Rotation Forest: a new classifier ensemble method Paper Review

Miguel A. Veganzones

Grupo de Inteligencia Computacional Universidad del País Vasco

2012-01-27

- Introduction
- 2 Rotation Forest
 - Algorithm
 - Comments on diversity
- Experimental validation
 - Experimental setup
 - Results
- Diversity-Error diagrams
 - Methodology
 - Results
- Conclusions

- Introduction
- 2 Rotation Forest
 - Algorithm
 - Comments on diversity
- Experimental validation
 - Experimental setup
 - Results
- 4 Diversity-Error diagrams
 - Methodology
 - Results
- Conclusions

Paper

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 28. NO. 10. OCTOBER 2006

1619

Rotation Forest: A New Classifier Ensemble Method

Juan J. Rodríguez, *Member, IEEE Computer Society*, Ludmila I. Kuncheva, *Member, IEEE*, and Carlos J. Alonso

Motivation

- Two approaches for constructing classifier ensembles:
 - Bagging: takes bootstrap samples of objects and trains a classifier on each sample. Random Forest.
 - Boosting: combine weak classifiers so a new classifier is trained on data which have been 'hard' for the previous ensembled methods. AdaBoost

Motivation (II)

- On average AdaBoost is the best method.
 - For large ensemble sizes differences dissapear.
 - Quest: consistently good ensemble strategy for small ensemble sizes?
- The sucess of AdaBoost has been explained by its large diversity boosting the ensemble performance.
 - Accuracy-diversity dilemma: it seems that classifiers cannot be both very accurate and have very diverse outputs.

Proposal

- New classifier ensemble method:
 - Based on feature extraction (PCA) and decision trees (J48).
 - Achieving both, accuracy and diversity.
- Compared to Bagging, AdaBoost and Random Forest.
- Using 33 benchmark datasets from UCI repository.

- Introduction
- 2 Rotation Forest
 - Algorithm
 - Comments on diversity
- Experimental validation
 - Experimental setup
 - Results
- 4 Diversity-Error diagrams
 - Methodology
 - Results
- Conclusions

- Introduction
- 2 Rotation Forest
 - Algorithm
 - Comments on diversity
- Experimental validation
 - Experimental setup
 - Results
- 4 Diversity-Error diagrams
 - Methodology
 - Results
- Conclusions

Idea

- To create the training data:
 - The feature set is randomly split into K subsets.
 - PCA is applied to each subset.
 - All principal components are retained to preserve the variability information in the data.
- Thus, K axis rotations take place to form the new features for a base classifier.
 - Encourage simultaneously individual accuracy and diversity within the ensemble.
- Decision trees were choosen because they are sensitive to rotation of the feature axes.

Training phase

Given

- X: the objects in the training data set (an $N \times n$ matrix)
- Y: the labels of the training set (an $N \times 1$ matrix)
- L: the number of classifiers in the ensemble
- K: the number of subsets
- $\{\omega_1, \ldots, \omega_c\}$: the set of class labels

For $i = 1 \dots L$

- Prepare the rotation matrix R_i^a:
 - Split **F** (the feature set) into K subsets: $\mathbf{F}_{i,j}$ (for $j = 1 \dots K$)
 - For $j = 1 \dots K$
 - * Let $X_{i,j}$ be the data set X for the features in $\mathbf{F}_{i,j}$
 - * Eliminate from $X_{i,j}$ a random subset of classes
 - * Select a bootstrap sample from $X_{i,j}$ of size 75% of the number of objects in $X_{i,j}$. Denote the new set by $X'_{i,i}$
 - * Apply PCA on $X'_{i,j}$ to obtain the coefficients in a matrix $C_{i,j}$
 - Arrange the $C_{i,j}$, for j=1...K in a rotation matrix R_i as in equation (1)
 - Construct R_i^a by rearranging the the columns of R_i so as to match the order of features in ${f F}$
- Build classifier D_i using (XR_i^a, Y) as the training set

