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Abstract—This paper introduces a novel Content-Based Image
Retrieval (CBIR) system for hyperspectral image databases using
both spectral and spatial features computed following an unsu-
pervised unmixing process which minimizes human intervention.
The set of endmembers obtained from the image by an Endmem-
ber Induction Algorithm provides the image spectral features.
Spatial features are computed as abundance image statistics.
Both kinds of information are functionally combined into a
dissimilarity measure between two hyperspectral images. This
dissimilarity measure guides the search for answers to database
queries. The system allows the user to retrieve hyperspectral
images containing materials similar to the query image, and in
a similar proportion. We provide validation results using both
synthetic hyperspectral datasets and real hyperspectral data.

Index Terms—Hyperspectral images, CBIR systems, linear
unmixing, endmember induction, image synthesis, CBIR quality
measures.

I. INTRODUCTION

A Content Based Image Retrieval (CBIR) system [1], [2],
[3] is able to retrieve the images stored in an image database
using as image indexing values feature vectors extracted from
the images by means of computer vision and digital image
processing techniques. Conventional search in image databases
is performed on the basis of metadata provided by the sensor
or the human interaction. Sensor metadata may include time
and position data, while human metadata refer to the human
interpretation of the image contents. In CBIR approaches,
image metadata is automatically generated by the machine
interpretation of the image contents, with minimal human
intervention. Specifically, in query-by-example CBIR, the in-
terrogation to the database is done through the presentation of
a query image, and the query’s answer consists of the most
similar images in the database according to some similarity
measure defined on the image feature space.

The increasing amount of Earth Observation data provided
by hyperspectral sensors, motivates research in some techno-
logical problems raised by the sheer scale of the amount of
available data. Among them, searching through these huge
databases using CBIR techniques has not been properly ad-
dressed for the case of hyperspectral images. Approaches
to CBIR in remote sensing image databases reported in the
literature are focused on panchromatic images, SAR data
or low dimensional multispectral images such as LANDSAT
[4], [5], [6]. There are few works in the literature dealing
explicitly with the spectral information to guide the search
[7], [8], [9], [10]. These works define the image features as
the endmembers induced from the hyperspectral data by some

Endmember Induction Algorithm (EIA). One inconvenience
of these CBIR systems is that they can not discriminate
among images with the same induced endmembers but very
different spatial distributions. In this paper, we propose a
Spectral-Spatial feature extraction process, that makes this
discrimination possible, and we provide an evaluation of its
effectiveness on synthetic and real hyperspectral data.

The contents of the paper are the following. Section II
provides a description of the Spectral-Spatial CBIR system.
Section III describes the methodological issues of its valida-
tion. Section IV gives the validation results using synthetic
hyperspectral images. Section V gives validation results using
a real hyperspectral dataset. Section VI gives our conclusions
and directions for further work.

II. SPECTRAL-SPATIAL CBIR SYSTEM

We first describe the Spectral-Spatial CBIR system’s ar-
chitecture, next we detail the Spectral-Spatial feature charac-
terization, and the Spectral-Spatial dissimilarity function over
which the proposed CBIR system is built on.

A. System’s architecture

Figure 1 shows the Spectral-Spatial CBIR system scheme.
The core of the CBIR system is the Spectral-Spatial dissimi-
larity function between two hyperspectral images by means of
their spectral and spatial features. The system interacts with a
feature database where the Spectral-Spatial features of the im-
ages are stored. These features have been previously extracted
by offline application of an Endmember Induction Algorithm
(EIA) and a spectral unmixing method using the endmembers
extracted by the EIA from the image. System interrogation is
done using a query example approach. First, the query example
is processed to extract its Spectral-Spatial features and second,
it is compared to the images in the database using the Spectral-
Spatial dissimilarity measure. A ranking of the images in the
database is elaborated by ascending order of dissimilarity to
the query. Finally, the system returns the k images in the
database corresponding to the first k ranking positions, where
k is known as the query’s scope.

B. Spectral-Spatial feature extraction process

Hyperspectral images in the database are indexed by low
level feature vectors, that are extracted and stored offline. To
that effect we assume the linear mixing model [11], where
a hyperspectral image is the result of the linear combination
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Figure 1. Spectral-Spatial CBIR system’s schema

of the pure spectral signatures of ground components, named
endmembers, with a fractional abundance matrix.

