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ABSTRACT

We report validation results on a novel Content-Based Image
Retrieval system for hyperspectral images that uses both the
spectral and spatial features obtained from unsupervised un-
mixing processes. Spectral features consist of the set of end-
members obtained from the image by an Endmember Induc-
tion Algorithm. Spatial features consist of statistics of abun-
dance images. Both pieces of information are combined into a
similarity measure defined between the hyperspectral images
that guides the search for answers to the query. Such a sys-
tem allows one to retrieve images containing materials similar
to the query image, and in a similar proportion. We provide
validation results using synthetic hyperspectral datasets.

Index Terms— Hyperspectral CBIR, unmixing, valida-
tion, synthetic images

1. INTRODUCTION

In Content Based Image Retrieval (CBIR) systems [1], the
images stored in the database are indexed by feature vec-
tors extracted from the images by means of computer vision
and digital image processing techniques. In the query-by-
example approach, the interrogation to the database is done
through the presentation of a query image, and the answer are
the most similar images in the database according to some
similarity measure. The increasing amount of Earth Obser-
vation data provided by hyperspectral sensors, motivates re-
search in some technological problems related to the scale of
the available data. The problem of searching through these
huge databases using CBIR techniques has not been properly
addressed for the case of hyperspectral images. Approaches
to CBIR in remote sensing images proposed up to now are fo-
cused on panchromatic, low dimension multispectral images
such as LANDSAT or SAR data [2, 3, 4]. There are few works
in the literature [5, 6] dealing explicitly with the spectral in-
formation to guide the search. These works define the image
features as the endmembers induced from the hyperspectral
data by some Endmembers Induction Algorithm (EIA). One
inconvenience of these CBIR systems is that they can not dis-
criminate among images with the same induced endmembers
but very different spatial distributions. In this paper, we pro-

pose a spatial-spectral feature extraction process, that makes
this discrimination possible.

Section 2 introduces the proposed Spectral-Spatial CBIR
system for hyperspectral images. In section 3 we provide val-
idation results using hyperspectral synthetic datasets. Finally,
we give some conclusions in section 4.

2. SPECTRAL-SPATIAL CBIR SYSTEM

We first describe the feature extraction process followed to
quantify the spectral and spatial information from the hyper-
spectral images. Then, we introduce the proposed Spectral-
Spatial CBIR system for hyperspectral image databases.

2.1. Spectral-spatial feature extraction

Each hyperspectral image is processed to extract the fea-
tures that quantify the spectral-spatial information in the
images. We follow the linear mixing formulation, where
a hyperspectral image is the result of the linear combina-
tion of the pure spectral signatures of ground components,
named endmembers, with a fractional abundance matrix.
Let E = [e1, . . . , ep] be the pure endmember signatures
(normally corresponding to macroscopic objects in scene,
such as water, soil, vegetation, ...) where each ei ∈ Rq is
a q-dimensional vector. Then, the hyperspectral signature
r at each pixel in the image is defined by the expression
r = s + n =

∑p
i=1 eiφi + n, where the hyperspectral

signature r is formed by the sum of the pixel’s signal s
and an independent additive noise component n; and, φ is
the p-dimensional vector of fractional abundances at given
pixel. This equation can be generalized to the full image by
H = EΦ + n where H is the hyperspectral image and Φ is a
matrix of fractional abundances.

We characterize an hyperspectral image Hα by a tu-
ple (Eα,Φα), where Eα =

{
eα1 , e

α
2 , . . . , e

α
pα

}
is the set

of pα induced endmembers from the α-th image; and,
Φα =

{
φα1 , φ

α
2 , . . . , φ

α
pα

}
is the set of fractional abundance

maps resulting from the unmixing process, where each φαi
represents the spatial distribution of the induced endmember
eαi , i = 1, . . . , pα, in the image. To that effect, an EIA is used
to induce the spectral signatures (the endmembers) of the



image; and then, an unmixing method extracts from the im-
age the spatial distribution of each endmember (the fractional
abundances).

