Paris, because we have developed the algorithm with robotic
applications in mind. The main features of the images taken by the robot
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on-board camera are, (a) the low signal to noise ratio, due to the poor quality
of this cameras, and (b) the appearance of many highlights in the images due
to illumination sources of the real environment where the robot is working.
For a visual assessment of the results, the output images are pictured using
the mean color image of each region.

6.2.1 Results on the Berkeley database

Fig.6.4 shows the segmentation results on some images from the Berkeley
image database [100]. The �rst row show original pictures as provided with
the database. The second row shows segmentation results using the chro-
matic distance of Eq. (6.3). We present results using the hybrid distance
of Eq. (6.2) in the third row. Comparison of images in those rows show
the improvement obtained using the hybrid distance, obtaining more natural
segmentations, specially in shadowy regions, like the tree or the sky in the
right-most image. Smooth regions in the images are identi�ed as homoge-
neous regions despite small color �uctuations and brightness. The fourth
row shows the edges between regions identi�ed in the images of the third
row. Fifth row shows the human segmentation provided with the Berkeley
data-set. Comparison between these edge images must take into account that
the human edge delineation is an idealization of the actual image, drawing
regions whose identi�cation involve semantic processing of the image. Nev-
ertheless, our approach captures most of the salient image partitions. Small
detail edges appear in regions with randomized textures such as the tree,
forest or rocky soil. Notice that in the chromatic images of the third row
this over-segmentation is less apparent, suggesting that post-processing the
chromatic segmentation image those textures could be removed if desired.
Smooth regions, like the river in the left-most image or the wave in the surf
image are identi�ed quite closely to the hand made edge delineations, mini-
mizing spurious detection due to highlights. Finally, last row shows the result
of a standard implementation of the Canny edge detection, as found in the
Matlab image processing toolbox (threshold 0.05, sigma 0.2). The Canny
edge detection is de�ned for grayscale images, therefore the edge detection
needs a previous transformation of the image from RGB to grayscale.

Fig. 6.4 shows the results of the segmentation using the same parameters
of the alpha function (a, b, c, δ) for all images, corresponding to a neutral
setting so that the alpha function is rather symmetric. However, for some
image these parameters may need further tuning to obtain a perceptually
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Figure 6.4: Segmentation of Berkeley data-set images.
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Figure 6.5: Segmentation results obtained with interactive evolutionary op-
timized of the alpha function parameters.

correct segmentation. We do not have a direct quantitative measure of the
segmentation quality, neither we have an expression relating the change of
parameters, but we it is easy to obtain the desired segmentation tackling
with the parameters. Therefore, we have embedded our segmentation in an
interactive evolutionary algorithm [101], which provides good quality seg-
mentations in a few iterations. The underlying evolutionary strategy is a
conventional (λ+ µ)-ES [102] where each individual corresponds to a pa-
rameter setting, the �tness value of each individual is provided by the user
by �lling a Likert scale associated to each image obtained after segmentation
with the corresponding parameter value settings.

Fig.6.5 shows the experimental results of this approach on the images of
the left columns of Fig. 6.4. In the case of the �rst image the values found
are: a = 0.1, b = 0.2, c = 0.5, δ = 0.025. Notice the improvement in the
segmentation of the river re�ection of the hut in the background. In the case
of the second image, values found are: a = 0.1, b = 0.3, c = 0.8, δ = 0.015.
Notice the improvement of the segmentation of the tulips stems, which were
confused in Fig. 6.4.
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6.2.2 Results on NAO's camera images

The images obtained from the Nao robot's camera are characterized by strong
illumination e�ects and high noise ratios due to the poor camera quality
and robot motion. In Fig. 6.6 we show the segmentation results for some
original images. The left column shows the original images. The second
column shows the color region segmentations, and the third column shows
the edges between identi�ed regions. Fourth column shows the result of a
standard implementation of the Canny edge detection (parameter settings
are threshold 0.05, sigma 0.15). Comparing them with the third column
we can see than our method presents better results, regarding to the edge
detection and avoiding the specular highlights. The most salient feature
of the segmentation results obtained on these images is that most of the
highlights on the �oor are not identi�ed as distinct image regions and the
object shadows are ignored as well. All the segmented regions correspond
to actual objects in the scene. For robotic applications, this robustness may
be critical for task accomplishment. Although it was not the main goal of
our work at this point, to obtain real time performance (of the order of 50
milliseconds per image) we downsampled the images to 80× 60 pixels. This
experiment has been carried out in a laptop with a processor Intel Core i3
M330 with 4GB of memory. The code has been written in C#.

In most cases the proposed segmentation shows a good behavior despite
of some incorrectly detected regions. That's the case of the shadow of the
red ball on the second row. The balls are hollow and translucent, thus when
the ball is strongly illuminated the light is �ltered across it, and the resulting
shadow is heavily tinted by the ball color. In the case of the red ball, the
shadow's colour is quite di�erent from the surrounding �oor color.

6.3 Watershed Transformation

The Watershed Transformation is a powerful mathematical morphology tech-
nique for image segmentation. It was introduced in image analysis by Beucher
and Lantuejoul [43], and many algorithm variations and applications have
been proposed subsequently [103, 41, 61].

The Watershed Transformation regards an image as a topographic relief
map, where the gray level value of a pixel is interpreted as its elevation. The
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Figure 6.6: Segmentation of the images captured by the Nao Robot camera,
performed using the hybrid distance of Eq. (6.2). The �rst (leftmost) column
shows the original images, the second column shows the regions detected,
the third column shows the boundaries between regions, and the last column
shows the edges computed by the Canny edge detection algorithm.
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watershed lines divide the image into catchment basins, so that each basin
is associated with one local minimum in the topographic relief map. For
image segmentation, the Watershed Transformation works on the image's
spatial gradient magnitude. The crest lines in the gradient magnitude image
correspond to the edges of image regions.

The baseline Watershed Transformation computation algorithm is as fol-
lows. The local minimum gradient pixel sites are selected as the sources of
their respective catchment basins. A �ooding process �lls each catchment
basin from its respective source. When a catchment basin is full, the contour
points which are in touch with a neighbor catchment basin are identi�ed as
the watershed points. The process is �nished when all the image gradient
domain is covered. The closed lines de�ned by the watershed points give
us the Watershed Transformation, and, implicitly, the image domain parti-
tion into regions. Usually, this partition is very �ne, therefore a subsequent
step of region merging is needed to obtain partitions closer to the natural
segmentation of the image. Region merging needs the speci�cation of the
conditions for merging two neighboring catchment basins into a single re-
gion. In other words, the region merging criterion de�nes which watershed
lines are removed. Watershed regions are image regions with homogeneous
properties. The aforegoing de�ned hybrid chromatic gradient ensures that
its basins correspond to homogeneous chromatic regions.

6.3.1 General Watershed Transformation

The general algorithm of the watershed method follows a �ooding process
which performs a region growing based on the ordered examination of the
level sets of the gradient image. In fact, an ordered succession of thresholds
are applied to produce the progression of the �ooding. The image is examined
iteratively n times; at each iteration step the threshold is raised and pixels
of the gradient image below the new threshold are examined to be labeled
with a corresponding region. Initially each region will contain the source of
its catchment basin when the �ooding level reaches it. Each �ooded region is
also characterized by a chromaticity value, corresponding to the source pixel
chromaticity. This chromaticity value is used to perform region merging
simultaneously with the �ooding process. A pixel whose neighboring pixels
belong to di�erent regions is a watershed pixel. When a watershed pixel
is detected, the adjacent regions may be merged into one if the chromatic
distance between the region chromatic values is below a chromatic threshold.
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The merged region chromatic value is the average of that of the merged
regions. The �nal labeling of the image regions is performed taking into
account the equivalences established by the merging process. Watershed
pixels whose adjacent regions do not merge into one are labeled as region
boundary pixels and retain their chromaticity.

The Algorithm 6.3 gives the details of this general algorithm. In this
algorithm, L (x) denotes the region label of pixel x, L8 (x) denotes the set
of labels of the 8 neighbors of pixel x, which can be expressed as L8 (x) =⋃
x′∈N8(x) L (x′), where N8 (x) the 8-th neighborhood of pixel x. The al-

gorithm can be applied to any color image Ω (x) and gradient magnitude
image Φ (x). The algorithm needs the speci�cation of a chromatic distance
∆ (Ω (x) ,Ω (y)) that gives a measure of the similarity between pixel colors
Ω (x) and Ω (y). To label the regions we keep a counter R, and we build a
map ΨR assigning to each region label a chromatic value. While the �ooding
process performs region growing, the region chromatic value is updated to
the average chromaticity of the pixels in the region. Each region R has a
corresponding chromatic value ΨR which can be used for visualization.

6.4 A Robust Chromatic Watershed Transfor-

mation

The representation of the RGB color space points in spherical coordinates
allows to retain the chromatic components of image pixel colors, discarding
easily the intensity component. This representation allows the de�nition of
a chromatic distance and a hybrid gradient with good properties of percep-
tual color constancy. In this section we present a watershed based image
segmentation method using using this hybrid gradient. Over-segmentation is
solved by applying a region merging strategy based on the chromatic distance
de�ned on the spherical coordinate representation. We show the robustness
and performance of the approach on well known test images and the Berkeley
benchmarking image database.