Let E = [e1, . . . , em] be the pure endmember signatures
(normally corresponding to macroscopic objects in scene, such
as water, soil, vegetation, ...) where each ei ∈ Rq is a q-
dimensional vector. Then, the hyperspectral signature r at each
pixel in the image is defined by the expression

r = s + n =

m∑
i=1

eiφi + n, (1)

where the hyperspectral signature r is formed by the sum
of the pixel’s signal s and an independent additive noise
component n; and, φ is the m-dimensional vector of fractional
abundances at the given pixel subject to constraints: φi ≥ 0,
∀i = 1, . . . ,m, and

∑m
i=1 φi = 1. This equation can be

extended to the full image as H = EΦ + n, where H
is the hyperspectral image and Φ is a matrix of fractional
abundances.

We characterize an hyperspectral image Hα by a tuple
(Eα,Φα), where Eα =

{
eα1 , e

α
2 , . . . , e

α
mα

}
is the set of

mα induced endmembers from the α-th image; and, Φα ={
φα1 , φ

α
2 , . . . , φ

α
mα

}
is the set of fractional abundance maps

resulting from the unmixing process, where each φαi repre-
sents the spatial distribution of the induced endmember eαi ,
i = 1, . . . ,mα, in the image. We refer to the tuple (Eα,Φα)
as the Spectral-Spatial features of the hyperspectral image Hα.

To implement this approach, an EIA is first used to induce
the spectral signatures (the endmembers) of the image; and
then, an unmixing method calculates from the image the
spatial distribution of each endmember (the fractional abun-
dances).

C. Spectral-Spatial dissimilarity measure

The Spectral-Spatial CBIR system of figure 1 uses a dis-
similarity measure between the Spectral-Spatial features of
hyperspectral images described above. The aim is to declare
images sharing some of their constituent materials as similars.
We detect this similarity through the similarity between image

spectra and their relative abundance proportions. The spectral-
spatial dissimilarity is a version of the Integrated Region
Matching (IRM) dissimilarity function [12] used for region
matching-based image retrieval. The overall IRM dissimilarity
between two images depends on two aspects: the similarity
between each region pair from the two images, and the sig-
nificance of each region pair matching. To build our Spectral-
Spatial dissimilarity measure, we establish a correspondence
between IRM regions and spectral signatures. Region pair
matching corresponds to the matching of pairs of spectral
signatures built on the distance between each pair of the
endmembers from both images. Significance corresponds to
endmember average abundances.

Let Eα =
{
eα1 , e

α
2 , . . . , e

α
mα

}
be the set of endmembers

induced from the hyperspectral image Hα in the database,
where mα is the number of induced endmembers from the α-th
image; and Φ̄α =

{
φ̄α1 , φ̄

α
2 , . . . , φ̄

α
mα

}
the average abundances

of Hα, where φ̄αi = 1
N

∑N
j=1 φ

α
i (j), i = 1, . . . ,mα, being

φαi (j) the i-th endmember fractional abundance for a pixel j,
and N the number of pixels in the image. Given two images,
Hα and Hβ , we first compute the Spectral Distance Matrix,
Dα,β , as

Dα,β = [dij ; i = 1, . . . ,mα; j = 1, . . . ,mβ ] , (2)

whose elements dij are the distances between the endmembers
eαi , e

β
j ∈ Rq of each image. Any spectral distance function

d : Rq × Rq → R+ can be used, for instance, the Euclidean
distance or the angular pseudo-distance (SAM) [13].

Then, we define the Spectral-Spatial dissimilarity measure,
s (Hα, Hβ), as

s (Hα, Hβ) =
∑
i,j

rijdij , (3)

where dij is the spectral distance between endmembers eαi
and eβj , and rij is the significance associated to dij .

The formulation of the measure needs a
definition for the significance matrix Rα,β =
[rij ; i = 1, . . . ,mα; j = 1, . . . ,mβ ]. We follow the most
similar highest priority (MSHP) principle [12], making use of
the average abundances Φ̄α and Φ̄β . The average abundances
represent “significance credits” assigned to the endmember
spectral distances by Algorithm 1.

