
Vector Quantization (VQ) is a technique that can be used to map analogue waveforms or discrete vector
sources into a sequence of digital data for storage or transmission over a channel [8, 5, 11]. A vector
quantizer is a mapping of input vectors into a finite collection of predetermined codevectors. The set of
codevectors is called the codebook. In this paper we are not concerned with the search for good
codebooks. Our concern is the acceleration of the codification process. We have found in the literature
[17, 15, 3] some attempts to speedup the computation of the NN decision rule. These approaches used the
fact that quite frequently the decision that a codevector is not the nearest neighbour of an input vector can
be taken without fulfilling the computation of the Euclidean distance. They didn't involve any loss of
accuracy and didn't propose any kind of computational distributed scheme. Our approach is a significative
departure from that, because it is a stochastic approximation that involves loss of classification accuracy,
thought it has a potential for greater speedups given fully distributed implementations.

Following work started in [6,7], we propose here a Local Stochastic Competition (LSC) decision rule for
VQ. The LSC rule is intended as a distributed stochastic approximation to the Nearest Neighbour (NN)
rule usually applied in VQ to perform the mapping of the input vector into the codebook. The approach is
related to Radial Basis Function (RBF) neural network architectures [9, 2, 14, 19, 18]. Radial Basis
Function networks have been applied to function approximation or interpolation. The function domain is
decomposed into a set of overlapping regions, each characterised by a kernel function whose parameters
usually are the centroid and width of the region. The most usual kernel functions are Gaussian. From the
Bayesian classification point of view [4], the use of Gaussian kernels can be interpreted as the
approximation of the input distribution by a mixture of Gaussian distributions, each characterised by its
mean and variance parameter. Each Gaussian distribution models the probability that a given input
belongs to a class. Our approach assumes this kind of probabilistic framework. We assume that each
codevector represents a separate class, being the mean of the Gaussian distribution. We assume that
variance parameters can be estimated, either by the codebook design algorithm, or from the codebook
itself. In the experiments reported here, the later has been assumed. Local Stochastic Competition, then,
consists in the parallel sampling of the "a posteriori" probabilities of the codevector classes, taken as
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0 INTRODUCTION



independent one-class problems. Note that, in the same framework, NN is the optimal Bayesian decision
rule when the class variances are identical.

In section 1 we introduce Vector Quantization. In section 2 we describe the Local Stochastic Competition.
In section 3 we give the results of the experiments upon a test image and some conclusions.

1 VECTOR QUANTIZATION

A grey level image is a matrix of pixels, each pixel taking values in the range {0..255}. A row-wise vector
decomposition of dimension d of the image is a succession of vectors X={x1,..,xN}, each xn composed of
d row-adjacent pixels. Column-wise and matrix-wise decompositions can be defined as well. A vector
quantization of the image is a map from each xn into a natural number, that transforms the vector
decomposition into a sequence of codes {c1,..,cN}.  A Vector Quantization (VQ) is usually defined
through a set of reference vectors Y={y1,..yM} called the codebook. M is the size of the codebook, and
the number of different codes. The compression rate obtained through VQ, for grey level images (8 bits
per pixel), is 8d/log2M. The vector quantization map is usually defined by the nearest neighbour rule:

  
CNN x,Y( ) = i s.t. x − y i = min

j=1..M
x − y j{ }

The decodification, that allows to recover the codified image, is, thus, defined as:

  D i,Y( ) = y i

The problem of Vector Quantization design is the search for codebooks that minimise the distortion
introduced by replacing the original xn vectors by their class representative yi. This tasks is intimately
related to clustering problems, and, so, the first approach found in the literature [11] was the application of
the well-known Isodata algorithm.  Recent approaches include the application of neural network ideas,
such as the Simple Competitive Learning (SCL) [1], the Self Organising Map (SOM) [10, 12, 13] or the
Soft-Competition [16, 20]. The codebooks used in our experiments were produced using a threshold
algorithm to determine the initial codevectors for the application of a Simple Competitive Learning.

The threshold algorithm starts by assigning the first sample vector as the first codevector: y1=x1. It then
iterates through the vector decomposition of the image until it finds a vector xk such that its distance to
each of the already found codevectors {y1,..,yc c<M} is greater than a threshold value. This is a new
codevector yc+1=xk. When the whole sample has been examined without achieving the completion of the
codebook, the threshold is halved and the search restarted. In our experiments the threshold value is given
by the formula: d*θ2.

The Simple Competitive Learning (SCL) algorithm is the simplest adaptive algorithm to compute the
centroids of the clusters of a sample, and the most efficient, provided good initial conditions. It can be
formally expressed as follows:

  
Δyi n( ) =

α i n( ) xn − yi n( )( ) i = CNN xk,Y n( )( )
0 j ≠ i

 
 
 

where αi(k) is the gain parameter that decreases to zero as the adaptation proceeds. In our case, we
decrease this parameter making  αi=αi*0.9 whenever Δyi>0.