Color images have additional information over grayscale images that may
allow the development of robust segmentation processes. There have been
works using alternative color spaces with better separation of the chromatic
components like HSI, HSL, HSV, Lab [104, 57] to obtain perceptually correct
image segmentation. However, chromaticity's illumination source can blur
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Algorithm 6.3 General algorithm of watershed and region merging for color
image segmentation.

Set number of iterations n, the chromatic distance threshold δ, initialize the
pixel labels ∀x;L (x) = Ø, the region label counter R = 0,
Ω (x) is the color image, Φ (x) is the gradient magnitude image.

1. Calculate Φmin = min
x
{Φ (x)} and Φmax = max

x
{Φ (x)}. Calculate the

step at each interaction s = (Φmax − Φmin) /n
Initialize t = Φmin;

2. Iterate n times, setting

(a) Calculate threshold t = t+ s.

(b) Consider X ′ (t) = {x′ |Φ (x′) < t}, for each x ∈ X ′ (t) perform:

i. If L (x) = Ø the pixel is unprocessed, then one of the following
cases apply

A. If L8 (x) = Ø
- Assign new label R← R + 1; L (x) = R.
- Assign the region chromatic value ΨR = Ψ (Ω (x)).

B. If |L8 (x)| = 1
- L (x) = L8 (x)
- Update ΨL(x) using Ψ (Ω (x)).

C. If |L8 (x)| > 1 there are at least two adjacent regions, x is
a gradient watershed pixel. Consider all pairs of adjacent
regions of labels r1 and r2

- If 4 (Ψr1 ,Ψr2) ≤ δ then we can merge both regions

into one of label r∗. Compute Ψr∗ =
(
|r1|Ψr1+|r2|Ψr2

|r1|+|r2|

)
. We

keep record of the detected equivalence. Update Ψr∗ using
Ψ (Ω (x)). L (x) = r∗.
- If4 (Ψr1 ,Ψr2) > δ the pixel x is a region boundary pixel
with a special label L (x) = b.

3. From the recorded label equivalences compute the �nal region labels,
and assign de�nitive labels.

4. Each region R has a corresponding chromatic value ΨR which can be
used for visualization
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and distort color patterns. Image segmentation methods based on spatial
gradients need a correct de�nition of the spatial color gradient and unam-
biguous contour de�nition. In fact, formulation of watershed segmentation
methods in color images is still an open research issue. A straightforward but
inexact approach is the independent application of the watershed segmenta-
tion on each image channel [103]. This approach loses chromatic information,
and has di�culties merging the subsequent independent segmentations into
one.

In this section we will use the RGB spherical coordinates representation
to archive color constancy properties of our image segmentation approach
[99, 96, 89]. We de�ne a chromatic distance on this representation. The ro-
bustness and color constancy of the approach is grounded in the dichromatic
re�ection model (DRM) [37]. We propose a chromatic gradient operator suit-
able for the de�nition of a Watershed Transformation on color images and a
robust region merging for meaningful color image segmentation. The baseline
chromatic gradient operator [99, 89] su�ers from noise in the dark areas of
the image. We propose in this chapter a hybrid gradient operator overcoming
this problem and we use it to build a watershed transformation on color im-
ages. To achieve a natural segmentation, we perform region merging on the
basis of our proposed chromatic distance over the chromatic characterization
of the watershed regions. We give a general algorithm that combines water-
shed �ooding with region merging in a single process. Finally, we specify our
proposal as an instance of the aforementioned general algorithm.

6.4.1 Gradient operators

Here, we recall the chromatic gradient de�nition presented on the previous
chapter. The row pseudo-convolution is de�ned as

CGR (P (i, j)) =
1∑

r=−1

dC (P (i− r, j + 1) , P (i− r, j − 1)) ,

and the column pseudo-convolution is de�ned as

CGC (P (i, j)) =
1∑

c=−1

dC (P (i+ 1, j − c) , P (i− 1, j − c)) ,

where dC is the chromatic distance of Eq. (6.3). So, the color distance
between pixels substitutes the intensity subtraction of the Prewitt linear
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operator. The color gradient image is computed as:

CG(x) = CGR (x) + CGC (x) (6.5)

The intensity gradient de�nition is as follows: The row pseudo-convolution
is de�ned as

GR (J (i, j)) =
1∑

r=−1

‖J (i− r, j + 1)− J (i− r, j − 1) ‖,

and the column pseudo-convolution is de�ned as

GC (J (i, j)) =
1∑

c=−1

‖J (i+ 1, j − c)− J (i− 1, j − c) ‖,

where J is the intensity image, then the intensity gradient image is
computed as:

G(x) = GR (x) +GC (x) (6.6)

6.4.2 Hybrid gradient

Empirical experiments show that the chromatic gradient of Eq. (6.5) is very
sensitive to image noise. The angular distance of Eq. (6.3) is more sensitive
to noise for pixel colors lying close to the origin in RGB space. This is due
to the fact that the angular distance between two points at a given euclidean
distance grows as the points are closer to the origin. Small perturbations as
measured by the euclidean distance are mapped into big angular di�erences.
The background noise which has little e�ect in well illuminated regions is
ampli�ed in the dark regions.

Inspired in human vision system, we propose a hybrid gradient which
is an intensity gradient when the illumination is poor, and a chromaticity
gradient in better illuminated image regions. For intensity values below a
threshold a it is an intensity gradient, for values above another threshold b it
is a chromatic gradient, and for values between both it is a mixture of the two
kinds of gradients whose mixing coe�cient is sinusoidal function of the image
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Figure 6.7: E�ect of distance to the origin in the angular distance for pairs
points at the same euclidean distance.

intensity. This idea is expressed mathematically as a convex combination of
the two gradient operators:

HG(x) = β (x)G (x) + β (x)CG (x) (6.7)

where x is the pixel location, G(x) is the intensity gradient magnitude of
Eq.6.6, CG(x) is the chromatic gradient of Eq.6.5 and β(x) = 1−β(x), β(x)
is normalized to the range [0, 1].

β(x) =


1

1
2

+
cos(x−a

b−a
π)

2

0

I(x) < a

a ≤ I(x) < b

b ≤ I(x)

, (6.8)

where I(x) is the pixel intensity.
Note that by di�erence with the α mixing function presented in the pre-

vious work, this β function does not have a lower bound c > 0, therefore the
hybrid gradient is either a chromatic gradient or an intensity gradient ex-
cept in the range [a, b]. Fig.6.8 shows the activation of the intensity gradient
depending of the intensity.

Fig.6.9 shows the response of di�erent gradient operators on the same
test image. Fig. 6.9(a) presents the original image. Fig. 6.9(b) contains the
response of the intensity gradient, it shows false border detection in some
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Figure 6.8: Hybrid gradient convex combination factor as a function of the
image intensity.

(a) (b) (c) (d)

Figure 6.9: Response of di�erent gradient operators. (a) original image (b)
intensity gradient, (c) chromatic gradient, (d) hybrid gradient.

di�use regions, i.e. the yellow ball, green thorax. It also shows false edge
detection in bright spots. Fig.6.9(c) shows the response of the chromatic
gradient operator. It does not give false edge detection inside di�use regions.
It does not give false edge detection in bright spot areas. However, it is
very sensitive to noise in the dark regions, showing false edge detections due
to small random variations. Fig.6.9(d) presents the response of the hybrid
gradient which has the good detection properties of the chromatic gradient
operator and it is not sensitive to noise in the dark image regions.

6.4.3 The proposed approach

Our color image segmentation process proposal can be precisely speci�ed by
Algorithm 6.3 applied on the zenithal and azimuthal angles of the spherical
color representation of the image, computing the gradient magnitude image
by the hybrid gradient HG (x) of Eq.(6.7), using the chromatic distance of
Eq.(6.5). The algorithm does not compute any specular free image to remove
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highlights.

6.5 Experimental results

The watershed-merge Algorithm 6.3 is parametrized by:

• The number of iterations n, which determines the resolution of the
�ooding process going over the gradient magnitude image level sets.

• The gradient operator used to compute the gradient magnitude image,
which can be either the intensity gradient G (x) of Eq. 6.6 or the hybrid
gradient HG (x) of Eq.6.7.

• The color representation of the image. Assuming the RGB space, it
can be either the Cartesian representation I (x) or the zenithal and
azimuthal angles of the Spherical representation P (x). This selection
determines the selection of the chromatic distance.

• The Chromatic distance, which can be either the Euclidean distance in
the RGB Cartesian space, or the chromatic distance of Eq.6.3.

• The Chromatic distance threshold δ, which determines the chromatic
resolution of the region merging process.

This section reports results of two experiments, the �rst one compares our
proposal of section 6.4.3 with other instances of the algorithm, whereas in
the second one we will to provide a more extensive qualitative validation our
method using the well know Berkeley benchmark image collection[100] which
provides hand-draw artistic shape boundaries.

