

Color video segmentation by dissimilarity based on edges

Lucía Ramos¹ Jorge Novo¹ José Rouco¹ Antonio Mosquera ² Manuel G. Penedo ¹

VARPA Group, Department of Computer Science, University of A Coruña, Spain

Artificial Vision Group, Department of Electronics and Computer Science, University of Santiago de Compostela, Spain

24 de junio 2010

Index

Introduction

- Motivation
- Objectives

2 Methodology

- Cut types
- General scheme
- Dissimilarity measures based on edges
- Improved extensions

3 Results

- Dataset
- Evaluation critery
- Experiments

4 Conclusions

Results

Contents

< 🗇 🕨

< ∃⇒

Ξ.

Motivation Objectives

Introduction > Motivation

Content-based multimedia retrieval

- Manual processes
 - Time-consuming
 - There are no uniform criteria

- ∢ ≣ ▶

Э

Solution

Automate

Lucía Ramos, Jorge Novo, José Rouco, Antonio Mosquera , Manuel G. Pen Color video segmentation by dissimilarity based on edges

Motivation Objectives

Introduction > Objectives

- Study of dissimilarity measures based on edges
 - Space domain
 - Frequency domain
 - Improved extensions to color-space
- Experimentation
 - Experiments design
 - Results

Lucía Ramos, Jorge Novo, José Rouco, Antonio Mosquera , Manuel G. Pen Color video segmentation by dissimilarity based on edges

Cut types General scheme Dissimilarity measures based on edges Improved extensions

-

Contents

2 Methodology

- Cut types
- General scheme
- Dissimilarity measures based on edges
- Improved extensions

3 Results

4 Conclusions

Cut types General scheme Dissimilarity measures based on edges Improved extensions

Shot change types

Sudden, ocurring an abrupt change between two consecutive frames

• Cut

• Gradual, ocurring slowly over successive frames

Cut types General scheme Dissimilarity measures based on edge Improved extensions

Dissolve

Frames of different scenes are superimposed, fading of the previous scene to defining the extent of the new.

Cut types

General scheme Dissimilarity measures based on edge mproved extensions

Fade

Special case of dissolve where a monochrome frame is intercalated between consecutive scenes.

Cut types General scheme Dissimilarity measures based on edges Improved extensions

General scheme of temporal video segmentation

- Acquire successive frames composing the video sequence
 - Grayscale representation
 - Color representation
- Obtain edge-based distance
 - Dissimilarity on space domain
 - Dissimilarity on frequency domain
- Decide the existence of shot changes
 - Fixed threshold
 - Adaptive threshold

Cut types General scheme Dissimilarity measures based on edges Improved extensions

Dissimilarity measures based on edges > Space domain

$$\rho_{out} = 1 - \frac{\sum_{x,y} E[x,y] \overline{E'}[x,y]}{\sum_{x,y} E[x,y]}$$

$$\rho_{in} = 1 - \frac{\sum_{x,y} \overline{E}[x,y] E'[x,y]}{\sum_{x,y} E[x,y]}$$

Proportion of entering pixeles

Elevated for a cut, a fade-in or in the second half of a dissolve

Scene breaks are detected by looking for peaks in ρ

Elevated for a cut, a fade-out or in the first half of a dissolve

Proportion of exiting pixeles

Cut types General scheme Dissimilarity measures based on edges Improved extensions

Dissimilarity measures based on edges > Frequency domain

Normalized correlation on frequency domain

Measuring the similarity between two consecutive frames. The peak represents the best match

$$\rho\left(\xi\right) = \frac{TF^{-1}\left\{\widehat{x}_{1}\left(\omega\right)\widehat{x}_{2}^{*}\left(w\right)\right\}}{\sqrt{\int |\widehat{x}_{1}\left(\omega\right)|^{2}d\omega \cdot \int |\widehat{x}_{2}\left(\omega\right)|^{2}d\omega}}$$

ㅋ ㅋ ㅋ

Ideal high-pass filter

Enhance the contribution of the regions that exhibit the characteristics of changes

Cut types General scheme Dissimilarity measures based on edges Improved extensions

Improved extensions > Color dissimilarity on space domain

Objective

Get edges due to color variations

Canny

- Smoothing
- Derivation
- Non-maximum suppression
- Hysteresis

Cut types General scheme Dissimilarity measures based on edges Improved extensions

Improved extensions > Color dissimilarity on space domain

RGB space

Not capture all possible color differences

Ratios of Gevers

For calculating perceptual color differences independently of the luminosity

$$m_i\left(C_1^{\overrightarrow{k_1}}, C_1^{\overrightarrow{k_2}}, C_2^{\overrightarrow{k_1}}, C_2^{\overrightarrow{k_2}}\right) = \frac{C_1^{\overrightarrow{k_1}}C_2^{\overrightarrow{k_2}}}{C_1^{\overrightarrow{k_2}}C_2^{\overrightarrow{k_1}}}$$