The algorithm for the assignment of significance credits
starts by initializing the set of all possible endmember pairs,
M = {(i, j) : i = 1, . . . ,mα; j = 1, . . . ,mβ}, where mα

and mβ indicate the number of endmembers for images
Hα and Hβ respectively, and the set of previously selected
endmember pairs, L = {} (Steps 1, 2). In each subsequent
iteration, the algorithm first selects the pair of endmembers
(i, j) : i = 1, . . . ,mα; j = 1, . . . ,mβ , with minimum
spectral distance, dij , from the set of available pairs, (i, j) ∈
M−L, (Step 3). Let (i′, j′) denote the selected pair. Second,
the value of the minimum of the average fractional abundances
is assigned as the pair’s corresponding significance, ri′j′ =

min
{
φ̄αi′ , φ̄

β
j′

}
(Step 4). Notice that the average abundances

are always equal to or greater than zero. If φ̄αi′ < φ̄βj′ , then
the elements of significance matrix row i′ are set to zero;
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Algorithm 1 Significance credits assignment algorithm.
1) Set L = {}.
2) DenoteM = {(i, j) : i = 1, . . . ,mα; j = 1, . . . ,mβ}.
3) Choose the minimum dij for (i, j) ∈M−L. Label the

corresponding (i, j) as (i′, j′).
4) ri′j′ = min

{
φ̄αi′ , φ̄

β
j′

}
.

5) If φ̄αi′ < φ̄βj′ , set ri′j = 0, for all j 6= j′; otherwise, set
rij′ = 0, for all i 6= i′.

6) If φ̄αi′ < φ̄βj′ , set φ̄αi′ = 0 and φ̄βj′ = φ̄βj′ − φ̄αi′ ; otherwise,
set φ̄βj′ = 0 and φ̄αi′ = φ̄αi′ − φ̄

β
j′ .

7) L = L+ {(i′, j′)}.
8) If

∑pα
i=1 φ̄

α
i > 0 and

∑pβ
j=1 φ̄

β
j > 0, go to step 3;

otherwise, stop.

otherwise, the elements of significance matrix column j′ are
set to zero (Step 5). Then, the pool of significance credits is
reduced. If φ̄αi′ < φ̄βj′ , then set φ̄αi′ = 0 and φ̄βj′ = φ̄βj′ − φ̄αi′ ;
otherwise set φ̄βj′ = 0 and φ̄αi′ = φ̄αi′ − φ̄

β
j′ (Step 6). Finally,

(i′, j′) is added to the set of previously selected pairs, L
(Step 7). When the stopping condition,

∑mα
i=1 φ̄

α
i = 0 or∑mβ

j=1 φ̄
β
j = 0, is met the algorithm ends; otherwise a new

iteration starts (Step 8).

III. SPECTRAL-SPATIAL CBIR SYSTEM VALIDATION

There are two key elements of the validation process.
First, the performance measures used to compare the diverse
instances of the system obtained by different parametrizations.
Second, the strategy followed to obtain the reference measures.
Namely, how the ground truth references are obtained and used
to compute the benchmarking performance measures.

A. CBIR performance measures

Evaluation metrics from information retrieval field have
been adopted to evaluate CBIR systems quality. The two most
used evaluation measures are precision and recall [1], [5].
Precision, p, is the fraction of the returned images that are
relevant to the query. Recall, q, is the fraction of returned
relevant images respect to the total number of relevant images
in the database according to a priori knowledge. If we denote
T the set of returned images and R the set of all the images
relevant to the query, then

p =
|T ∩R|
|T |

(4)

r =
|T ∩R|
|R|

(5)

Precision and recall follow inverse trends when considered
as functions of the scope of the query. Precision falls while
recall increases as the scope increases. To evaluate the overall
performance of a CBIR system, the Average Precision and
Average Recall are calculated over all the query images in the
database. For a query of scope k, these are defined as:

Pk =
1

N

N∑
α=1

Pk(Hα) (6)

and

Rk =
1

N

N∑
α=1

Rk(Hα). (7)

The Normalized Rank [14] is a performance measure used
to summarize system performance into an scalar value. The
normalized rank for a given image ranking Ωα, denoted as
Rank (Hα), is defined as:

Rank (Hα) =
1

NNα

(
Nα∑
i=1

Ωiα −
Nα (Nα − 1)

2

)
, (8)

where N is the number of images in the dataset, Nα is the
number of relevant images for the query Hα, and Ωiα is the
rank at which the i-th image is retrieved. This measure is
0 for perfect performance, and approaches 1 as performance
worsens, being 0.5 equivalent to a random retrieval. The
average normalized rank, ANR, for the full dataset is given
by:

ANR =
1

N

N∑
α=1

Rank (Hα) . (9)

B. Validation methodology

We perform separate validation experiments using a syn-
thetic dataset and real data. In both cases we follow a similar
methodology, explained below. However, each dataset serves
to validate different aspects of the Spectral-Spatial CBIR
system. We make use of a synthetic dataset to test the system
robustness against changes in its internal components, that
is, the selected spectral distance and methods used to extract
the Spectral-Spatial features; as well as the system robustness
against noisy data. In the experiments with real data we test
the applicability of the proposed system in a real scenario.