6.5.1 First experiment

In this section we will use a well known benchmark image [91] to compare
our proposed segmentation process with variations of Algorithm 6.3 obtained
with several parameter settings. The dark regions are critical to the percep-
tually correct gradient computation, while the bright spots may induce false
edge detection.

The operational parameter setting are n = 100 and δ = 0.1. In Fig.6.10
we show the segmentation results on this image for all combinations of the
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Original image

Gradient Watershed Segmentation

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.10: Image segmentation results with di�erent parameterizations of
Algorithm 6.3.



6.5. EXPERIMENTAL RESULTS 103

remaining Algorithm 6.3 parameter settings. The column of images la-
beled �Gradient� has the gradient magnitude images. From top to bottom,
Fig.6.10(a), 6.10(e), 6.10(i) show, respectively the result of the intensity gra-
dient, the chromatic gradient of equation Eq.(6.5), and the hybrid gradient
of Eq.(6.7). The column of images labeled �Watershed� correspond to the
image region partition performing only to the �ooding process, without any
region merging, on the corresponding gradient magnitude images. It can be
appreciated that the hybrid gradient watershed removes most of the dark mi-
croregions originated by the chromatic gradient. There are, however, some
regions with di�erent colors in this rough dark region which are not fully
identi�ed by the intensity gradient watershed of Fig.6.10 (b) and are bet-
ter detected by the hybrid gradient watershed in Fig.6.10(j). The two im-
age columns with the heading �segmentation� show the results of the region
merging from the corresponding gradient watershed in the same row. The
left column shows the results of using of the Euclidean distance on the RGB
Cartesian coordinates. The right segmentation column show the results of
the using the chromatic distance of Eq. (6.3). If we want to ascertain the ef-
fect of the color representation and the chromatic distance we must compare
the rightmost columns in Fig.6.10. We �nd that the general e�ect is that the
chromatic distance on polar coordinates is better identifying the subtle color
regions in the darkest areas of the image, it detects better the shape of the
objects, has better color constancy properties, and it is much less sensitive to
bright spots or shining areas. Comparing the gradient operators attending
to the �nal segmentation we observe that the hybrid gradient is better than
the others in removing noise from the dark regions and maintain the object
integrity. Overall the best result is obtained with our proposal as shown in
Fig.6.10(l), where we can easily identify the subtle regions in the upper dark
area, the shadow of the lowermost object, and we can clearly identify object
with the same color una�ected by shading and bright spots.

6.5.2 Validation on the Berkeley images

In the Fig.6.11 we can show the experimental results using the Berkeley
collection of images [100]. The �rst and fourth rows shows the original im-
ages, the second and �fth shows our respective outputs, whereas the third
and sixth rows shows the human segmentation reference. As we can see our
method gives always homogeneous regions, and the segmentation output is
close to the human segmentation. Some facts that we �nd comparing our
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segmentation with the hand-drawn segmentation:

• Large chromatically smooth regions are well segmented by our approach
despite variations in intensity, e.g. the face skin of the portrayed man,
the river, the road in the road race image.

• Some subtle chromaticity variations are detected and segmented, like
the re�ections in the water of the jungle river image.

• The algorithm does not use any spatial information to segment textured
objects. However it can cope with some textured spatial intensity vari-
ations of chromatically constant regions, outlining the corresponding
object, i.e. the clouds in the �ying plane image, the yellow skirt in the
jungle river image.

• The hand-draw contours obviate some regions of the image that the
artist may have found irrelevant, i.e. the clouds in the sky in some
images, the texture details of some bushes. Some of these regions can
not be segmented as a unit unless some spatial texture information
is used, like the bushes in the jungle river image, or the skyscraper
windows.

6.6 Conclusions

In this chapter we have presented two innovative image segmentation meth-
ods having in common to be grounded on DRM and their use of a spherical
coordinate representation of the RGB color space. The chromatic distance
used endows the approaches with good color constancy properties, avoiding
the e�ect of highlights and shadows, though they are specially sensitive to
noise in very dark image regions. To overcome this sensitivity, we have de-
�ned hybrid versions of the chromatic distance and gradients, mixing them
with the conventional grayscale di�erences and gradients following the inspi-
ration of the human vision system. Hybridization parameters can be tuned
to optimize segmentation for di�erent image conditions.
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Figure 6.11: Segmentation results on some of the Berkeley images. Second
and fourth rows show the results of our approach. Third and last row show
the hand-drawn shapes.
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Region Growing: It is a one-pass method which can achieve real time
performance for small images. It doesn't need an image preprocessing for
edge detection contrary to other approaches. It avoids spurious region detec-
tion due to highlights produced by illumination, detecting color edges with a
physical interpretation as boundaries of surfaces with di�erent re�ectances.
Regarding real-time performance, current experiments on the NAO robot
o�-loading the image segmentation to an auxiliary workstation give real-time
responses for small image frames (20 frame/second).

Watershed and Region Merging Segmentation: A robust hybrid chro-
matic spatial gradient is used to realize a robust chromatic watershed seg-
mentation. This gradient operator has good color edge detection in lightened
areas and does not su�er from the noise in the dark areas. The region merging
is based on the de�ned chromatic distance. We compare our approach with
other algorithms obtained with di�erent setting of the general algorithm,
obtaining the best qualitative segmentation. The results on the Berkeley
database images �nd excellent approximations to the provided hand-drawn
segmentations, without using spatial or semantic information.



Chapter 7

Hyperspectral Images

Colorimetric ideas are not applied on hyperspectral images. Images never
are normalized with respect to the illumination, therefore an uniform illu-
mination is assumed. Re�ection is di�erent depending of the season of the
year, the satellite position coordinates and point of view. Moreover, earth
is not a uniform surface, there are highlights and shadows due to occlusions
and strong variations of re�ectance properties. This chapter introduces the
chromatic representations and tools discussed in previous chapters for RGB
images to hyperspectral image processing, which help to solve the problem of
highlights and shadows in segmentation processes. We formulate the Dichro-
matic Re�ectance Model (DRM) for hyperspectral images in Euclidean co-
ordinates and Hyperspherical coordinates.

This chapter is outlined as follows: Section 7.1 introduces hyperspectral
images and their di�erences with RGB images. Section 7.2 reviews applica-
tions and state of the art. Section 7.3 introduces the Hyperspherical coordi-
nates for hyperspectral image interpretation given a chromatic description.
Section 7.3.2 formulates the DRM for hyperspectral images.

7.1 Hyperspectral Images

An image is a projection of an observed scene containing the e�ect of light
re�ection from the objects in the scene. Standard RGB images are specialized
for human vision, catching only the visible spectrum (from 400nm to 780nm),
a tiny fraction of light spectrum. Current hyperspectral cameras have a
sensitivity ranging from 100nm to 2400nm.

107
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Standard RGB sensors (such as conventional digital photographic cam-
eras) are designed according to the human retinal behavior by using the Bayer
�lter. It means, that the Red, Green and Blue receptors of digital cameras
are spatially distributed according to the human sensitivity for these colors.
Red, Green and Blue sensitivity functions correspond to overlapping ranges
of the visible spectrum. Therefore, a color doesn't corresponds exactly with
a wavelength of the light spectrum, a color corresponds with a set of ranges
within visible spectrum, besides these sets could be disjoint.

Hyperspectral cameras overcome the visual human perception resolution
and range of wavelengths. The hyperspectral camera detection range is di-
vided in n disjoint and contiguous intervals whose union give the full spectral
range. The energy detected in the n-th section is saved into the n-th image
band. Then, a band of a hyperspectral image has the image energy for the
corresponding light wavelet interval, and the union of all bands of a pixel
is gives the spectral pixel signature. Hyperspectral cameras provide images
over hundreds of bands. Aforementioned ideas are drawn in Fig.7.1, where
we can see the spectral range di�erence between a RGB image and a hy-
perspectral image. Note that in RGB images each channel correspond to
overlapping �lters whereas in hyperspectral images each band correspond to
a little �lter.

There are many and di�erent hyperspectral cameras, e.g. for little labs,
the company Surface Optics sells hyperspectral cameras like the SOC 710
capturing images in the wavelength range from 333nm to 900nm into 128
bands. Our research group has bought one such cameras, and some experi-
mental images were obtained with it.

7.2 State of the Art

Hyperspectral images are used in a lot of topics. First applications were
done in the �eld of mineralogy and in works on the restoration of historical
manuscripts. Nowadays, their foremost application is in remote sensing for
earth observation. The increased number of sensors, both airborne and on
board of satellites, are make burgeoning the �eld of hyperspectral image pro-
cessing. Here we will comment on some of the recent trends for computational
methods and applications.
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Figure 7.1: Schema of hyperspectral image

7.2.1 Computational methods

Classi�cation and Machine Learning Hyperspectral images have more
re�ectance information than RGB images. Classi�cation methods have in
this images a perfect testing ground. In fact, all classi�cation algorithms
have been applied to build thematic maps on them in one moment or other.
For instance, Arti�cial Neural Networks are applied for robust classi�cation
of the nutrition state in crop plants in [105]. A comparison of support vector
machines, import vector machines and relevance vector machines is reported
in [106] over a HyMap dataset. Support vector machines are applied too
successfully for tree classi�cation in the Southern Alps on high geometrical
resolution airborne hyperspectral data [107].

