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Linear Mixing Model (LMM).

Linear Mixing Model (LMM) basic equation:

y =
M

∑
i=1

aisi +w −→ Y = SA+w

I y is the d -dimension measured vector.

I S is the d ×M matrix whose columns are the d -dimension
endmembers si , i = 1, ..,M, .

I a is the M-dimension abundance vector.

I w is the d -dimension additive observation noise vector.



Lattice Independent Component Analysis (LICA).

1. Use an Endmember Induction Algorithm (EIA) to induce
from the data a set of Strongly Lattice Independent vectors.

2. Apply the Full Constrained Least Squares estimation to obtain
the abundance matrix according to the conditions for LMM.

De�nition

Strong Lattice Independence

I Abundance coe�cient non-negative - negative contribution is
physically impossible.

I Fully additive: ∑
M
i=1 ai = 1. Consequently, ai ≤ 1, i = 1, ..,M.

I In other words: The convex polytope de�ned by the
endmembers covers all the data points.



Advantages of LICA.

I We are not imposing statistical assumptions to �nd the
sources.

I The algorithm is one-pass and very fast because it only uses
lattice operators and addition.

I It is unsupervised and incremental.

I It can be tuned to detect the number of endmembers by
adjusting a noise-�ltering related parameter.

Fact

When M � d the computation of the abundance coe�cients can

be interpreted as a dimension reduction transformation, or a

feature extraction process.



LICA for Face Recognition: Setting.

How we apply LICA for the face recognition problem?:

y =
M

∑
i=1

aisi +w −→ Y = SA+w

I Measured vector matrix Y −→ Face images in the form of
column vectors Y = {yj ; j = 1, . . . ,N} ∈ Rn×N

I Induced SLI vectors (endmembers) S−→ Face images which
de�ne the convex polytope covering the data.

I Abundance matrix A−→ Obtained by A= S†YT , where † is
the pseudo-inverse.



LICA for Face Recognition: Algorithm

1. Build training face image matrix XTR and testing matrix XTE .

2. Data preprocessing, two options: Perform PCA over X or not.
We obtain T .

3. Obtain k endmembers E = {ej ; j = 1, . . . ,k} using an EIA over
T . Number k depends on α value.

4. Unmix XTR and XTE by doing YTR = E#XT
TR and

YTE = E#XT
TE .

5. Nearest Neighbour (1-NN) classi�cation.



Induced Endmembers example.

Figure: An instance of the �rst 5 eigenfaces (PCA), independent components (ICA)

and endmembers (LICA)



Research questions.

I In the pattern recognition domain, can we e�ectively see
Endmember Induction Algorithms and Lattice Independent
Component Analysis as feature extraction and dimension
reduction techniques?

I Is LICA a valid dimension reduction and feature extraction
algorithm for the face recognition problem?



Used databases.

We have used two well known databases:

ORL database Yalefaces

Number of subjects 40 15

Images per subject 10 11

Total images 400 165

Angle Frontal* Frontal

Variations *small head pose Illumination, expression,
and sight changes glasses



Results (I).

ORL Yalefaces Yalefaces
Method prep. original normalized

data Acc. Dim. Acc. Dim. Acc. Dim.

PCA - 0.94 25 0.70 25 0.70 27

ICA PCA 0.86 30 0.76 26 0.80 27

LICA PCA 0.87 24 0.73 10 0.76 30

LICA - 0.91 15 0.78 30

Table: Face recognition results.



Results (II).

Figure: Plots of accuracy versus dimension on the ORL database



Results (III).

Figure: Plots of accuracy versus dimension on the Yalefaces database



Results (IV).

Figure: Accuracy of LICA on the Yalefaces database for di�erent α

values.



Results (V).

Figure: Number of endmembers retrieved by LICA depending on α.



Conclusions.

I LICA features perform comparable to both linear feature
extraction algorithms (ICA and PCA).

I This results open a new computational approach to
pattern recognition, specially biometric identi�cation
problems.

I Issues popped:

I Uncertainty about the amount of endmembers found and
therefore the high variance of recognition rates.



Future work.

I Con�rm obtained results performing this same experiment over
more complex and/or unbalanced databases like FERET. [Done
with good results, article pending approval]

I Combine the non-linear algorithm LICA with other well known
statistical tools like PCA, LDA, and other state-of-the art face
recognition approaches.

I Work on Lattice Theory mathematical foundations in order to
apply energy function-like methods to Lattice Computing
implementations that may allow more robust endmember
induction.

I Test LICA's capabilities of dealing with face recognition well
known problems: Illumination, pose, occlusion, etcetera.



Other recent applications of LICA.

I Functional Magnetic Resonance (fMRI) imaging:

I Graña, M.; Manhaes-Savio, A.; Garcia-Sebastián, M. &
Fernandez, E., A Lattice Computing approach for On-line fMRI

analysis, Image and Vision Computing, 2010, 28, 1155-1161
I Graña, M.; Chyzhyk, D.; Garcia-Sebastián, M. & Hernández,
C., Lattice independent component analysis for functional

magnetic resonance imaging, Information Sciences, 2011,
181, 1910 - 1928

I Mobile Robot Localization:

I Villaverde, I.; Fernandez-Gauna, B. & Zulueta, Lattice
Independent Component Analysis for Mobile Robot

Localization, Hybrid Arti�cial Intelligence Systems, pt 2,

E. Corchado, E.; Romay, M. & Savio, A. (ed.),
Springer-Verlag, 2010, 6077, 335-342



More on Lattice Methods and it's applications

I Hyperspectral image unmixing:
I Ritter, G. X. & Urcid, G., A lattice matrix method for

hyperspectral image unmixing, Information Sciences, 2010,
181, 1787-1803

I Graña, M.; Villaverde, I.; Maldonado, J. & Hernandez, C. Two
Lattice Computing approaches for the unsupervised

segmentation of Hyperspectral Images, Neurocomputing,
2009, 72(10-12), 2111-2120

I Lattice Computing and Endmember Induction Algorithms
(EIAs) reviews:

I Graña, M. A brief review of lattice computing, Fuzzy

Systems, FUZZ-IEEE 2008, (IEEE World Congress on
Computational Intelligence), 2008, 1777 -1781

I Veganzones MA, Grana M, Endmember extraction methods: A

short review, KES 2008, Knowledge-Based Intelligent

Information and Engineering Systems, pt 3, (International
Conference on Knowledge-Based Intelligent Information and
Engineering Systems), 2008, 400-407
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