The general methodology followed in all the experiments
has two main phases. First, we perform offline the Spectral-
Spatial feature extraction of the hyperspectral images in the
given dataset. For each image, we apply independently ei-
ther the ILSIA [15], the N-FINDER [16] or the FIPPI [17]
endmember induction algorithms (EIAs) to induce the set of
endmembers. Therefore, we have three competing spectral
features of each image. A brief review of these three EIAs
is given in an appendix. ILSIA is fully automatic and do
not require any input parameter. N-FINDR and FIPPI requires
as input the estimation of the number of endmembers in the
image, m. For the latter EIAs, m is estimated by means of the
Harsanyi-Farrand-Chang (HFC) virtual dimensionality method
[18] setting the false alarm rate to α = 10−5. The number
of endmembers induced by ILSIA and FIPPI algorithms may
be different from the HFC method estimation. For each set
of induced endmembers, we calculate their respective spa-
tial fractional abundances using the Full Constrained Least
Squares Unmixing (FCLSU) method [19].

In the second phase, for each hyperspectral image Hα

in a dataset we calculate the dissimilarity measure of equa-
tion (3) between Hα and each of the remaining images
in the dataset. These dissimilarities are represented as a
vector sα = [sα1, . . . , sαN ], where N is the number of
images in the dataset and sα,β is the dissimilarity between
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the images Hα and Hβ , with α, β = 1, . . . , N . We can
define the ranking of the dataset relative to the query im-
age, Ωα = [ωα,p ∈ {1, . . . , N} ; p = 1, . . . , N ], as the set
of image indexes ordered according to increasing values of
their corresponding entries in the dissimilarity vector sα. That
is, we sort in increasing order the components of sα, and
the resulting shuffled image indexes constitute Ωα, so that
sα,ωα,p ≤ sα,ωα,p+1 . The ranking Ωα can be computed either
on the ground truth information or on the induced endmembers
and estimated abundances.

Finally, we estimate the Spectral-Spatial CBIR system
performance measures, average precision, average recall and
average normalized rank, as follows. For each hyperspectral
image Hα, a query Qk(Hα) is formulated returning the k most
similar (less dissimilar) images Hβ in the dataset relative to
the image Hα, where k is the scope of the query and takes
values in the range 1 ≤ k ≤ N . The set of returned images
Tk(Hα) and the set of relevant images Vk(Hα) for a query
Qk(Hα) used to calculate the CBIR performance measures
can be obtained from the rankings computed from the induced
endmembers and the ground truth, respectively.

IV. VALIDATION USING SYNTHETIC DATASETS

We use a collection of synthetic hyperspectral images to test
the robustness of the proposed Spectral-Spatial CBIR system
to variations on the selected spectral distance, and the applied
endmember induction algorithms. We also test the influence in
the system performance of random noise added to the synthetic
images. The section starts by describing how we construct
the synthetic hyperspectral images. Next, we comment on the
specific methodological details, and, finally, we give the results
of the experiments.

A. Synthetic dataset

The synthetic hyperspectral images are generated as linear
mixtures of a set of spectra (the groundtruth endmembers) ac-
cording to synthesized fractional abundance coefficients. The
generation of the abundance coefficients is a spatial process
performed independently for each desired endmember, which
does not ensure for each pixel in the image the normalization
properties required by the linear mixing model. To ensure
them, the resulting collection of abundance images for all
endmembers are processed imposing normalization conditions
independently for each pixel.

The pool of ground-truth endmembers is a subset of ten
spectral signatures selected from the USGS spectral library1.
The synthetic groundtruth multidimensional fractional abun-
dance images are generated in a two-step procedure. First,
we simulate the abundance images corresponding to each
endmember as 2D products of 1D Legendre polynomials with
randomly generated parameters. Second, to ensure that there
are regions of almost pure endmembers, we select for each
pixel the abundance coefficient with the greatest value and we
normalize the remaining to ensure that the abundance coeffi-
cients sum up to one. Figure 2 gives an instance of synthetic

1http://speclab.cr.usgs.gov/spectral-lib.html

Figure 2. An instance of synthetic fractional abundance images generated
using random Legendre polynomials.

fractional abundance images generated using random Legendre
polynomials to build a hyperspectral image composed of three
endmembers.