2 LOCAL STOCHASTIC COMPETITION
As said in the introduction, our starting assumption is that each codevector represents a class of input
vectors whose distribution is a Gaussian centred at the codevector. Each codevector samples
independently a Bernouilli random variable of parameters   pn i( ),1 − pn i( )( ) :

  P xn ∈Ri[ ] = pn(i) = e- xn-yi
2 σi

2
i ∈ 1..M{ }

That is, each pn(i) is interpreted as the probability that xn belongs to the class represented by yi, taken as
an independent one-class classification problem for each codevector. An algorithmic description of the
sequential simulation of the LSC classification of an input vector xn, as done for our experiments, follows:

step 0- k=0
step 1- Built up the probability vector p=(pn(i,k) i=1..N) computed as follows:

  pn(i, k) =  e− xn −y i
2 ti k( ) with t i k( ) = f k( )σi

2

step 2- Sample the probabilities in p: Built up the set

  Sk = y i ∈Y pn i,k( ) ≥ ui{ }
where (u1,...,uN) are random numbers uniformly distributed in [0,1)

step 3-If |Sk| = 0  increase k by 1 and go to step 1
step 4- If |Sk|>0 perform a random selection with equal probabilities in the set Sk. If
codevector yi is chosen the codification is:

CLSC(xn,Y)=i

This process could be easily implemented in parallel, granting a separate processor for each codevector in
the codebook. An algorithm of the process associated with each codevector could read as follows:

wait for input xn or reintent
In case of new input   k=1
In case of reintent  k=k+1

Compute   pn(i, k) =  e− xn −y i
2 ti k( ) with t i k( ) = f k( )σi

2

Generate a random number u. If pn(i)>u signal 1, if not signal 0.

Where reintents are asked for by a process that receives the codevectors signals and detects that no one of
them has accepted the input vector as belonging to its class. The expected speedup of the codification
process comes from the substitution of the sequential search through the codebook by the parallel test of
the separate one-class probabilities. To have the guarantee that the process will converge, in the sense of
giving any response, the function f(k) must be monotonically increasing with k. The faster the increase,
the shorter the response. Mathematically, LSC generates, for a given xn, a random sequence of sets

  S1,.., SK{ }  with   Sk = 0  for k<K, and   SK > 0 . The stopping condition for this process is, then, to find a
non-empty set. It is easy to verify that the probability of finding a non-empty set increases as the process
goes on. The probability of finding an empty set at trial k is

  
P Sk = 0 xn,Y[ ] = 1- pn(i, k)( )

i=1

N
∏  =  1- e− xn −y i

2 t i k( ) 

 
 

 

 
 

i=1

N
∏

Given that f(k) is increasing:
  
lim
k→∞

e− xn −yi
2 t i k( ) = 1, and so:

  
lim
k→∞

P Sk = 0 xn ,Y[ ] = 0 , therefore:



  
lim
k→∞

P Sk > 0 xn,Y[ ] =1

The increasing nature of f(k) is of great relevance, both theoretical and practical. In our works we have
chosen the exponential 2k-1 , because of the emphasis we put in speeding up the classification process.
The fast increase of the variance term has the side effect of increasing the probability of bad classifications
[7].

The last topic that remains to be discussed, before the presentation of our experimental results, is the
estimation of the variance parameters. In the present work we have estimated these variance parameters
from the codebook itself as follows. Let Di denote the minimum distance from codevector yi to any other

codevector:
  
Di = min yi − yj

2
  j =1..M, j ≠ i 

 
 

 
 
 

 and compute the mean minimum distance between

codevectors 
  
D = 1

M
Di

i=1

N
∑ . The estimate of the variance associated with codevector yi are, then, computed

as follows:

  

ˆ σ i
2 =

Di
2d

if  Di ≤ D 

D 
2d

if  Di > D 

 

 
 

 
 

3 RESULTS AND CONCLUSIONS

We have performed a set of experiments of codification/decodification on the image in figure 1, applying
the threshold algorithm to obtain the initial codebooks, and SCL to improve over them. SCL was applied
only once to the vector decomposition of the image. The experiment parameters were the dimension of the
vector decomposition d, and the threshold parameter θ. The quality measures computed are the distortion
(δ) and signal-to-noise ratio (SNR). The expected speedup (s) of LSC over NN is computed as the
number of codevectors divided by the mean number of trials that LSC performs.  Tables 1 and 2 show the
numerical results. Table 1 shows the results of NN and LSC codification with 256 codevectors of varying
dimension (8, 16, 32, 64) obtained by application of SCL to the result of the threshold algorithm with
threshold parameters θ=8 and 32. Increasing d gives greater compression ratio. The variation of θ was
intended to give different initial conditions for SCL.

NN LSC
θ d SNR δ SNR δ s
8 8 27.0 466 23.4 1012 70
8 16 24.3 1328 20.5 3532 69
8 32 22.6 1878 19.1 5851 68
8 64 22.3 1655 19.3 8063 72
32 8 26.4 373 23.3 1217 79
32 16 23.4 822 19.0 4281 74
32 32 22.2 1196 18.0 8251 77
32 64 24.9 1057 20.6 4530 78

Table 1. M=256, results for NN and LSC coding for varying d and θ.



Table 2 shows the results of increasing number of codevectors. The codebooks are also obtained by
application of the threshold and SCL algorithms. Figure 2 shows the decodification of the test image after
NN codification using a codebook with 1024 codevectors of dimension 8. Figure 3 shows the
decodification of the LSC codification with the same codebook. This precise codebook was chosen
because it is the one that has the greater expected speedup.

NN LSC
M SNR δ SNR δ s
128 25.4 791 22.0 1547 34
256 27.0 466 23.4 1028 71
512 28.3 208 24.6 602 144
1024 30.8 50 26.6 234 304

Table 2. d=8, q=8. results for NN and LSC for increasing number of codevectors.

Table 1. Results for varying threshold parameter and vector decomposition dimension

From the data in both tables, it can be perceived an almost constant degradation of the LSC codification
relative to NN. The observation of the images in figure 2 and 3 shows that this degradation can be
acceptable, for applications without severe quality requirements. On the hand, table 2 shows how the
expected speedup increases with the number of codevectors, which makes LSC a suitable alternative for
applications with large codebooks.
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Figure 1. Original image



Figure 2. Image decoded from the codification obtained with NN. Compression rate 6,4.



 

Figure 3 Image decoded from the codification obtained with LSC. Compression rate 6,4.