Rotation matrix

$$R_i \! = \! \begin{bmatrix} \mathbf{a}_{i,1}^{(1)}, \! \mathbf{a}_{i,1}^{(2)}, \! \dots, \! \mathbf{a}_{i,1}^{(M_1)}, & [\mathbf{0}] & \dots & [\mathbf{0}] \\ [\mathbf{0}] & \mathbf{a}_{i,2}^{(1)}, \! \mathbf{a}_{i,2}^{(2)}, \! \dots, \! \mathbf{a}_{i,2}^{(M_2)}, & \dots & [\mathbf{0}] \\ \vdots & \vdots & \ddots & \vdots \\ [\mathbf{0}] & [\mathbf{0}] & \dots & \mathbf{a}_{i,K}^{(1)}, \! \mathbf{a}_{i,K}^{(2)}, \! \dots, \! \mathbf{a}_{i,K}^{(M_K)} \end{bmatrix}$$

- $\mathbf{a}_{i,i} \in \mathbb{R}^M$, where M = n/K.
- Dimensionality: $n \times \sum_{j} M_{j}$.
 - $M_i \leq M$ (some eigenvalues could be zero).
- Columns must be rearranged so that they correspond to the original features.

Classification phase

• For a given ${\bf x}$, let $d_{i,j}({\bf x}R_i^a)$ be the probability assigned by the classifier D_i to the hypothesis that ${\bf x}$ comes from class ω_j . Calculate the confidence for each class, ω_j , by the average combination method:

$$\mu_j(\mathbf{x}) = \frac{1}{L} \sum_{i=1}^{L} d_{i,j}(\mathbf{x} R_i^a), \quad j = 1, \dots, c.$$

• Assign x to the class with the largest confidence.

- Introduction
- 2 Rotation Forest
 - Algorithm
 - Comments on diversity
- Experimental validation
 - Experimental setup
 - Results
- 4 Diversity-Error diagrams
 - Methodology
 - Results
- Conclusions

PCA

- PCA is not particularly suitable for feature extraction in classification because it does not include discriminatory information in calculating the optimal rotation of the axes.
 - Problems are related to dimensionality reduction.
- In the proposed algorithm authors keep all the components so the discriminatory information will be preserved.
 - Keeping all the components does not mean that the classification will be easier in the new space of extracted features.
- Even if the rotation does not contribute much to finding good discriminatory directions, it is valuable here as a divesifying heuristic.

Diversity

- The intended diversity will come from the difference in the possible feature subsets:
 - There are in total $T = \frac{n!}{K!(M!)^K}$ different partitions of the feature set into K subsets of size M, each given raise to a classifier.
 - If the ensemble consists of L classifiers, assuming each partition is equally probable, the probability that all classifiers will be different is $P = \frac{T!}{(T-L)!T^L}$.

Example

The chance to have all different classifiers in an ensemble of L=50 classifiers for K=3 and n=9 is less than 0.01.

• There is a need for an extra randomization of the ensemble.

Extra randomization

- Applying PCA to:
 - A bootstrap sample from X.
 - \bullet A random subset of X.
 - A random selection of classes.

- Introduction
- 2 Rotation Forest
 - Algorithm
 - Comments on diversity
- Experimental validation
 - Experimental setup
 - Results
- 4 Diversity-Error diagrams
 - Methodology
 - Results
- Conclusions

- Introduction
- 2 Rotation Forest
 - Algorithm
 - Comments on diversity
- Experimental validation
 - Experimental setup
 - Results
- 4 Diversity-Error diagrams
 - Methodology
 - Results
- Conclusions

Datasets

• 33 datasets from UCI repository.