We have synthesized a total of 1000 hyperspectral images.
All the synthesized hyperspectral images have 269 spectral
bands per pixel, and their size is 64×64 pixels. Each synthetic
image is built with a number of ground-truth endmembers,
m = {2, 3, 4, 5}, randomly selected from the pool of available
ground-truth endmembers. We have generated for the exper-
iments in this paper, 250 images of each number of ground-
truth endmembers.

In addition to this dataset, hereafter named as the clean
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dataset, three more datasets have been built by adding random
Gaussian noise to each of the clean dataset images, resulting in
noise images with signal to noise ratios (SNR) 30dB, 40dB and
50dB. We denote clean dataset as Do, and the noisy datasets
as D30dB , D40dB and D50dB .

B. Methodology

We have performed independent experiments2 over each
of the four hyperspectral synthetic datasets, following the
methodology explained in section III-B. Let us distinguish
between sGT

α , the vector of dissimilarities computed using the
known ground truth endmembers and fractional abundances
used to synthesize the images, and sIND

α , the vector of dissimi-
larities computed using the endmembers induced by one of the
EIAs (either ILSIA, N-FINDER or FIPPI) and their estimated
abundances. We distinguish as well rankings ΩGT

α and ΩIND
α

corresponding to the ground truth and induced dissimilarities,
respectively.

The set of returned images Tk(Hα) and the set of relevant
images Vk(Hα) for a query Qk(Hα) are defined as follows:

Tk(Hα) = ΩIND
α,k =

[
ωIND
α,p s.t. sα,ωIND

α,p
≤ sα,ωIND

α,k

]
, (10)

Vk(Hα) = ΩGT
α =

[
ωGT
α,p s.t. sα,ωGT

α,p
≤ t
]
, (11)

where t = s̄GT
α − 2σsGT

α
, and s̄GT

α and σsGT
α

are respectively the
mean and standard deviation of sGT

α . This definition allows
for the inclusion in the query’s answer of images whose
dissimilarity is equal to the maximum one, thus allowing that
the cardinality of both returned and relevant sets may be bigger
than k. Now Tk (Hα) and Vk (Hα) can be used to calculate
the average precision and recall measures of the system, as
well as the average normalized rank.

C. Performance results

Figures 3, 4, 5 and 6 show the plots of the precision-recall
curves for the noise free dataset and the 30dB, 40dB and 50dB
datasets respectively. It can be appreciated that for low levels
of noise the performance is similar to the noise free case.
In general, the plots show a rather high insensitivity to the
choice of EIA and individual endmember spectral distance,
because corresponding curves are not very different, except
in the limit of low recall values where a clear sensitivity
to the individual endmember distance is made apparent. The
Euclidean distance systematically improves the SAM distance,
giving higher precision at the same recall value. Increasing
recall value range reverses the picture, so that the SAM
distance improves systematically over the Euclidean distance
in the noise free case. One effect of the noise is the cancellation
of this effect. For the highest noise (30dB) the SAM never
improves the Euclidean distance. Other effect of the noise
is the disappearance of the effect of the EIA chosen. In the
noise free data set, the ILSIA and N-FINDR show a small

2The Matlab code for the hyperspectral image synthesis and endmember
induction is publicly available from http://www.ehu.es/ccwintco/index.php/
GIC-source-code-free-libre

Figure 3. Precision-recall curves for Do synthetic dataset.

Figure 4. Precision-recall curves for D30dB synthetic dataset.

improvement on the FIPPI, however these relations change
according to the noise level, disappearing at the highest noise
level.

Table I gives the Averaged Normalized Rank values ob-
tained. The results confirm the conclusions from the figures.
The SAM distance is most affected by noise, showing the
worse results for the noisiest data. The Euclidean distance is
much more robust relative to noise. Comparing the effect of
the EIA chosen, the ILSIA gives the best result in the noise
free data, and the differences between algorithms disappear
for the noisiest data.

Averaged Normalized Rank (ANR)
ILSIA N-FINDR FIPPI

Dataset ED SAM ED SAM ED SAM
Do 0.043 0.053 0.050 0.058 0.064 0.074

D30dB 0.045 0.101 0.043 0.097 0.043 0.099
D40dB 0.042 0.057 0.036 0.048 0.037 0.052
D50dB 0.042 0.053 0.038 0.045 0.041 0.051

Table I
ANR RESULTS FOR SYNTHETIC DATASETS.
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Figure 5. Precision-recall curves for D40dB synthetic dataset.

Figure 6. Precision-recall curves for D50dB synthetic dataset.