2.2. Proposed Spectral-Spatial CBIR system

The proposed Spectral-Spatial CBIR system defines a dissim-
ilarity measure between the spectral-spatial feature vectors
of hyperspectral images, extracted as described above. The
aim is to declare as similar images sharing some of their con-
stituent materials. We detect this similarity through the simi-
larity between image spectra and their relative abundance pro-
portions. The spectral-spatial dissimilarity is a version of the
Integrated Region Matching (IRM) dissimilarity function [7]
used for region matching-based image retrieval. The overall
IRM dissimilarity between two images depends on two as-
pects: the similarity between each region of the two images
and the significance of each region matching for determining
the overall dissimilarity. In the proposed Spectral-Spatial dis-
similarity function, we calculate the distance between each
image endmembers, and provide a significance based on their
corresponding average abundances.

Let Eα =
{
eα1 , e

α
2 , . . . , e

α
pα

}
be the set of endmembers

induced from the hyperspectral image Hα in the database,
where pα is the number of induced endmembers from the α-th
image; and Φ̄α =

{
φ̄α1 , φ̄

α
2 , . . . , φ̄

α
pα

}
the average abundances

of Hα, where φ̄αi = 1
N

∑N
j=1 φ

α
i (j), φαi (j) is the i-th end-

member fractional abundance for pixel j, andN is the number
of pixels on the image. Given two images, Hα and Hβ , we
compute the Spectral Distance Matrix, Dα,β , whose elements
are the distances between the endmembers of each image as

Dα,β = [di,j ; i = 1, . . . , pα; j = 1, . . . , pβ ] , (1)

where di,j is a distance between the endmembers eαi , e
β
j ∈

Rq . For instance, the euclidean distance or the angular
pseudo-distance.

Then, the Spectral-Spatial dissimilarity function, s (Hα, Hβ),
is defined as

s (Hα, Hβ) =
∑
i,j

ri,jdi,j , (2)

where di,j is the spectral distance between endmembers eαi
and eβj , and ri,j is the significance associated to di,j .

Thus, the problem reduces to choosing the significance
matrix Rα,β = [ri,j ; i = 1, . . . , pα; j = 1, . . . , pβ ]. We fol-
lowed the most similar highest priority (MSHP) principle as
in [7], making use of the average abundances Φ̄α and Φ̄β . The
average abundances represent “significance credits” assigned
to the spectral distances by algorithm 1.

3. SYSTEM VALIDATION

We first describe how we construct the synthetic hyperspec-
tral images that serve for the purposes of the computational

Algorithm 1 Significance credits assignment algorithm.
1. Set L = {} and denote M =
{(i, j) : i = 1, . . . , pα; j = 1, . . . , pβ}.

2. Choose the minimum di,j for (i, j) ∈ M − L. Label
the corresponding (i, j) as (i′, j′).

3. ri′,j′ = min
(
φ̄αi′ , φ̄

β
j′

)
.

4. If φ̄αi′ < φ̄βj′ , set ri′,j = 0, j 6= j′; otherwise, set ri,j′ =
0, i 6= i′.

5. If φ̄αi′ < φ̄βj′ , set φ̄αi′ = 0 and φ̄βj′ = φ̄βj′−φ̄αi′ ; otherwise,
set φ̄βj′ = 0 and φ̄αi′ = φ̄αi′ − φ̄

β
j′ .

6. L = L+ {(i′, j′)}.

7. If
∑pα
i=1 φ̄

α
i > 0 and

∑pβ
j=1 φ̄

β
j > 0, go to step 2; other-

wise, stop.

experiments. Then, we comment on the methodology, giv-
ing the definition of the employed performance measures. Fi-
nally, we give the results of the experiments.

3.1. Synthetic hyperspectral images

The synthetic hyperspectral images are generated as linear
mixtures of a set of spectra (the groundtruth endmembers) ac-
cording to synthesized abundance coefficients for each pixel.
Because the generation of the abundance coefficients follows
a spatial distribution, we generate independent images for
each abundance coefficient corresponding to an endmember,
later we fuse them into a multidimensional abundance image
imposing normalization conditions for each pixel indepen-
dently. The groundtruth endmembers were randomly selected
from a subset of the USGS spectral library.

