Modeling a legged robot for visual servoing
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Abstract. This article presents a contribution to the visual tracking of
objects using all the degrees of freedom of an Aibo ERS-7 robot. We
approach this issue in a principled way applying ideas of visual servoing.
State of the art visual tracking solutions for this kind of robots inspired
in the visual servoing approach either are restricted to the head effectors
or they apply an inductive learning from experimental data approach to
build up the kinematics matrix. In this work we take into account all the
effectors which can affect the extrinsic parameters of the robot camera,
and therefore in the captured image. We construct the robot kinematic
matrix from its description. Visual servoing is performed computing the
seudoinverse of this matrix.

1 Introduction

Visual servoing [1] is a technique for robot control which uses as a feedback signal
the information extracted from the image sequences taken by one or several video
cameras. In fact, it is defined as the control of the end-effector pose relative
to a target object or set of features, for robotic manipulators, or the pose of
the robot relative to some landmarks, in the case of mobile robotics. A major
classification of visual servoing systems distinguishes position-based control from
image-based control. In position- based control, the features extracted from the
image are used to fit a geometric model of the target and the known camera
model to estimate the pose of the robot relative to the target. Control feedback
is computed trying to reduce errors in estimated pose space. In image-based
servoing, control parameter values are computed on the basis of image features
directly. We have chosen the image-based approach to reduce computational
delay, avoiding the need for image interpretation and the errors due to sensor
modeling and camera calibration. However the image-based approach imposes
a linear approximation to obtain the control parameters. This is a significant
simplification of the nonlinear and highly coupled robotic system whose effects
must be evaluated by physical experimentation. Figure 1 illustrates the main
feedback loop in image-based visual servoing with the Aibo.

In the RoboCup robot soccer matches some visual servoing approaches [2,
3] have been implemented in the Aibo robot to track the ball. However, these
approaches are limited to the movement of the head effectors in order to keep the
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Fig. 1. Visual servoing feedbak loop

ball into the video image. The space in which the ball can be followed is greatly
restricted by the robot body pose. Our approach is a systematic application of
the visual servoing methodology, aimed at overcoming these limitations.

In this paper we address the problem of maintaining the playing ball in
the center of the robot camera image. The only visual feature considered is the
center of the ball region as identified in the image by the color detection routines
implemented in the robot. We have profited from the CMU’s SDK [4] and the
SONY’s SDK [5]. The image error is the distance in image space between the
image center and the centroid of the blob corresponding to the ball. The image
features considered are very naive when compared with recent works in other
domains (i.e.: [6,7]), however they are the current state of the art in the Aibo
environment.

The control parameters are deduced applying the inverse of the linear approx-
imation to the robot kinematic function given by the image Jacobian relative
to the considered degrees of freedom. In this paper we detail the construction
of the image Jacobian, starting from the geometric specifications of the Aibo
robot. The blind application of the control parameter values given by the lin-
ear inverse kinematics may move the robot pose out of the useful configuration
space, which we define as the set of standing stable positions. These positions
are characterized by the relation between the support points and the robot’s
mass center. The support points are the points of contact of the robots limbs
with the support surface. These points may correspond either to the leg ends or
to the knees as illustrated in figure 2.

We introduce in section 2 the direct linear kinematics of the robot, then we
develop the expression for the inverse kinematics in section 3 and we end up in 4
with some experimental results. The discussion of the physical implementation,
the observed robot behavior and future work lines are given in 5

2 Direct Aibo Kinematics

We build the Aibo kinematics as a transformation from the ground supporting
plane to the head coordinate system, composing the diverse transformations
that correspond to the limbs and head degree of freedom. We start from the
supporting points and go up to the head.



Fig. 2. Points of contact with the supporting surface

As illustrated in figure 2 the robot’s feet and the knees are the possible robot
support points therefore we need to be able to determine their 3D coordinates
at any time.

2.1 Legs degrees of freedom

Each leg has three articulations, as shown in figure 4. The legs degrees of freedom
are used indirectly towards the support points, so we introduce this concept.

Support points The support points are the points of the robot limbs that
determine the plane where it is standing on. These points must be determined
in the coordinate system of the dog. From the point of view of the center of
the robot body the supporting plane apparently varies when the robot servos
are affected when the physical reality is that the plane remains fixed and the
robot changes its pose. We use the robot body center of mass because the Aibo
possesses an inertial sensor than gives us feedback on the motion of this point.