Derivation

★ Finite difference between the red-green, red-blue and green-blue channels

Cut types General scheme Dissimilarity measures based on edges Improved extensions

Improvements > Color dissimilarity on frequency domain

Objective

Correlation based on color variations

Adapting high-pass filter

Fourier Transform works with a complex representation

Color space \Rightarrow Several dimensions

RGB

- * Get 3 complex transformations and combine processed
- * Luminosity can not be separated

Cut types General scheme Dissimilarity measures based on edges Improved extensions

Improvements > Color dissimilarity on frequency domain

HSV space

• Complex representation of the hue-saturation space

 $b(x, y) = S(x, y) \cdot e^{iH(x, y)}$

• The lightness component is discarded

Cut types General scheme Dissimilarity measures based on edges Improved extensions

Improvements > Adaptative threshold

- Fixed threshold
 - It is based on experimental results
 - Remains fixed throughout the sequence

Problem

Difficult to establish the optimal threshold

Cut types General scheme Dissimilarity measures based on edges Improved extensions

Improvements > Adaptative threshold

Adaptative threshold

- It is based on the information contained in the video.
- Fits over the sequence as the variability of the scene.

 $T_I = \mu + \alpha \sigma$

It increases the rate of true positives without increasing false detections

Dataset Evaluation critery Experiments

Contents

2 Methodology

3 Results

- Dataset
- Evaluation critery
- Experiments

4 Conclusions

< ∃→

< A ▶

æ

Dataset Evaluation critery Experiments

Dataset

• TRECVID 2002

Total frames	Cuts	Fades	Dissolves	Others	Total
345306	1078	40	211	9	1338

- Heterogeneous in terms of cuts types
- Varied content
- Common cases of error in segmentation
 - Fast-moving objects
 - Camera operations
 - Changes in lighting
 - Gradual changes of different durations

Dataset Evaluation critery Experiments

Evaluation critery

Quality detection

$$\textit{Recall} = \frac{T.P.}{T.P. + F.N.}$$

$$Precision = \frac{T.P.}{T.P. + F.P.}$$

Recall

A measure of the ability to detect all relevant items

Precision

A measure of the ability to detect only relevant items

Dataset Evaluation critery Experiments

Experiments > Tuning parameter

- Representative subset of the data
- Select the parameter to optimize recall and precision

Space domain	T_{I}	Canny <i>T_h</i>	σ	т	α	r
Grayscale	20	60	5	0.15	4.6	1
Color ratios	15	50	5	0.20	5	1

Frequency domain	T	α
Grayscale	0.43	4
HSV	0.28	4

1

Dataset Evaluation critery Experiments

Experiments > Results

Complete dataset

• Evaluation of each measure

Each cut type is considered separately

				Recall			
		Threshold	Cuts	Dissolves	Fades	Recall	Precision
Edges	Grayscale	Fixed	52.75 %	14.73 %	71.50%	51.49 %	41.91 %
		Adaptative	58.21 %	28.04 %	77.50 %	59.01 %	52.11%
	Color ratios	Fixed	71.07 %	21.64 %	93.54 %	66.99 %	57.29 %
		Adaptative	78.43 %	41.18 %	100.00%	70.38 %	68.50 %
Correlation	Grayscale	Fixed	74.22 %	15.33 %	86.91 %	63.24 %	65.75 %
		Adaptative	78.90 %	30.02 %	50.00 %	64.17 %	66.10 %
	HSV	Fixed	82.80 %	42.81 %	94.29 %	76.22 %	78.70 %
		Adaptative	92.41 %	50.00 %	66.98 %	82.60 %	81.90 %

1

э

Dataset Evaluation critery Experiments

Experiments > ROC Curves

• Comparison of different variants

Contents

2 Methodology

3 Results

< 🗇 >

- ∢ ≣ ▶

Ξ.

Conclusions

- Study of segmentation techniques
 - Influence of the frame representation
 - Influence of the detection threshold
 - Sensitivity to each cut type
 - Common error situations
- Contributions
 - Color extensions
 - \star Gevers ratios on space domain
 - ★ HSV space on frequency domain
 - Adaptive threshold

Color video segmentation by dissimilarity based on edges

Lucía Ramos¹ Jorge Novo¹ José Rouco¹ Antonio Mosquera ² Manuel G. Penedo ¹

VARPA Group, Department of Computer Science, University of A Coruña, Spain

Artificial Vision Group, Department of Electronics and Computer Science, University of Santiago de Compostela, Spain

24 de junio 2010