Image Processing and Compression Image processing of hyperspectral
imagery poses speci�c problems due to the high dimensionality of the data.
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For instance, edge detection using tensor algebra is proposed in [108] in order
to avoid false edges. Graph theory is applied for image clustering[109].

One of the unavoidable features of these images is their large size, there-
fore an important topic is the high performance computing for its processing
and compression with minimal loss. In this way there are some relevant
works too. For instance, unsupervised clustering is applied for hyperspectral
image compression in [110]. A fast deconvolution of large �uorescence hy-
perspectral microscopic images is proposed in [111]. A novel architecture for
real-time matching is proposed in [112] where the architectural design and
hardware implementation of two hyperspectral matching algorithms (spec-
tral angle and cross correlation) onto a Virtex-5 FPGA device with a speed
up 600 faster than conventional software implementation.

Physical Modeling and Calibration Brook [113] proposes a full-chain
process to extracting re�ectance information from hyperspectral (HRS) data
which is valid for all sensor qualities. This method is based on a mission-by-
mission approach, followed by a unique vicarious calibration stage. Qian[114]
describes a joint development of a compact and low distortion imaging spec-
trometer system for future Mars sample return mission and unmanned aerial
vehicles under. A Dyson design was selected as the imaging spectrometer
due to its compactness, high optical output and low distortion. Zang [115]
presents a �eld imaging spectrometer system based on a cooling area CCD
which shows huge potential applications in geology, food, agriculture, forestry
and other respective �eld. Briottet[116] proposes a new hyperspectral sensor
(HYPXIM).

7.2.2 Applications

There are a lot of applications of hyperspectral imagery. It is out of the scope
of this thesis to review all of them, however we pick the foremost areas.

Mineralogy remote sensing Airborne hyperspectral data have been avail-
able to mineralogy researchers since the early 1980s and their use for geologic
applications is well documented. Recently, a method for the automatic su-
pervised detection of multiple mineral targets in hyperspectral mineral data
is presented in [117]. This method method makes use of wavelet analysis,
wavelet-based denoising using thresholding of wavelet detail coe�cients, and
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feature reduction based on sequential forward selection, which utilizes an ex-
tension of receiver operating characteristic curves to fuzzy set membership in
order to measure discriminating capability. Hyperspectral images have also
a role in astrophysics [118, 119, 120, 121].

Forestry and oceans: In [122] helicopter on-board imaging spectroscopy
is used for mapping species variation. Erins [107] has done a classi�cation
of individual trees to 5 conifer and deciduous species in mixed Baltic forest,
based on processing of airborne hyperspectral and LiDAR data. Torrecilla[123]
have done a sensitivity analysis of a follow up of phytoplankton biodiversity.

Industry and environment: There are applications for quality control,
where in [124] is applied to polyole�ns recycling. There are applications for
petrol inspection tasks, like in[125] where authors try to separate bitumen
from oil sand, and for chemical identi�cation of pharmaceutical tablets [126].

Defense and security: There are also applications for surveillance pur-
poses. The hyperspectral research has an increasing role for military aims
(like endmember detection for hyperspectral unmixing). There are works
about real-time hyperspectral data compression system for military goals[127].
Algorithms for autonomous Hyperspectral change detection [128]. And there
are many works related with airborne strategies for surveillance in con-
junction with other technologies like wireless, radar, SAR, CBRNE, and
more [129]. Verancini[130] develops a spectral-based algorithm for auto-
matic global anomaly detection consisting in a two stage process. First, the
background Probability Density Function (PDF) is approximated through
a data-adaptive kernel density estimator. Then, anomalies are detected as
those pixels that deviate from such a background model on the basis of the
Likelihood Ratio Test (LRT) decision rule. Bajorski[131] proposes a new type
of a segmented matched �lter, called a directional segmented matched �lter
(DSMF), based on geometric considerations between the target, background,
and a given pixel.

Agricultural and ecological systems: Hyperspectral data also can pro-
vide signi�cant improvements in spectral information content for detecting
of early-stage vegetation stress, identifying small di�erences in percent green
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vegetation cover, discriminating land cover types, leaf pigment concentra-
tions, modeling quantitative biophysical and yield characteristics of agricul-
tural crops. Within remote sensing �eld, from the space are observed the
growing and shrinking of forest, the evolution of burned regions and are fol-
lowed up agricultural crops like soybean crops [132, 133, 134, 135, 136]. A
study of the estimation of canopy chlorophyll and nitrogen content is done
in [137]. Feret [138] has done a study of the performance of two supervised
classi�ers, linear and regularized discriminant analysis where these are com-
pared for canopy species discrimination in humid tropical forest. Finally, a
work for the estimation of fruit yield in citrus is done in [139].

7.3 Hyperspherical Coordinates and Chromatic-

ity

Here we present the Hyperspherical representation of a hyperspectral image,
extrapolating the idea of chromaticity to the hyperspectral domain. An
n-sphere is a generalization of the surface of an ordinary sphere to an n-
dimensional space. n-Spheres are named Hyperspheres when dimensionality
is bigger then 3. We are interested in the hyperspherical representation
of an hyperdimensional point and its implications for image segmentation
under a chromatic point of view. In the RGB three-dimensional color space,
Fig. 7.2 shows the spherical representation of a color point. A color c with
(r, g, b) coordinate values in RGB color space can be represented by spherical
coordinates (θ, φ, l), where θ and φ are the angular parameters and l the
vector magnitude.

In the three-dimensional RGB color space, there is a direct correspon-
dence between angular parameters (θ, φ) and chromaticity. The angular
parameters de�ne a line which is the natural characterization of the pixel
chromaticity. In other words, all points on this line have the same chro-
maticity. The spherical expression of a point in Euclidean space allows to
separate intensity and chromaticity, where l is the intensity, and the angular
parameters provide a representation/codi�cation of the pixel's chromaticity.
These ideas can be extrapolated to n-dimensional spaces.
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Figure 7.2: A vectorial representation of color c in the RGB space

7.3.1 Hyperspherical coordinates

Let us denote p a hyperspectral pixel color in n dimensional Euclidean space.
In Cartesian coordinates it is represented by p = {v1, v2, v3, ..., vn} where vi is
the coordinate value of the i-th dimension. This pixel can be represented in
Hyperspherical coordinates p = {l, φ1, φ2, φ3, .., φn−1}, where l is the vector
magnitude that gives the radial distance, and {φ1, φ2, φ3, .., φn−1} are the
angular parameters. This coordinate transformation is performed uniquely
by the following expression

l =
√
v2

1 + v2
2 + v2

3 + ...+ v2
n

φ1 = cot−1 v1√
v22+v23+...+v2n

φ2 = cot−1 v2√
v23+v24+...+v2n

...
φn−2 = cot−1 vn−2√

v2n−1+v2n

φn−1 = 2 cot−1

√
v2n−1+v2n−vn−1

vn

,

for all cases except the following exceptions: if vi 6= 0 for some i but all of
vi+1, . . . , vn are zero then φi = 0 when vi > 0. When all vi, . . . , vn are zero
then φi is unde�ned, usually a zero value is assigned.

A more compact notation for the hiperspherical coordinates is p = {l, φ̄},
where φ̄ is the vector of size n− 1 containing the angular parameters. Given
a hyperspectral image I (x) = {(v1, v2, v3, ..., vn)x ;x ∈ N2} , where x denotes
the spatial pixel coordinates in the image domain, we denote the correspond-
ing hyperspherical representation as P (x) =

{
(l, φ̄)x;x ∈ N2

}
, from which
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(a) (b) (c)

Figure 7.3: Synthetic image (a) the image intensity {lx} , (b) shows the
Gaussian shaped signature pro�le of all the pixels, and (c) shows the angle
components of the hyperspherical coordinates shared by the spectral signa-
tures of all pixels in the image, corresponding to the common chromaticity
of the pixels.

we use φ̄x as the chromaticity representation of the pixel's and lx as its
(grayscale) intensity.

To clarify the meaning of the chromaticity in the hyperspectral image
domain, we give an illustrative example. We have generated a synthetic
hyperspectral image of 5 × 5 pixels and 200 spectral bands. Each pixel
spectral signature has the same Gaussian shaped pro�le but with di�erent
peak height, corresponding to di�erent image intensity as can be appreciated
in Fig. 7.3(a) showing the image intensity {lx}. Fig. 7.3(b) shows the
spectral signature of all pixels in the Cartesian coordinate representation,
Fig. 7.3(c) shows the chromatic spectral signature

{
φ̄x
}
which is the same

plot for all pixels. The chromaticity φ̄ thus de�nes a line in the n-dimensional
space of hyperspectral pixel colors of points that only vary their luminosity
l.