The synthetic groundtruth multidimensional abundance
images were generated in a two-step procedure. First, we
simulate each abundance image corresponding to each end-
member as a Gaussian random field with Matern correlation
function of parameters θ1 = 10 and θ2 = 1. We applied
the procedure proposed by [8] for the efficient generation
of Gaussian random fields with large domains. Second, to
ensure that there are regions of almost pure endmembers,
we selected for each pixel the abundance coefficient with the
greatest value and we normalize the remaining to ensure that
the abundance coefficients sum up to one.

We have synthesized a total of 18000 hyperspectral im-
ages divided in nine datasets of 2000 images each. Each
dataset is characterized by the number of endmembers in the
collection of groundtruth endmembers and the images spatial
size. We defined three collections of groundtruth endmem-
bers, with pools of 5, 10 and 20 endmembers each, repre-



senting an increasing diversity in the materials. We denote
the datasets generated by each of the endmembers collections
as 5-datasets, 10-datasets and 20-datasets respectively. For
each endmember collection we have also defined three collec-
tions of spatial sizes, with images having 64× 64, 128× 128
and 256 × 256 pixels, representing different spatial scales.
All the synthesized hyperspectral images have 269 spectral
bands per pixel. Each dataset contains 2000 hyperspectral
images, where each image is built with 2 to 5 endmembers
randomly selected from the corresponding pool of available
of groundtruth endmembers.

3.2. Methodology

We have performed independent experiments1 over each of
the nine hyperspectral datasets using the Spectral-Spatial
dissimilarity function (2), where the distance between end-
members is measured by the Euclidean distance, seuc, and the
Spectral Angle Map pseudo-distance, ssam. For each image,
we apply independently the N-FINDER [9] and the EIHA
[10] endmember induction algorithms to induce the set of
endmembers.

For each image Hα in a dataset we calculate the dis-
similarity between Hα and each of the remaining images in
the dataset. These dissimilarities are represented as a vector
sα = [sα1, . . . , sαN ], whereN is the number of images in the
dataset (2000 in our experiments) and sα,β is the dissimilarity
between the images Hα and Hβ , with α, β = 1, . . . , N . Let
us distinguish between sGT

α , the vector of dissimilarities com-
puted using the known ground truth endmembers, and sIND

α ,
the vector of dissimilarities computed using the endmembers
induced by one of the EIAs (either N-FINDER or EIHA).
We can define the ranking of the dataset relative to one of
the images Ωα = [ωα,p ∈ {1, . . . , N} ; p = 1, . . . , N ] as the
set of image indices ordered according to increasing values
of their corresponding entries in the dissimilarity vector sα.
That is, we sort in increasing order the components of sα,
and the resulting shuffled image indices constitute Ωα, so that
sα,ωα,p ≤ sα,ωα,p+1

. We distinguish rankings ΩGT
α and ΩIND

α

corresponding to the ground truth and induced dissimilarities,
respectively. A query Qk(Hα) is formulated as a search for
the k most similar (less dissimilar) images Hβ in the dataset
with respect to the image Hα, with 1 ≤ k ≤ N . The set
of returned images Tk(Hα) and the set of relevant images
Vk(Hα) for a query Qk(Hα) are defined as follows:

Tk(Hα) = ΩIND
α,k =

[
ωIND
α,p s.t. sα,ωIND

α,p
≤ sα,ωIND

α,k

]
(3)

Vk(Hα) = ΩGT
α,k =

[
ωGT
α,p s.t. sα,ωGT

α,p
≤ t
]

(4)

1The Matlab code for the hyperspectral image synthesis and endmem-
ber induction is available from http://www.ehu.es/ccwintco/index.php/GIC-
source-code-free-libre

Fig. 1. Precision-recall curves for the 20-datasets (top-left),
10-datasets (top-right), and 5-datasets (bottom).