V. VALIDATION USING REAL DATA

Here we test the proposed Spectral-Spatial CBIR system
over a dataset of real hyperspectral images to validate the
system usage in a real scenario. We first introduce the hyper-
spectral dataset used in the experiments, we follow explaining
the specific methodological aspects of the experiments and
finally, we give the results.

A. HyMAP dataset

The hyperspectral HyMAP data was made available from
HyVista Corp. and German Aerospace Center’s (DLR) optical
Airbone Remote Sensing and Calibration Facility service3.
The sensed scene corresponds to the radiance captured by
the sensor in a flight line over the facilities of the DLR
center in Oberpfaffenhofen (Germany) and its surroundings,
mostly fields, forests and small towns. Figure 7 shows the
scene captured by the HyMAP sensor. The data cube has 2878
lines, 512 samples and 125 bands; and the pixel values are
represented by 2-bytes signed integers.

3http://www.OpAiRS.aero

Figure 7. Hyperspectral scene by HyMAP sensor capturing the DLR facilities
in Oberpfaffenhofen and its surroundings.
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We cut the scene in patches of 64×64 pixels size for a total
of 360 patches forming the hyperspectral database used in the
experiments. We grouped the patches by visual inspection in
five rough categories. The three main categories are ’Forests’,
’Fields’ and ’Urban Areas’, representing patches that mostly
belong to one of this categories. A ’Mixed’ category was
defined for those patches that presented more than one of
the three main categories, being not any of them dominant.
Finally, we defined a fifth category, ’Others’, for those patches
that didn’t represent any of the above or that were not easily
categorized by visual inspection. The number of patches per
category are: (1) Forests: 39, (2) Fields: 160, (3) Urban Areas:
24, (4) Mixed: 102, and (5) Others: 35.

B. Methodology

We perform three experiments to validate the use of the
proposed Spectral-Spatial CBIR system in a real life scenario.
In the first experiment we tested the system using the patches
belonging to the three main categories: Forests, Fields and
Urban Areas. In second experiment we added patches from
the fourth category: Mixed. Finally, in third experiment we
used the full patches database.

Let us denote sIND
α the vector of dissimilarities computed

using the endmembers induced by one of the EIAs (either
ILSIA, N-FINDER or FIPPI) and ΩINDα to their respective
rankings. The groundtruth is given by the a-priori categoriza-
tion made by visual inspection, and the set of relevant images
is composed in a different way to previous experiments using
synthetic data. Given a query Qk(Hα), the set of returned
images Tk(Hα) and the set of relevant images Vk(Hα) are
defined as follows:

Tk(Hα) = ΩINDα,k =
[
ωINDα,p s.t. sα,ωINDα,p

≤ sα,ωINDα,k

]
(12)

Vk(Hα) = ΩGTα = [β s.t. C (β) = C (α)] (13)

where C (γ) indicates the category to which the patch Hγ

belongs. This way, the relevant set for a query patch Hα is
formed for all those patches belonging to its same category
C (α). Now Tk (Hα) and Vk (Hα) can be used to calculate
the average precision and recall measures of the system, as
well as the average normalized rank.

C. Performance results

Figure 8 shows the precision-recall curve for the first experi-
ment, with varying EIA and endmember distance. Surprisingly,
the best result correspond to the SAM distance, when using
the N-FINDR endmember induction. For low recall values, the
differences between algorithms and distances are negligible.
In all combinations, the precision-recall curves are very high,
showing that the approach is feasible for real-life applications.
In table II we have the ANR results for the first experiment.
Notice that most values when computing the SAM among
endmembers induced by N-FINDR are below 0.1.

Adding new categories, the performance of the system
degrades gracefully, as shown in figures 9 and 10, maintaining

Figure 8. Precision-recall curves for HyMAP experiment 1.

Averaged Normalized Rank (ANR)
ILSIA N-FINDR FIPPI

Category ED SAM ED SAM ED SAM
Forests 0.115 0.069 0.083 0.023 0.143 0.082
Fields 0.093 0.109 0.090 0.079 0.119 0.128

Urban Areas 0.334 0.250 0.152 0.010 0.255 0.220
Average 0.181 0.143 0.108 0.068 0.172 0.143

Table II
ANR RESULTS FOR HYMAP EXPERIMENT 1.

high precision for low recall values. The ANR results in tables
III and IV still provide the best results for SAM distance. This
must be due to the magnitude normalization performed by the
SAM that removes some illumination effects that are stronger
for the Euclidean distance. In all cases, the non-homogeneous
categories, such as Urban Area, Mixed and Other, are the most
difficult to retrieve, and the inclusion of new categories does
not help to improve retrieval figures.