According to the aforegoing coordinate transformation, we can accom-
plish the following hyperspectral separation. Given a hyperspectral image
I (x) in the traditional Cartesian coordinate representation we can com-
pute the equivalent hyperspherical representation P (x) =

{
(l, φ̄)x;x ∈ N2

}
.

Then, we can construct the separate intensity image L (x) = {(l)x;x ∈ N2},
and the chromaticity image C (x) =

{
(φ̄)x;x ∈ N2

}
. In the synthetic exam-

ple shown at Fig. 7.3, I (x) pixels are plotted in Fig. 7.3 (b), the spectral
chromaticity C (x) in Fig. 7.3(c) and the image intensity L (x) in Fig. 7.3(a).
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This separation allows us the independent processing of hyperspectral color
and intensity information, so that segmentation algorithms showing color
constancy can be de�ned in the hyperspectral domain. This decomposition
can be also embedded in models of re�ectance like the Dichromatic Re�ec-
tion Model [37] of the Bidirectional Re�ection Distribution Function where
they can be decomposed as di�use and specular components.

7.3.2 DRM for n-Dimensional images

DRM was presented for standard RGB images, it explains the perceived color
intensity I ∈ R3 of each pixel in the image as the addition of two components,
one di�use component D ∈ R3and a specular component S ∈ R3. We will
adapt it for multidimensional spaces. That is, I ∈ Rn , D ∈ Rn and S ∈ Rn.
For the sake of clearness, we will refer them as In, Dn, Sn expressing the
n-dimensionality. The mathematical expression of the model, when we have
only one surface color in the scene, is as follows:

In(x) = md(x)Dn +ms(x)Sn, (7.1)

where md and ms are weighting values for the di�use and specular compo-
nents. Equivalently, Eq. (7.1) can be expressed it in Hyperspherical coordi-
nates as:

In(x) = (φ̄D, lD(x)) + (φ̄S, lS(x)),

where φ̄D is the di�use chromaticity, and

lD(x) =

√√√√ n∑
i=1

(md(x)Di)2,

and φ̄S is the specular chromaticity and

lS(x) =

√√√√ n∑
i=1

(ms(x)Si)2.

For a scene with several surface colors, the DRM equation must assume that
the di�use component may vary spatially, while the specular component is
constant across the image domain:

In(x) = md(x)Dn(x) +ms(x)Sn, (7.2)
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that in Hyperspherical coordinates is expressed as:

I(x) = (φ̄D(x), lD(x)) + (φ̄S, lS(x)),

where φ̄D(x) is the pixel di�use chromaticity, and

lD(x) =

√√√√ n∑
i=1

(md(x)Di(x))2,

and φ̄S the specular chromaticity, and

lS(x) =

√√√√ n∑
i=1

(ms(x)Si)2.

The chromaticity of the specular component φ̄S is space invariant, meaning
that the ISC is constant all over the scene.



Chapter 8

Hyperspectral Gradients

In this chapter proposes two gradients for hyperspectral images; �rst one
is a chromatic gradient whereas the second one is a hybrid gradient, com-
bining the chromatic gradient and another based Euclidean distance for the
improved edge detection in dark regions. These proposals are grounded on
DRM through Hyperspherical coordinates providing robustness against illu-
mination e�ects: highlights and shadows.

The structure of the chapter is as follows: Section 8.1 provides a short
review of the state of the art. Section 8.2 introduces the chromatic gradient
for hyperspectral images. Section 8.3 gives some experimental results of the
chromatic gradient. Section 8.4 describes the hyperspectral hybrid gradient.
Section 8.5 gives some results of the hybrid gradient. Section 8.6 gives the
chapter conclusions.

8.1 State of the Art

Edge detection in hyperspectral images is an intrinsically di�cult problem
because there is no appropriate de�nition of the gradient operator in mul-
tivariate functions. The straightforward approach of combining the inde-
pendent gradients computed on each band can be mislead by confusing and
contradicting detection. Some works have used this approach for watershed
segmentation [103]. The band gradients are combined into a vector valued
approach [140] performing clustering of the pixel hyperspectral signature
composed of the band gradient values instead of the original intensity values.
The result is a unsupervised classi�cation of pixels into edge and non-edge
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pixels.

Manifold Learning

A de�nition of the spectral edge is presented in [141] based on a data-driven
manifold learning. Authors construct the manifold coordinate system of the
hyperspectral imagery by using a local property preserved manifold learn-
ing method and then rewrite the image with the manifold coordinates of
each pixel, it is by using the LTSA algorithm. After that they apply the
canny edge detector induced by the Jacobian of the new manifold. Bakker
[142] applied the laplacian edge detector on hyperspectral images by using
three di�erent distances (Euclidean, angular and intensity di�erence) inside
the laplacian descriptor. Similar idea is applied by using cellular automate
(CA)[143]. In this work, a CA implements morphological operators and
other one implements Prewitt edge detector. Dimensionality reduction is
performed alternatively by PCA, Fisher's linear discriminant analysis (LDA),
and an unsupervised LDA approach that utilizes clustering.

Other works follow similar approaches, like the Spectral Similarity Mea-
sure for Edge Detection [144] performing �rst a dimensionality reduction by
PCA , afterward applies an edge detector de�ned as follow. It uses a gener-
alized Prewitt and Sobel mask which are implemented using the Euclidean
distance, Taxicab, Maximum distance, Spectral angle or Spectral informa-
tion divergence. These distances are de�ned for the spectral vector. Authors
implement the derivative of the laplacian too.

Re�ection model based

There are some works grounded on re�ection models, for example [145] per-
forms a self-correcting brightness gradients for urban areas using the BDRF
model. The method can justify the changes of re�ectance depending of the
point of view and the illumination source position. After that, authors apply
di�erent threshold mask over the input image correcting the brightness gra-
dient which is applied successfully in urban areas with di�erent features (veg-
etated surfaces, highways and buildings). For multi-spectral images, Robles
A. [146] proposes the use of DRM looking for photometric invariance. This
approach is interesting because refer to a colorimetric concept. The goal of
this work is to estimate the DRM parameter of the image, hence they are
able to separate the di�use and specular components. This work is applied
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Figure 8.1: Convolution kernels for the Prewitt edge detection operator.

for human face recognition. Neither of the aforementioned references may be
taken as grounded chromaticity or colorimetric approaches, except the timid
approximation of [146] referring to photometry and DRM in multispectral
images.

8.2 Chromatic Gradient Operators

The simplest convolution kernels for edge detectors are the Prewitt opera-
tors, illustrated in Fig. 8.1. We build our spatial chromatic gradient opera-
tors following their pattern. To take into account spectral information, the
straightforward approach is to apply the gradient operators to each spectral
band as an independent intensity image and to combine the results afterwards
∇I =

∑n
i=1∇Ii/n, where Ii denotes the i-th image spectral band.

Fig. 8.2 shows the results of this approach using Prewitt gradient opera-
tors on two hyperspectral images (The �rst one is a plastic blue ball in front
of a green background, the second one is a plastic orange ball in front of the
same green background. Both images captured under natural sun illumina-
tion). The �rst row shows one band of the images. Second row shows the
gradient magnitude. The third row shows some edges detected applying a
threshold to the gradient magnitude image. The intensity image component
has a strong in�uence on this gradient computation, therefore some highlights
and shadows are identi�ed as image regions and their boundaries detected
as image edges.

In order to de�ne a chromatic gradient operator, we may assume a kind
of non-linear convolution where the convolution mask has the same structure
as the Prewitt operators in Fig.8.1, but the underlying chromatic distance is
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Figure 8.2: Results on two hyperspectral images of image gradient computed
applying the Prewitt gradient operators to each band independently. Left, a
single band of the original image. Middle, gradient magnitude. Right, edge
detection thresholding the gradient magnitude.

based only on the chromaticity as follows: For two pixels p and q we compute
the Manhattan distance on the chromatic representation of the pixels:

∠(p, q) =
n−1∑
i=1

∣∣φ̄p,i − φ̄q,i∣∣ . (8.1)

Note that the ∠(Cp,Cq) distance is always positive. Note also that the
process is non linear, so we can not express it by linear convolution kernels.
The row pseudo-convolution operator is de�ned as

CGR (C (i, j)) =
1∑

r=−1

∠ (C (i− r, j + 1) ,C (i− r, j − 1)) ,

and the column pseudo-convolution operator is de�ned as

CGC (C (i, j)) =
1∑

c=−1

∠ (C (i+ 1, j − c) ,C (i− 1, j − c)) ,

so that the color distance between pixels substitutes the intensity subtrac-
tion of the Prewitt linear operator. The hyperspectral chromatic gradient
magnitude image is computed as:

CG(x) = CGR (x) + CGC (x) (8.2)
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8.3 Experimental results

Experiments are performed on images taken by SOC 710 hyperspectral cam-
era. Spectral resolution is 128 bands in the range 300mn to 1000nm. These
images have been presented in the �rst row of Fig. 8.2. On these images we
can analyze the illumination e�ects over the objects. On these images there
are only two chromatically di�erent surfaces, a uniform green background
and a monochromatic object, in one case a dark blue ball with a sweet sur-
face; in the other one is plastic model of an orange. In the second case, the
object has a wrinkled surface.