Data set	Classes	Objects	Discrete	Continuous		
			features	features		
anneal	6	898	32	6		
audiology	24	226	69	0		
autos	7	205	10	16		
balance-scale	3	625	0	4		
breast-cancer	2	286	10	0		
cleveland-14-heart	5	307	7	6		
credit-rating	2	690	9	6		
german-credit	2	1000	13	7		
glass	7	214	0	9		
heart-statlog	2	270	0	13		
hepatitis	2	155	13	6		
horse-colic	2	368	16	7		
hungarian-14-heart	5	294	7	6		
hypothyroid	4	3772	22	7		
ionosphere	2	351	0	34		
iris	3	150	0	4		
labor	2	57	8	8		
letter	26	20000	0	16		
lymphography	4	148	15	3		
pendigits	10	10992	0	16		
pima-diabetes	2	768	0	8		

Data set	Classes	Objects	Discrete	Continuous
			features	features
primary-tumor	22	239	17	Ó
segment	7	2310	0	19
sonar	2	208	0	60
soybean	19	683	35	0
splice	3	3190	60	0
vehicle	4	846	0	18
vote	2	435	16	0
vowel-c	11	990	2	10
vowel-n	11	990	0	10
waveform	3	5000	0	40
wisconsin-breast	2	699	0	9
Z00	7	101	16	2

Algorithms

- Compare Rotation Forest with Bagging, AdaBoost and Random Forest.
 - In all ensemble methods decision trees were used as the base classifier.
- The decision tree construction method was J48 (a reimplementation of C4.5).
 - Except for the Random Forest method.
- All implementations are from Weka.

Algorithms settings

- As PCA is defined for numerical features, discrete features were converted to numeric ones for Rotation Forest. Important!
 - Each categorical feature was replaced by s binary features, where s is the number of possible categories of the feature.
- The parameters of Bagging, AdaBoost and Random Forest were kept at their default values.
- For Random Forest the number of features to select from at each node is set at $log_2(n) + 1$.
- For Rotation Forest the number of features in each subset was fixed to M = 3.
 - If *n* did not divide by 3, the remainder subset was completed by features randomly selected from the rest of the feature set.

Pruning

- The decision tree classifier, J48, uses an error-based pruning algorithm.
 - Confidence value to be used when pruning the tree is set the default of 25 percent.
- Thus, two versions of each algoritm, with pruning or without pruning.
 - This standar implementation was not suitable for Random Forest, so there is only unpruned Random Forest.

Ensemble size

- The ensemble size L can be regarded as an hyperparameter of the ensemble method.
 - It can be tuned through cross-validation.
- L can also be though of as an indicator of the operating complexity of the ensemble.
 - Then we can choose the most accurate ensemble of a fixed complexity.
- As we are interested in ensembles of a small (fixed) size, we decided to train all the ensemble methods with the same L=10.

Ensemble size (II)

- Percentage graph for ensembles of unpruned decision trees using one 10-fold cross validation.
- The x-axis is the ensemble size L. The y-axis shows the percent of the datasets in which the method has been the one with the lowest error.

Validation measures

- For each dataset and ensemble method, 15 10-fold cross validation were performed.
- The average accuracies and corrected standard deviations are shown.
- For reference, we display the accuracy of a single J48 tree as well.
- The results for which a significant difference (5 percent) with Rotational Forest was found are marked with a bullet (better) or an open circle (worse) next to them.

Corrected standar deviation

• Instead of taking $\sigma_{\tilde{\mu}} = \frac{\sigma_{\mu}}{\sqrt{T}}$ where T is the number of experiments, the authors propose:

$$\sigma_{ ilde{\mu}} = \sqrt{rac{1}{T} + rac{N_{ ext{testing}}}{N_{ ext{training}}}}$$

where N_{training} and N_{testing} are the sizes of the training and the testing sets respectively.

- The new estimate is more conservative.
- Note that the comparison was done using all the T=150 testing accuracies per method and data set $(15 \times 10$ -fold CV).