VI. CONCLUSIONS

This paper introduces a spatial-spectral CBIR system, pro-
viding validation results on synthetic and real hyperspectral

Figure 9. Precision-recall curves for HyMAP experiment 2.
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Averaged Normalized Rank (ANR)
ILSIA N-FINDR FIPPI

Category ED SAM ED SAM ED SAM
Forests 0.146 0.097 0.115 0.054 0.169 0.113
Fields 0.194 0.213 0.187 0.180 0.219 0.227

Urban Areas 0.338 0.255 0.156 0.108 0.253 0.220
Mixed 0.356 0.340 0.352 0.348 0.364 0.359

Average 0.259 0.226 0.203 0.173 0.251 0.230

Table III
ANR RESULTS FOR HYMAP EXPERIMENT 2.

Figure 10. Precision-recall curves for HyMAP experiment 3.

data. The source code for the synthetic data is free and avail-
able via the research group’s site. To validate our approach
we have followed a rigorous methodological framework using
both synthetic and real datasets. The results on the synthetic
datasets demonstrate the system robustness against noise and
changes in the choice of endmember induction algorithm and
endmember distances. The results on the real data confirm the
usefulness of the proposed system. Further comparison with
other CBIR systems based on other features would reinforce
this conclusion.

Further research efforts will be addressed to the defini-
tion of a convenient user interaction for relevance feedback
implementations based on the one-class SVM and/or similar
classification approaches.
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Averaged Normalized Rank (ANR)
ILSIA N-FINDR FIPPI

Category ED SAM ED SAM ED SAM
Forests 0.139 0.095 0.109 0.051 0.166 0.113
Fields 0.211 0.228 0.197 0.196 0.236 0.242

Urban Areas 0.336 0.261 0.155 0.119 0.250 0.224
Mixed 0.360 0.347 0.352 0.356 0.372 0.368
Other 0.460 0.466 0.455 0.404 0.482 0.463

Average 0.301 0.280 0.254 0.225 0.301 0.282

Table IV
ANR RESULTS FOR HYMAP EXPERIMENT 3.

Algorithm 2 ILSIA algorithm
1) Initialize the set of lattice sources X = {x1} with a

randomly picked vector in the input dataset Y .
2) Construct the LAAM, WXX , based on the strong lattice

independent (SLI) vectors, X .
3) For each data vector yj , j = 1, . . . , N :

a) If yj = WXX ∨� yj then yj is lattice dependent on
the set of lattice sources X , skip further processing.

b) Test max/min dominance to ensure SLI, consider
the enlarged set of lattice sources X ′ = X ∪ {yj}
i) µ1 = µ2 = 0

ii) For i = 1, . . . ,K + 1
iii) s1 = s2 = 0

A) For j = 1, . . . ,K + 1 and j 6= i
d = xi − xj ; m1 = max (d); m2 =
min (d).
s1 = s1 + (d == m1), s2 = s2 +
(d == m2).

B) µ1 = µ1 +(max (s1) == K) or µ2 = µ2 +
(max (s2) == K).

iv) If µ1 = K + 1 or µ1 = K + 1 then X ′ =
X ∪ {yj} is SLI, go to 2 with the enlarged set
of lattice sources and resume exploration from
j + 1.

4) The final set of lattice sources is X.

Miguel A. Veganzones is supported by predoctoral grant
BFI_07.225 from the Basque Government.

APPENDIX

A. ILSIA

The Incremental Lattice Source Induction Algorithm (IL-
SIA) [15] is grounded in the formal results on continuous
Lattice Auto-Associative Memories (LAAMs) [20]. The algo-
rithm aims to produce sets of Strong Lattice Independent (SLI)
vectors extracted from the input dataset. The resulting sets
are affine independent, that is, they define convex polytopes
that cover some (most of) the data points in the dataset.
Algorithm (2) shows the ILSIA pseudo-code. To ensure that
the resulting set of vectors are SLI, we first ensure that they
are lattice independent in step 3a of Algorithm. Each new
input vector is applied to the LAAM constructed with the
already selected lattice sources. If the recall response evoked
by the vector is perfect, then it is lattice dependent on the
lattice sources, and can be discarded. If not, then the new
input vector is a candidate lattice source. In step 3b the min
and max dominance of the set of lattice sources enlarged with
the new input vector is tested.