We have applied the chromatic gradient of Eq. (8.2) on the images.
The results are shown in Fig. 8.3. First row shows the original intensity
images. The second row shows the chromatic gradient magnitude image. As
we can appreciate, true surface edges are better detected than in Fig. 8.2,
even on shadowy regions of the image. The highlights have lower response
than in Fig. 8.2, so that no spurious edges are detected around them. The
chromatic gradient has a high response on the shadows, but this response is
uniformly distributed on the whole shadow and it is not bigger than the true
borders. This e�ect is consequence of the noise distribution on the image.
The chromatic distance is more sensitive on region with poor illumination or
on regions poor re�ectance like the blue ball. Comparing these results with
the traditional gradients like the shown on Fig.8.2, the chromatic gradient is
focused on the chromaticity and has a bigger response on chromatic edges.
Finally, last row shows the edge detection after applying a threshold on the
gradient magnitude image. The threshold is computed by the Otsu minimal
variance approach. In these results, we have found the correct object edges
avoiding the false detection of borders of highlights and shadows despite the
high dimensional nature of these hyperspectral images.

8.4 A Hybrid Hyperspectral Gradient

Analogously to the chromatic gradient, we can de�ne a distance for the orig-
inal image in the Euclidean coordinate representation of the spectra of two
pixels as:
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Figure 8.3: Pseudo Prewitt gradient on the chromatic image

ψ(p, q) =
n∑
i=1

‖Ip,i − Iq,i‖ (8.3)

where n is the vector dimensionality, the number of bands in the hyperspec-
tral image.

The row pseudo-convolution is de�ned as:

IGR (I (i, j)) =
1∑

r=−1

ψ (I (i− r, j + 1) , I (i− r, j − 1)) ,

and the column pseudo-convolution is de�ned as

IGC (I (i, j)) =
1∑

c=−1

ψ (I (i+ 1, j − c) , I (i− 1, j − c)) ,

so that the distance between pixel spectra substitutes the intensity subtrac-
tion of the Prewitt linear operator. The hyperspectral gradient image is
computed as:

IG(x) = IGR (x) + IGC (x) (8.4)

Fig. 8.4 shows examples of the intensity gradient performance. As we
can see, it is very sensitive to intensity changes, but it can detect edges in
regions with poor illumination better than the chromatic gradient.

8.4.1 Hybrid gradient

Our goal is to develop a hybrid gradient with takes pro�t of the best prop-
erties of each one of the previous gradients. Inspired on the HVS, on the
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(a) (b) (c)

Figure 8.4: e-Gradient. (a) Original hyperspectral image, (b) intensity gra-
dient magnitude, (c) a binarization of the intensity gradient magnitude.

retina, there are two main kinds of cells; cones and rods. The rods are lumi-
nance detectors and the cones are chromatic detectors. Both need di�erent
energy levels for their activation. Rods need less energy than cones, for this
reason human vision becomes grayscale under poor illumination, and colors
are better detected with a good illumination.

We propose the mixing function α (x) of the chromatic and intensity com-
ponents of the hybrid gradient. For intensity values below a, the chromatic
component of the distance is inactive. For intensity values in the interval
[a, b] we smoothly change the contribution of the chromatic component of the
hybrid distance from zero to its maximum c ≤ 1 according to a sinusoidal
function. Finally, for intensity values above b its contribution is always c.
The three parameters a, b, c are in the range [0, 1]. The function α(x) speci-
fying the mixing of the chromatic and grayscale distances depending on the
image intensity is de�ned as follows:

α(x) =


0 x ≤ a
c
2

+ c
2

cos
(

(x−a)·π
b−a + π

)
a < x < b

c x ≥ b

(8.5)

By analogy with the human visual system, we propose the hybridization
scheme illustrated in Fig. 8.5.

1. Given a hyperspectral image I we can obtain the chromaticity image
C and the intensity image J.

2. Applying Eq.(8.4) on I we obtain the image gradient IG.

3. Applying the Eq.(8.2) on C we obtain the image gradient CG.
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Figure 8.5: Scheme of the hybrid gradient

4. Applying the Eq.(8.5) on J we obtain the A matrix which help to
compute the hybridization of the whole image as:

HG = A ∗ CG+ (1−A) ∗ IG (8.6)

8.5 Experimental Results of the Hybrid Gradi-

ent

The response of the proposed hybrid gradient can be adapted to di�erent
images or di�erent expectations of results by using the a, b, c parameters of
the α function. For the experiment on this section, we have used the same
parameters a = 0, b = 0.1 and c = 1. It means that we are going to perform
mainly a chromatic gradient and for regions poorly illuminated we use the
e-gradient, as we defend in this work. Nevertheless, changing the parameters
of α we can obtain di�erent gradients.

We present some experimental results over the images of Foster data
set[147]. Fig.8.6 shows the experimental results. First column contains the
original RGB images, second one contains the hybrid gradient output and
third row show a binarization based on Otsu thresholding. We can appreciate
on the �rst image, how the digital1 �ower is perfectly detected and di�er-
enced from the background, hence it looks homogeneity inside in despite of
the shadows of each bell. Worth some words the third image which can dif-
ferentiate the di�erent chromatic regions with independence of it intensity.
If we compare it with the output of the Fig.8.4, we can appreciate how the
hybrid gradient avoids the shortcoming of the previous gradients and takes

1digital is the name of this �ower
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pro�t of the best properties of each ones, and by the hybridization we have a
good result; invariance respect to the intensity changes, and edge detection
on dark regions. Last image shows a clear example as the shadow e�ects are
avoid by the hybrid gradient. The shadow on the frontage house has not
e�ect on the gradient, whereas edges of dark regions like the houses behind
are well detected.

8.6 Conclusions

The computation of gradients on hyperspectral images implies the combi-
nation of high dimensional information and is prone to spurious detections
due to noise and illumination e�ects, such as highlights and shadows. In
this chapter, the approach proposed in [96] for color images, is extended to
high-dimensional images, allowing the robust detection of object boundaries
despite strong illumination e�ects. We have tested the approach on indoors
captured hyperspectral images. Object boundaries are e�ectively found and
spurious edges are avoided in these images. Further work needs to be done
on the extensive validation of the approach on hyperspectral images with
known ground truth.

Second part of this chapter, presents a hybrid gradient for hyperspectral
images. It is versatile thanks to the α function which can adapt the hybrid
gradient performance to di�erent expectations. In addition, the e-gradient
can be used on n-dimensional images, and the Hyperspherical coordinates
can be applied too on n-dimensional images, therefore, the proposed Hybrid
gradient can be used on all images (independent of its amount of bands). Re-
sults on hyperspectral images show that the hybrid algorithm provides robust
edge detection avoiding false edges introduced by highlights and shadows.
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Figure 8.6: Hybrid gradient on hyperspectral images. First column shows
the grayscale image, second column shows the chromatic gradient and third
column shows a binarization of the gradient image based on Otsu threshold.



Chapter 9

Hyperspectral Image

Segmentation

This chapter presents a segmentation method for hyperspectral images based
on the well-known watershed transformation with some improvements in or-
der to overcome oversegmentation issues. The approach uses the aforego-
ing chromatic and hybrid gradients for hyperspectral images, therefore it is
grounded on the hyperspherical transform taking pro�t of the DRM for hy-
perspectral images. The chapter approach is algorithmic and experimental.

This chapter is outlined as follows: Section 9.1 does a brief review of some
segmentation methods for hyperspectral images (state of the art). Section
9.2 explains in detail the segmentation method. Section9.2.3 shows the ex-
perimental results on images taken with a SOC 710 camera, and on images
of the Foster dataset. Finally, Section9.3 gives the conclusions.

9.1 State of the Art

Most computational methods for hyperspectral image segmentation are clas-
si�cation methods which fall into three categories: supervised, semi-supervised
and unsupervised methods. Supervised methods require prior knowledge in
the form of a given ground truth to guide the building of the segmentation
method. Unsupervised methods do not need prior knowledge to carry out a
segmentation. Finally, semi-supervised methods are a mixture of both. Of-
ten classi�cation methods are preceded by some dimensionality reduction in
order to reduce noise e�ects and improve the speed-up.
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Supervised methods

Jun Li et al. [148, 149] apply active learning to hyperspectral image seg-
mentation in a Bayesian framework. Their algorithm is summarized in two
steps:

1. Learning the class posterior probability distributions, based on a multi-
nomial logistic regression (MLR) model, using the LORSAD algorithm.

2. Segmenting the hyperspectral image, based on the posterior probability
distribution of the image of class labels built on the learned pixel-wise
class distributions.

Active learning is used in order to maximize the classi�cation performance
with the minimum size training set. The relevant question is what samples
should be chosen to be labeled from the pool of unlabeled samples. Authors
iteratively select the samples which is expected to provide the maximum
information with respect to the actual random vector of MLR regressors.
Other supervised Bayesian approaches [150, 151] use MLR too, but combined
with Random Markov Fields or multilevel logistic spatial prior, exploiting
spatial and spectral information.