- Introduction
- 2 Rotation Forest
 - Algorithm
 - Comments on diversity
- Experimental validation
 - Experimental setup
 - Results
- 4 Diversity-Error diagrams
 - Methodology
 - Results
- Conclusions

With pruning

Classification Accuracy and Standard Deviation of J48 and Ensemble Methods with Pruning

Data Set	Rotations J48	J48	Bagging J48	Boosting J48
anneal	98.93±0.95	98.61±1.06	98.89±0.92	99.58±0.71
audiology	79.80±6.92	77.24±7.04	81.03±7.36	84.90±7.07 o
autos	82.50±8.66	82.34±9.22	82.69±8.60	85.31±6.99
balance-scale	90.33±2.52	77.82±3.69 •	81.85±3.74 •	78.46±4.07 •
breast-cancer	72.66±6.71	74.19 ± 6.05	72.65±6.12	66.88±7.37 •
cleveland-14-heart	82.85+6.26	76.71±6.84 •	79.21 ± 6.74	79.38 ± 6.99
credit-rating	86.13±3.88	85.63±4.12	85.78±4.02	83.86±4.35
german-credit	74.10±3.93	71.09±3.53 •	73.75±3.62	71.01±3.93 •
glass	74.27±8.11	67.55±9.33 •	73.97±9.41	75.20±8.26
heart-statlog	82.25±6.43	78.22±7.20	80.74±6.66	78.27±7.20
hepatitis	82.80±8.91	79.58 ± 9.28	81.24±8.22	82.46±8.00
horse-colic	84.73±5.44	85.16±5.70	85.41±5.70	81.63±6.11
hungarian-14-heart	80.28±6.33	80.08±7.65	79.62 ± 6.70	78.75 ± 6.65
hypothyroid	99.56±0.35	99.53 ± 0.35	99.58 ± 0.32	99.64 ± 0.30
ionosphere	93.88 ± 3.68	89.91±4.57 •	92.25±3.80	93.18 ± 4.02
iris	95.73±5.20	94.89 ± 5.03	94.67±5.12	94.27±5.18
labor	91.56 ± 11.91	79.56±15.78•	83.13 ± 15.20	87.31±13.36
letter	95.48 ± 0.47	88.04±0.73 •	92.72±0.63 •	95.53 ± 0.47
lymphography	83.99 ± 8.33	76.37±11.09•	77.97±10.22•	81.73 ± 8.61
pendigits	99.20 ± 0.26	96.46±0.56 •	97.93±0.47 •	99.02 ± 0.30
pima-diabetes	76.48 ± 4.44	74.38 ± 4.91	75.65 ± 4.45	71.96±4.53 •
primary-tumor	45.06 ± 6.40	41.71 ± 6.83	43.74 ± 6.76	41.87 ± 6.53
segment	98.05 ± 0.95	96.79±1.28 •	97.49 ± 1.07	98.14 ± 0.89
sonar	83.56±7.84	73.98±8.67 •	78.31 ± 9.11	79.79 ± 8.63
soybean	94.77±2.36	91.90±3.11 •	92.73±2.87 •	92.74±2.82 •
splice	95.47±1.15	94.17±1.22 •	94.43±1.26 •	94.60±1.15 •
vehicle	78.05 ± 3.64	72.33±4.42 •	74.45±4.18 •	75.78 ± 4.19
vote	96.26 ± 2.79	96.49 ± 2.65	96.37±2.54	95.34±3.11
vowel-c	96.89 ± 1.74	79.62±4.17 •	90.20±3.16 •	92.77±2.77 •
vowel-n	95.68±1.95	79.16±4.58 •	89.45±3.22 •	92.13±2.84 •
waveform	83.93±1.69	75.27±2.00 •	81.75±1.70 •	81.34±1.88 •
wisconsin-breast-cancer	97.04 ± 1.94	94.87±2.69 •	95.99 ± 2.44	96.06 ± 2.27
Z00	92.15 ± 8.22	92.56 ± 7.04	93.30 ± 7.07	96.38 ± 5.75
(Win/Tie/Loss)		(0/16/18)	(0/24/10)	(1/24/9)

o Rotation Forest is significantly worse, • Rotation Forest is significantly better, level of significance 0.05