where t = s̄GT
α − 2σsGT

α
, and s̄GT

α and σsGT
α

are respectively
the mean and standard deviation of sGT

α .
This definition allows for the inclusion in the query an-

swer of images whose dissimilarity is equal to the max-
imum one, thus allowing that the cardinality of both re-
turned and relevant sets may be bigger than k. The Preci-
sion Pk(Hα) and Recall Rk(Hα) for a query Qk(Hα) are
standard performance measures in CBIR literature, they are
defined as: Pk(Hα) = |Vk(Hα)∩Tk(Hα)|

|Tk(Hα)| and Rk(Hα) =
|Vk(Hα)∩Tk(Hα)|

|Vk(Hα)| . The average Precision and Recall of
the system for a query of size k are defined as: Pk =
1
N

∑N
α=1 Pk(Hα) and Rk = 1

N

∑N
α=1Rk(Hα). As sum-

mary performance quantity, we calculate the normalized av-
erage rank of relevant images [11]. The normalized rank for
a given image ranking Ωα, denoted as Rank (Hα), is defined
as Rank (Hα) = 1

NNα

(∑Nα
i=1Ri −

Nα(Nα−1)
2

)
, where N

is the number of images in the dataset (N = 2000 in our ex-
periments),Nα is the number of relevant images for the query,
and Ri is the rank at which the i-th image is retrieved. This
measure is 0 for perfect performance, and approaches 1 as
performance worses. The average normalized rank ANR for
the full dataset is given by: ANR = 1

N

∑N
α=1Rank (Hα).

3.3. Results

Figure 1 shows the precision-recall curves for the 5-datasets,
10-datasets and 20-datasets respectively. Table 1 shows the
ANR for each dataset. Overall the average normalized rank
results for the endmembers/abundances obtained with both
the N-FINDER and the EIHA are close to 0, with all com-
binations of image sizes, number of source endmembers and
distances between individual endmembers. The proposed
spectral-spatial features are, therefore, good characterization
for CBIR systems.

The examination of figure 1 shows a high dependence
of the precision-recall of the CBIR system on both the EIA
and the underlying endmember diversity. We find that the
N-FINDER has obtained better results in the sense that its



ANR

Spatial size Distance EIA 5-dataset 10-dataset 20-dataset

64× 64 Euclidean EIHA 0.0383 0.0442 0.0356

64× 64 Euclidean N-FINDER 0.0051 0.0120 0.0109

64× 64 SAM EIHA 0.0512 0.0559 0.0558

64× 64 SAM N-FINDER 0.0035 0.0145 0.0318

128× 128 Euclidean EIHA 0.0216 0.0306 0.0228

128× 128 Euclidean N-FINDER 0.0056 0.0108 0.0118

128× 128 SAM EIHA 0.0371 0.0440 0.0458

128× 128 SAM N-FINDER 0.0026 0.0153 0.0340

256× 256 Euclidean EIHA 0.0116 0.0186 0.0189

256× 256 Euclidean N-FINDER 0.0035 0.0119 0.0119

256× 256 SAM EIHA 0.0220 0.0368 0.0412

256× 256 SAM N-FINDER 0.0019 0.0180 0.0316

Table 1. ANR for the 5-datasets , 10-datasets and 20-datasets.
Optimal ANR value is zero.

precision-recall curves is systematically above the ones cor-
responding to the EIHA. The diversity of the undelying pools
of endmembers has the effect of giving higher precision under
high recall rates as the diversity increases. The effect of the
individual endmember distance chosen is negligible.

4. CONCLUSIONS

We introduce and validate a CBIR system for databases of
hyperspectral images based on spectral-spatial features. The
feature extraction is based on the application of an EIA and
the ensuing linear unmixing based on the induced endmem-
bers. We have defined an extensive validation experiment
based on a big collection of synthetic hyperspectral images.
Validation on synthetic images allows an exact comparison
with the known ground truth. We can define precisely the set
of relevant images to a query, so that precision and recall are
computed exactly. Precision/recall curves show the good re-
sponse of our feature selection and corresponding distance.
We found that the average normalized rank is very close to
zero, which is an extraordinarily good performance for CBIR
systems. Further work will focus on the validation of this
approach on real-life remote sensing hyperspectral images.
We are working on the definition of appropriate query results
visualization and user interaction for the construction of re-
trieval feedback to enhance the CBIR system performance.
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