Semi-supervised methods

A semi-supervised segmentation method exploiting spatial contextual infor-
mation is proposed in [88, 152]. The method has two steps:

1. Apply a semi-supervised learning algorithm to infer the class distribu-
tions

2. Afterwards perform the image segmentation, by inferring the labels
from a posterior distribution.

Semi-supervised learning methods combine labeled and unlabeled pixels, un-
labeled pixels are dealt with by unsupervised methods, such as clustering,
and fused with labeled pixels in a supervised classi�cation step. The class
distributions are modeled with a MLR.
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Unsupervised methods

Mercier [153] presents a Hidden Markov Chain whose parameter estimation
is performed by the Iterative Conditional Estimation (ICE) method. At the
heart of this method there is a C-means that initializes the parameters of
the HMC, afterwards ICE completes the parameter estimation. This work
is tested with diverse dimensionality reduction algorithms (PCA, MNF, PP,
NAP, CCA y CDA). Other works perform clustering processes, such as [154]
which relies only on the spectral information; the image is statistically char-
acterized by means of a Gaussian Mixture Model (GMM). In short, this
method : 1) it �nds a discriminant function. 2) it performs a partial segmen-
tation procedure, evaluating the parameters of GMM by using a RELAXation
technique. 3) The segmentation process is concluded by combining the par-
tial results obtained from the analysis of each signi�cant component. Bilgin
[155] uses a one-class Support Vector Machine (OC-SVM) where the cluster
validity measure is based on the power of spectral discrimination.

There are also methods exploiting the spatial information. Ertürk[156]
presents a method based on the phase-correlation between subsamples. This
method is based on FFT and it's robust against noisy data. It de�nes the
phase-correlation as a distance to guide a region growing segmentation strat-
egy. The Butter�y approach introduced by Gorretta [157] works with the
spectral and spatial information in two separated steps. The image segmen-
tation is carried out by an iterative process interleaving spatial and spectral
segmentation steps until reaching convergence. Active contours are applied
by Zhang [158] for hyperspectral image segmentation using the Chan-Vese's
energy function adapted to hyperspectral images. Finally, Tarabalka [103]
work is based on the watershed transformation, performing the watershed on
each band, seeking afterwards to �nd the image edges piling up all watershed
edges in a image matrix.

9.2 Segmentation Method

The hyperspectral image segmentation method proposed in this chapter is
based on the watershed transformation following a straightforward approach,
because we do not aim to de�ne a chromaticity based region growing/merging
process, and we may bene�t by the hyperspectral gradients presented in the
previous chapter for the de�nition of the watershed transform.
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Figure 9.1: Hyperspectral segmentation diagram �ow

9.2.1 Segmentation Algorithm

As de�ned previously, the watershed transformation interprets a gradient
image as a topographic relief. The transformation begins with a �ooding
process carried out from each gradient local minima. Where neighboring
regions meet, a watershed edge appears. Each local minimum of the image
gradient corresponds only to one image region in the segmentation. This is
called the natural segmentation.

A shortcoming of the standard watershed transform is over-segmentation.
The natural segmentation is composed of many small regions. To avoid
oversegmentation we combine two strategies. On the one hand, we use a
threshold to merge neighboring low gradient regions. On the other hand,
applying a Gaussian smoothing �lter we reduce over-segmentation in regions
of high intensity gradient. A feature of the application of Gaussian blurring
to the gradient image is that its main peaks are preserved, whereas spurious
local minima are removed. Henceforth, we refer to this watershed variant as
t-Watershed.

Fig.9.1 shows the diagram �ow of the segmentation algorithm. First,
the method calculates a hyperspectral gradient. Second, it applies a Gaus-
sian smoothing �lter. The blurred gradient is the input of the proposed
t-Watershed transform. At the end, the method outputs an image with the
watershed edges and another one with the labeled regions.

9.2.2 t-Watershed Algorithm

The code of the algorithm is speci�ed in detail in Algorithm9.1. The algo-
rithm input is a gradient image (IG), a initial threshold (thr) and the amount
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of iterations (steps); its output is the watershed image (WS), and an image
containing the labeled regions (IL). A description its workings is as follows:

• First, it initializes the output images, and de�nes the intensity jump
for thresholding the image gradient.

• Applies a threshold to �nd regions of minimal gradient. Usingy the
Matlab primitive function 'bwlabel' it initializes the image containing
the segmentation region labels.

• The algorithm begins the �ooding process which is �nished after per-
forming 'steps' iterations

� It calculates the new threshold (thi), and, applying it on the image
gradient, it �nds the new pixels to be labeled.

� For each unlabeled pixel, it �nds out in its respective neighborhood
if some of its neighboring pixels has been labeled.

� Depending of the labels found in the neighborhood, the algorithm
does di�erent things on the current pixel:

∗ If there are not labeled pixels, it creates a new label assigning
it to the current pixel

∗ If there is only one label, it assigns it to the current pixel

∗ If there are several labels

· If the gradient intensity is lower than the parameter 'thr',
it merges all regions in a label, assigning it to the current
pixel

· In any other case, it marks it as watershed pixel

9.2.3 Experimental Results

Experimental results are carried out, �rst on the hyperspectral images taken
with the SOC 710 camera, second on some images of the Foster database. The
main goal of our segmentation algorithms is to provide robustness against il-
lumination e�ects, such as shines, shadows and sudden illumination changes.
The aim is to perform the image segmentation on the basis of the true surface
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Algorithm 9.1 t-Watershed code
function [WS, IL]= t-Watershed(IG,thr, steps)

[a,b] = size(IG);
WS = zeros(a,b); // Watershed image
IL = zeros(a,b); //Image labels
mx = max (IG); mn = min (IG); df = mx - mn; // intensity range
jump = df / steps; // jump size

// initilize first regions
s = find(IG < mn + jump); IL(s) = 1;
[IL, nLabels] = bwlabel(IL);

for i = 1: steps // repeat until finish
BW2 = zeros(a,b); // temporal matrix
thi = mn + (jump * i); // current intensity threshold
s = find(IG < thi & IG > 0); BW2 (s) = 1;// select pixels with intensity < thi
//find the new pixels and the already labeled set 0
s2 = find (IL > 0); BW2(s2) = 0;
// new pixels labeling
[f,c] = find(BW2 == 1);

for j = 1: size(f,2) // for each new pixel to label
fl = f(j); //row and column
cl = c(j);
// look into the 8-neighborhood
lvec = 0; //neighbor list
nvec = 0; //amount of neighbors
VnL = zeros(3,3);// copy of window neighborhood
for ff = -1:1

for cc = -1:1
vec = [ff + fl , cc + cl]; // range control
if vec(1) > 0 & vec(1) < a & vec(2) > 0 & vec(2) < b &(ff != 0 | cc != 0)

if IL(vec(1), vec(2))> 0 // this neighbor is already labeled
nvec = nvec +1;
lvec(nvec) = IL(vec(1), vec(2)); // save the label
VnL(ff+2,cc+2)= IL(vec(1), vec(2));

end
end

end
end

// different cases depending of the labels into the neighborhood
if nvec == 0 // there are not label in the neighborhood

nLabels = nLabels +1; // to increment label counter
IL(fl,cl) = nLabels; // assign the new label to the current pixel

else //there are some label
llbvec =0; // label list for the neighborhood
nlbvec =0; // counter
lb = 0;// current label
// look for the labels in the neighborhood
for it = 1:nvec

lb = lvec(it);
s = find(llbvec == lb); // look if this label is already saved in the list
if size(s,1) == 0 // it is not into the list

nlbvec = nlbvec +1;
llbvec(nlbvec) = lb;

end
end
if nlbvec == 1 then // there is only label into the neighborhood

IL(fl,cl) = lb; // assign it to the current pixel
else // there are many labels

if IG(fl,cl) < thr then // region merging
lb = llbvec(1);
for k = 2:nlbvec

s = find(IL == llbvec(k));
IL(s)= lb;

end
else // mark it as Watershed

WS(fl,cl)=1;
end

end
end

end
end
endfunction
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Figure 9.2: t-Watershed segmentation of images taken with SOC 710 camera

features. For this reason we work on the hyperspherical coordinate represen-
tation of the pixel spectra, which are included in the chromatic and hybrid
hyperspectral gradients used for the segmentation process. For all experi-
ments reported below we set thr = 0.2 and steps = 100.

9.2.3.1 SOC 710 images

First experiments are done on two hyperspectral images who we have cap-
tured with the SOC 710 camera: the blue ball and the synthetic orange. Fig.
9.2 shows the results. First row of images in the �gure shows the process of
the blue ball image, the second row shows the process of the synthetic orange
image. From left to right, images in the �rst column are the intensity images.
The second column show the corresponding chromatic gradient. The third
column shows the blurred output of the edge detected using the approach
introduced in the previous chapter. The last (rightmost) column shows the
output of the proposed t-Watershed algorithm. We can appreciate that the
segmentation gives the correct segmentation avoiding segmentation of the
spurious edges induced by the shines and the shadows.