Without pruning

Classification Accuracy and Standard Deviation of J48 and Ensemble Methods without Pruning

Data	Rotations		Bagging	Boosting	Random
Set	J48	J48	J48	J48	Forest
anneal	99.01±0.93	98.62 ± 1.01	98.98±0.93	99.54±0.68	99.38±0.78
audiology	79.83 ± 6.93	76.33±7.45 •	81.12±7.35	83.30 ± 6.99	76.58 ± 7.94
autos	82.56±8.66	82.86±9.25	84.12±8.42	84.61 ± 7.93	81.95±7.85
balance-scale	90.26 ± 2.62	79.43±4.01 •	81.39±3.70 •	76.82±4.14 •	80.28±3.80
breast-cancer	72.07 ± 6.54	68.00 ± 7.43	69.48±7.17	66.12±7.81 •	69.00 ± 7.31
cleveland-14-heart	82.61±6.12	76.49±6.91 •	79.70 ± 6.01	79.20±7.25	80.34 ± 6.47
credit-rating	86.00±3.90	82.50±4.24 •	85.17±4.34	84.02 ± 3.98	85.15 ± 4.23
glass	74.33 ± 8.06	67.77±9.70 •	73.85 ± 9.34	76.23 ± 9.09	75.65 ± 8.42
german-credit	73.87 ± 3.89	67.89±3.95 •	72.08 ± 3.63	71.95 ± 4.32	73.57 ± 3.38
heart-statlog	82.37±6.45	76.69±7.51 •	80.44±6.84	79.38 ± 7.40	80.86 ± 6.53
hepatitis	82.92 ± 8.88	78.95±9.27	80.68±8.89	82.45±8.17	83.04 ± 8.07
horse-colic	84.80±5.35	82.16±5.89	84.80±5.96	81.05±6.20	84.96±5.43
hungarian-14-heart	79.57 ± 6.45	78.85 ± 7.30	78.74 ± 6.65	79.08 ± 7.00	79.28 ± 6.31
hypothyroid	99.57 ± 0.33	99.51 ± 0.37	99.59 ± 0.30	99.65 ± 0.30	99.18±0.46
ionosphere	93.88 ± 3.76	89.97±4.55 •	92.29±3.79	93.01 ± 3.97	92.84±3.89
iris	95.73±5.20	94.93 ± 4.99	94.58±5.15	94.36±5.22	94.13±5.18
labor	91.69 ± 11.89	79.84±14.57•	84.31±14.44	87.20±13.81	87.00±13.45
letter	95.54 ± 0.47	88.02±0.75 •	92.85±0.65 •	95.44 ± 0.50	94.52±0.49
lymphography	84.27±8.35	75.64±11.12•	78.97 ± 10.32	82.40±9.73	81.28 ± 8.58
pendigits	99.21 ± 0.25	96.46±0.57 •	97.99±0.44 •	99.01±0.28 •	98.81±0.29
pima-diabetes	76.39 ± 4.43	73.85 ± 4.94	75.59 ± 4.54	72.49±5.08 •	74.78 ± 4.42
primary-tumor	44.37 ± 6.56	42,42±7,57	42.79 ± 6.92	41.64 ± 6.94	41.56 ± 6.50
segment	98.05 ± 0.95	96.81±1.26 •	97.58±1.05	98.25 ± 0.80	97.71 ± 1.06
sonar	83.49±7.88	73.82±8.71 •	78.34 ± 9.14	79.95±9.51	80.75±7.84
soybean	94.17±2.47	90.67±3.34 •	91.88±3.15 •	92.44 ± 2.76	91.92±2.83
splice	95.49±1.13	92.20±1.37 •	94.25±1.20 •	94.11±1.23 •	90.07±1.79
vehicle	77.95±3.74	72.38±4.25 •	74.70±4.07 •	76.44 ± 4.01	74.37±4.43
vote	96.08 ± 2.88	95.71±2.93	96.43±2.47	95.22±3.19	95.74±2.75
vowel-c	96.87 ± 1.76	81.26±4.18 •	91.72±2.89 •	94.15±2.42 •	95.59 ± 2.23
vowel-n	95.77±1.94	79.22±4.59 •	89.52±3.27 •	91.93±2.72 •	92.37±2.73
waveform	83.94±1.72	75.14±1.99 •	81.78±1.74 •	81.45±1.71 •	81.89±1.74
wisconsin-breast-cancer	97.02±1.93	94.30±2.74 •	95.82±2.54 •	95.97±2.11	95.75±2.14
ZOO	92.35±8.04	93.42±6.93	93.50±7.11	97.04±5.21 o	95.83±6.02
(Win/Tie/Loss)		(0/13/21)	(0/24/10)	(1/25/8)	(0/24/10)