B. N-FINDR

Algorithm 3 presents the N-FINDER [16] pseudo-code. The
N-FINDER algorithm works by growing a simplex inside the
data, beginning with a random set of pixels. The vertexes of the
simplex with higher volume are assumed to identify the end-
members. Previously, data dimensionality has to be reduced to
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Algorithm 3 N-FINDR algorithm
1) Apply Principal Component Analysis (PCA) to reduce

the data dimensionality. Keep the first p − 1 principal
components.

2) Randomly select p vectors from the data to initialize the
set of induced endmembers E.

3) Calculate the volume of the simplex v = V (E) (15).
vactual = v.

4) For each endmember ek, k = 1, . . . p:
a) For each data vector xi, i = 1, .., N :

i) Form a new matrix E′ by substituting the
endmember ek by the data vector xi.

ii) Calculate the volume of the simplex v′ =
V (E′).

iii) If v′ > vactual then E′ becomes E. vactual =
v′.

5) If vactual > v then v = vactual. Go to step 4.

p−1 dimensions, being p the number of endmembers searched
for.

Let E be the matrix of endmembers augmented with a row
of ones

E =

[
1 1 . . . 1
e1 e2 . . . ep

]
, (14)

where ei is a column vector containing the spectra of the
i-th endmember. The volume of the simplex defined by the
endmembers is proportional to the determinant of E

V (E) =
abs (det (E))

(p− 1)!
. (15)

The N-FINDER starts by selecting an initial random set of
pixels as endmembers. Then, for each pixel and each stored
endmember, the endmember is replaced with the spectrum of
the pixel and the volume recalculated by equation (15). If
the volume of the new simplex increases, the endmember is
replaced by the spectrum of the pixel. The procedure ends
when no more replacements are done. The N-FINDER is a
greedy algorithm, prone to fall in local maxima of the volume
function.

C. FIPPI

The Fast Iterative Pixel Purity Index (FIPPI) [17] method
is an improved version of the Pixel Purity Index [21] algo-
rithm for endmembers induction. PPI is an heuristic algorithm
based on the projection of the dimensionality reduced dataset
onto a set of k random unit vectors denoted as skewers,
{skewerj}kj=1, where k is a sufficiently large positive integer.
All the data sample vectors are projected onto each skewerj ,
selecting the extreme vectors that form an extrema set, denoted
by S(skewerj). The PPI score for each point vector r is
calculated by

NPPI(r) =
∑
j

IS(skewerj)(r) (16)

where IS(skewerj) is an indicator function of an extrema set
defined as

IS(skewerj) =

{
1, if r ∈ S(skewerj)

0, if r /∈ S(skewerj)
(17)

After finding the PPI scores, NPPI(r), for all the sample
vectors, the vectors with a PPI scores such that NPPI(r) ≥
t are selected as endmember candidates. The PPI algorithm
involves defining two parameters k and t, being k the number
of random generated skewers and t the threshold value to find
the endmember candidates.

PPI has several drawbacks, it’s not an iterative process and
does not guarantee that the generated endmembers are actually
true endmembers due to the randomness of generated skewers,
a different set of skewers generate a different set of endmem-
bers; it’s very sensible to noise, there is no criteria to select
the correct values for the k and t parameters, which determine
the number of final endmembers, and it requires human inter-
vention to manually select a final set of endmembers. FIPPI
algorithm addresses these major drawbacks. FIPPI uses the
HFC method [18] to find the virtual dimensionality of the data,
being p the number of endmembers required to be generated.
Then, FIPPI applies a MNF (or PCA) transform to reduce the
data to the first resulting p dimensions. FIPPI also uses the
Automated Target Generation Process (ATGP) [22] which is an
Endmember Initialization Algorithm to generate the initial set
of p skewers,

{
skewers

(0)
j

}p
j=1

. After algorithm initialization,

FIPPI iterates projecting in each iteration k all the sample
vectors onto each skewer, skewer(k)j to find those which are
at its extreme positions to form an extrema set, denoted by
S(skewer

(k)
j ), and then to find the sample vectors,

{
r
(k)
j

}
,

that produce the largest NPPI(r
(k)
j ) values (16). In each

iteration the joint set
{
skewer

(k+1)
j

}
=
{
r
(k)
j

}
NPPI(r

(k)
j )>0

∪{
skewer

(k)
j

}
is formed. If

{
skewer

(k+1)
j

}
=
{
skewer

(k)
j

}
no new endmembers are added to the skewer set and the
algorithm is terminated returning as endmembers those vectors
with NPPI(r

(k+1)
j ) > 0.
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