9.2.3.2 Foster Database Images

This segmentation is applied over some images of the Foster database. In
these images, there are few shines but there are many shadows and strong
intensity changes. In this case we have used the hybrid hyperspectral gradient
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proposed in the previous chapter, where the parameters of the alpha function
are set as follows: a = 0, b = 0.1 and c = 1.

Fig.9.3 shows the experimental results. From left to right, the �rst col-
umn shows a RGB rendering of the original images, the second shows the
blurred hyperspectral image gradient, and the last one (rightmost) shows
their output segmentation. We can appreciate in the �rst image that �owers
and dark regions are well separated from the green background. Respect to
the second image, we can see how the shadow of the house facade is avoided
whereas the rest of the image is well segmented. The third image is a good
test for out method because it has a lot of intensity changes whereas it has
few di�erent region colors. As we can note in its corresponding the output
segmentation, regions with di�erent chromatic properties are well di�erenti-
ated. For instance, the boundaries between the �ower and the green leaves
are detected, while the intensity changes due to illumination e�ects inside
the yellow region are ignored. Last image row shows the segmentation of
some buildings with some regions well illuminated and other ones into the
shadows.

These experiments show the nominal response of the proposed method
setting parameters to their more standard values despite variation in the
images. Because the most important parameter of the segmentation method
is in the mind of the user. For di�erent segmentation goals we must to
change some parameters into the code and adapt it accordingly with the
desired segmentation.

9.3 Conclusion

In this chapter we have proposed a new segmentation method for hyperspec-
tral images with the following properties:

• It uses an adjustment of the watershed transform (t-Watershed).

• It is grounded on DRM through the use of the hyperspherical transfor-
mation discussed in previous chapters.

• It avoids oversegmentation of low and high gradient regions. In the
�rst case by using a threshold, and in the second case by applying a
Gaussian blurring.
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Figure 9.3: t-Watershed segmentation of some images from the Foster's
database.
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• Experimental results (preliminar) show good segmentation, avoiding
shadows and shines, because it is guided by the di�use component of
DRM, thus dealing with the true surface.

• It shows a good behavior too in natural scenes.

• By tuning the alpha function parameters of the hybrid gradient and
the parameters of the t-Watershed the user could easily tune the seg-
mentation to his needs. Further work must be addressed to provide
some automatized tool for this parameter tuning, such as some kind of
interactive evolutionary algorithm.



Appendix A

Glosary

Albedo of an object is the extent to which it di�usely re�ects light from
the sun. It is therefore a more speci�c form of the term re�ectivity.
Albedo is de�ned as the ratio of di�usely re�ected to incident electro-
magnetic radiation. It is a unit less measure indicative of a surface's
or body's di�use re�ectivity. The word is derived from Latin albedo
"whiteness", in turn from albus "white". The range of possible values
is from 0 (dark) to 1 (bright).

Azimuth is the horizontal angular distance from a reference direction, usu-
ally the northern point of the horizon, to the point where a vertical
circle through a celestial body intersects the horizon, usually measured
clockwise. Sometimes the southern point is used as the reference direc-
tion, and the measurement is made clockwise through 360 grades.

Chromaticity is an objective speci�cation of the quality of a color irre-
spective of its luminance, that is, as determined by its colorfulness (or
saturation, chroma, intensity, or excitation purity) and hue.

Colorfulness, chroma, and saturation are related concepts referring to
the intensity of a speci�c color. More technically, colorfulness is the per-
ceived di�erence between the color of some stimulus and gray, chroma
is the colorfulness of a stimulus relative to the brightness of a stimulus
that appears white under similar viewing conditions, and saturation is
the colorfulness of a stimulus relative to its own brightness. Though
this general concept is intuitive, terms such as chroma, saturation, pu-
rity, and intensity are often used without great precision, and even
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when well-de�ned depend greatly on the speci�c color model in use.

Di�use re�ection is the re�ection of light from an uneven or granular sur-
face such that an incident ray is seemingly re�ected at a number of
angles. It is the complement to specular re�ection. If a surface is com-
pletely non specular, the re�ected light will be evenly spread over the
hemisphere surrounding the surface (2π steradians). The most famil-
iar example of the distinction between specular and di�use re�ection
would be matte and glossy paints as used in home painting. Matte
paints have a higher proportion of di�use re�ection, while gloss paints
have a greater part of specular re�ection.

Fresnel equations, deduced by Augustin-Jean Fresnel, describe the behav-
ior of light when moving between media of di�ering refractive indices.
The re�ection of light that the equations predict is known as Fresnel
re�ection.

Hue is one of the three main attributes of perceived color, in addition to
lightness and chroma (or colorfulness). Hue is also one of the three
dimensions in some color spaces along with saturation, and brightness
(also known as lightness or value). Hue is that aspect of a color de-
scribed with names such as "red", "yellow", etc.

Insolation (Incident solar radiation) is a measure of solar radiation energy
received on a given surface area in a given time. It is commonly ex-
pressed as average irradiance in watts per square meter (W/m2) or
kilowatt-hours per square meter per day ( kW∗h

m2∗day ) , or in the case of

photovoltaic it is commonly measured as kWh/kWp∗y (kilowatt hours
per year per kilowatt peak rating). Sometimes, as in the text below, a
long-term average intensity of incoming solar radiation will be given in
units such as watts per square meter (W/m2 or W*m-2) and called in-
solation, with the duration (such as daily, annual, or historical) stated
or only implied.

Irradiance, radiant emittance, and radiant exitance are radiometry
terms for the power of electromagnetic radiation at a surface, per unit
area. "Irradiance" is used when the electromagnetic radiation is inci-
dent on the surface. "Radiant exitance" or "radiant emittance" is used
when the radiation is emerging from the surface. The SI units for all
of these quantities are watts per square meter (W ∗m−2).
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Lambert's cosine law in optics says that the radiant intensity observed
from a "Lambertian" surface is directly proportional to the cosine of
the angle θ between the observer's line of sight and the surface normal.
The law is also known as the cosine emission law or Lambert's emission
law. It is named after Johann Heinrich Lambert, from his Photometria,
published in 1760.

Lambertian re�ectance, light falling on it is scattered such that the ap-
parent brightness of the surface to an observer is the same regardless of
the observer's angle of view. More technically, the surface luminance is
isotropic. For example, un�nished wood exhibits roughly Lambertian
re�ectance, but wood �nished with a glossy coat of polyurethane does
not (depending on the viewing angle, specular highlights may appear
at di�erent locations on the surface). Not all rough surfaces are perfect
Lambertian re�ectors, but this is often a good approximation when the
characteristics of the surface are unknown. Lambertian re�ectance is
named after Johann Heinrich Lambert.

Luminance is a photometric measure of the density of luminous intensity in
a given direction. It describes the amount of light that passes through
or is emitted from a particular area, and falls within a given solid angle.
The SI unit for luminance is candela per square met re (cd/m2). The
CGS unit of luminance is the stilb, which is equal to one candela per
square centimeter or 10 kcd/m2.

Radiance and spectral radiance are radiometric measures that describe
the amount of light that passes through or is emitted from a partic-
ular area, and falls within a given solid angle in a speci�ed direction.
They are used to characterize both emission from di�use sources and
re�ection from di�use surfaces. The SI unit of radiance is watts per
steradian per square meter (W ∗ sr−1 ∗m−2).

Re�ectivity is the fraction of incident radiation re�ected by a surface.
In full generality it must be treated as a directional property that
is a function of the re�ected direction, the incident direction, and
the incident wavelength. However it is also commonly averaged over
the re�ected hemisphere to give the hemispherical spectral re�ectiv-

ity: ρ(λ) =
Grefll(λ)

Gincid
where Gre�(λ) and Gincid(λ) are the re�ected and

incident spectral (per wavelength) intensity, respectively.
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Re�ection is the change in direction of a wave front at an interface between
two di�erent media so that the wave front returns into the medium from
which it originated. Common examples include the re�ection of light,
sound and water waves.

Snell's law (also known as Descartes' law or the law of di�raction), is a for-
mula used to describe the relationship between the angles of incidence
and refraction, when referring to light or other waves, passing through
a boundary between two di�erent isotropic media, such as water and
glass. The law says that the ratio of the sines of the angles of incidence
and of refraction is a constant that depends on the media.

Specular re�ection is the perfect, mirror-like re�ection of light (or some-
times other kinds of wave) from a surface, in which light from a single
incoming direction (a ray) is re�ected into a single outgoing direction.
Such behavior is described by the law of re�ection, which states that
the direction of incoming light (the incident ray), and the direction of
outgoing light re�ected (the re�ected ray) make the same angle with
respect to the surface normal, thus the angle of incidence equals the
angle of re�ection; this is commonly stated as θi = θr.

Zenith is the direction pointing directly above a particular location (per-
pendicular, orthogonal). Since the concept of being above is itself
somewhat vague, scientists de�ne the zenith in more rigorous terms.
Speci�cally, in astronomy, geophysics and related sciences (e.g., me-
teorology), the zenith at a given point is the local vertical direction
pointing away from direction of the force of gravity at that location.
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