o Rotation Forest is significantly worse, • Rotation Forest is significantly better, level of significance 0.05

Accuracy comparison

Fig. 4. Comparison of accuracy of Rotation Forest ensemble (RF) and the best accuracy from any of a single tree, Bagging, Boosting, and Random Forest ensembles.

Summary

	Pruned trees				Unpruned trees					
	J48	Bagging	AdaBoost	Rotation Forest	J48	Bagging	AdaBoost	Random Forest	Rotation Forest	
Pruned trees										
J48		29 (9)	25 (12)	29 (18)	14 (2)	26 (9)	23 (12)	22 (8)	28 (18)	
Bagging	4 (0)	-> (>)	21 (7)	27 (10)	3 (0)	18 (2)	17 (6)	16 (4)	25 (9)	
AdaBoost	8 (1)	12(3)	(.)	25 (9)	8 (0)	12 (2)	15 (0)	16 (1)	26 (7)	
Rotation Forest	4 (0)	6 (0)	8 (1)	-	2 (0)	7 (0)	7 (1)	5 (0)	17 (0)	
Unpruned trees										
J48	19 (5)	30 (14)	25 (14)	31 (19)		31 (12)	26 (13)	28 (9)	31 (21)	
Bagging	7 (1)	15 (0)	21 (4)	26 (10)	2(0)	- ()	20 (5)	20 (4)	28 (10)	
AdaBoost	10 (1)	16 (3)	18 (0)	26 (8)	7(1)	13(1)	(-)	15 (1)	26 (8)	
Random Forest	11 (2)	17 (2)	17 (5)	28 (10)	5 (2)	13 (2)	18 (4)	- (-)	28 (10)	
Rotation Forest	5 (0)	8 (0)	7(1)	15 (0)	2 (0)	5 (0)	7(1)	5 (0)	(/	

The entry $a_{i,j}$ shows the number of times method of the column (j) has a better result than the method of the row (i). The number in the parentheses shows in how many of these differences have been statistically significant.

- Introduction
- 2 Rotation Forest
 - Algorithm
 - Comments on diversity
- Experimental validation
 - Experimental setup
 - Results
- Diversity-Error diagrams
 - Methodology
 - Results
- Conclusions

- Introduction
- 2 Rotation Forest
 - Algorithm
 - Comments on diversity
- Experimental validation
 - Experimental setup
 - Results
- Diversity-Error diagrams
 - Methodology
 - Results
- Conclusions

Overview

- Visualization means for classifier ensembles.
- Based on pairwise diversity measures.
- Diversity is intuitively clear for two variables (two classifier outputs).
 - Measured as "deviation from independence" using a correlation coefficient or an appropriate statistic for nominal variables (class labels).
- Difficult to define for more than two variables.

Kappa

- The pairwise diversity measure used is the interrater agreement, kappa (κ) .
- Kappa evaluates the level of agreement between two classifier outputs while correcting for chance.
- For c class labels, kappa is defined on the $c \times c$ coincidence matrix \mathcal{M} of the two classifiers.
- The entry $m_{k,s}$ of \mathcal{M} is the proportion of the dataset used for testing, which D_i labels as ω_k and D_j labels as ω_s .

Kappa (II)

• The agreement between D_i and D_j is given by:

$$\kappa_{i,j} = \frac{\sum_{k} m_{k,k} - ABC}{1 - ABC}$$

where $\sum_k m_{kk}$ is the observed agreement between the classifiers and ABC is "agreement by chance":

$$ABC = \sum_{k} \left(\sum_{s} m_{k,s} \right) \left(\sum_{s} m_{s,k} \right)$$

Kappa (III)

- ullet Low values of κ signify high disagreement and, hence, high diversity.
- ullet If the classifiers produce identical class labels, $\kappa=1$.
- If the classifiers are independent, $\kappa=0$.
 - Independence is not necessarily the best scenario in multiple classifier systems.
- More desirable is "negative dependence", $\kappa < 0$.
 - Classifiers commit related erros.
 - When one classifier is wrong, the other has more than random chance of being correct.

Kappa-Error diagrams

- An ensemble of L classifiers generates L(L-1)/2 pairs of classifiers D_i , D_j .
 - Points in the diagram.
- Kappa-Error diagram:
 - x-axis: κ for the pair of classifiers.
 - y-axis: averaged individual error of D_i and D_j , $E_{i,j} = \frac{E_i + E_j}{2}$.
- The most desirable point will lie in the bottom left corner: low kappa and low error.

Outline

- Introduction
- 2 Rotation Forest
 - Algorithm
 - Comments on diversity
 - Experimental validation
 - Experimental setup
 - Results
- Diversity-Error diagrams
 - Methodology
 - Results
- Conclusions

Kappa-Error diagrams

Fig. 5. κ -Error Diagrams, x-axis = κ , y-axis = $E_{\kappa,j}$ (average error of the pair of classifiers). Axes scales are constant for each row. The ensemble error on the testing set is displayed above the plot.

Kappa-Error centroids

Fig. 6. Centroids of the kappa-error clouds for the five data.

Kappa-Error diagram

Fig. 7. Kappa-error diagrams for the vowel-n data set.

Kappa-Error diagram

Fig. 8. Kappa-error diagrams for the waveform data set.

Outline

- Introduction
- 2 Rotation Forest
 - Algorithm
 - Comments on diversity
- Experimental validation
 - Experimental setup
 - Results
- 4 Diversity-Error diagrams
 - Methodology
 - Results
- Conclusions

Conclusions

- In general, Rotation Forest is similar to Bagging.
 - Like Bagging, Rotation Forest is more accurate and less diverse than both AdaBost and Random Forest.
- Results show that the minimal improvement on the diversity-accuracy pattern materializes in significant better ensembles.

Caveats

- Rotation Forest has an extra parameter which controls the sizes of the feature subsets or eqivalently the number of feature subsets.
 - We did not tune the hyperparameters of any of the ensemble methods.
- All datasets are from UCI repository.
 - Do not include very large-scale datasets.
- Random Forest offers a way to order the features by their importance.
- We used the same ensemble size L for all methods.

Outlook

- Evaluation of the sensitivity of the algorithm to the choice of M and L.
- Application of Rotation Forest together with other ensemble approaches.
- Trying a different base classifier model.
- Examining the effect of randomly pruning classes and taking a bootstrap sample for each feature subset, prior to applying PCA.
 - Find out whether or not this will have an adverse effect on the performance of Rotation Forest.
- Use a different feature extraction algorithm.