Fach leg has a unique support point that can be the foot as well as the
knee, and, according to the restriction that the robot must be standing, at least
three of the legs must have their supporting points in contact with the ground;
therefore there are 32 possible support planes if we take into account all feasible
combinations support points that may give us a standing configuration of the
robot. In order to determine which combination of supporting points coincides
with the physical supporting surface we obtain the plane equation for every
possible combination.

For a given combination of support points we have the plane equation 7 :
ax + by + cz + d = 0, then we evaluate to which hemisphace belong the points
that have not been taken into account to build the plane equation; if for any
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Fig. 4. Geometry of the leg articulations

one of them we find (z,,v,,2,)T : ax, + by, + cz, + d < 0, it means that this
support point is under the plane and therefore this plane is not the ground
surface. Besides, in order for the robot to be standing in a stable pose, the
projection of the body center of mass must lie inside of the triangle defined by
the three supporting points in contact with the ground surface. This condition
is illustrated in figure 3. Therefore, the search for the ground support points
is guided by testing this condition on each triplet of leg supporting points. For
those triplets that meet the condition, we fit the plane equation and test that
the remaining supporting points remain above this plane.

Feet and Knees positions In order to obtain the ground supporting plane, is
necessary to determine which are the supporting point coordinates for each leg
in the reference space centered on the robot body center of mass. It is necessary
to determine the positions of the feet and knees in function of the articulation
states, given by their torsion angles.

We find the foot center position, for the front left leg, using the following
coordinate system transformations.

Ti: Translation along de z-axis of length —;.



Fig. 5. Geometry of the head articulations

Ry: Clockwise rotation about y-axis by angle ¢;.

Ry: Counterclockwise rotation about z-axis by angle ga.

R;: Clockwise rotation about y-axis by angle g¢s.

T5: Translation along de z-axis with length —s.

T;: Translation along de z-axis with length %l, being [ the robot length.

T,: Translation along de y-axis with length %a, being a the robot width.

In homogeneous coordinates the transformation from the body center to the
foot coordinate system can be described as the product of transformation ma-
trices:

= (R1.Ro.T1.R5.T).
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This equation is valid for the robot front left leg; however, due to the sym-
metry of leg coordinate systems, only a few signs must be changed to get the
positions of the other three leg’s feet. In order to find the coordinates of each
knee in the body reference system we only have to do the three first and the two
last transformations used to determine the foot coordinates:

2.2 Head degrees of freedom

The Aibo ERS-7 has three degrees of freedom in the head. That introduces
ambiguity in the control trajectories needed to track the ball trajectory. Figure
5 shows the two tilt degrees of freedom of the Aibo, denoted 0y and Ogmaur.
The first head tilt degree of freedom corresponds to the neck base pivoting along
part of the dog chest, while the second one allows the head to move vertically
using as the rotation center the joint between the neck and the head. The third
degree of freedom, called 6,,,,, allows a perpendicular rotation to the previous
one, moving the head from side to side.



Fig. 6. Reference systems involved in the visual servoing

2.3 Image features

The stated goal is to bring the ball in the image center, so the target features
are the image center coordinates and the observed features from the real world
are the coordinates of the ball region center and its diameter. But these features
must be expressed in terms of the robot degrees of freedom, in order to use
the Jacobian to determine the feature sensitivity respect to each articulation
positions changes.

Coordinate reference systems In order to obtain the ball position expressed
in the Sy system base it is necessary to obtain the transformation matrices
between the different systems.

These reference systems are illustrated in figure 6.

Transformation between Sy and S1 In order to define the coordinates changes
between the base system, Sy, and the body system, S7, we define the Sy vectors
in the system S7, and then do the translation between them. So, we separate
the transformation in rotation and translation, although it exists an scale com-
ponent.

The entire transformation uses the supporting points positions: r; = (4, ¥s, 2, 1)7,

r; = (z;,95,2;, )T, ri. = (xk, Yk, 21, 1) .We use the position point 7; as the ori-
gin of Sy, and the vectors 7;7; and 7;7;, as the two first vectors, and we built the
third vector as the vectorial product of the two first.

So we built the rotational matrix, R, from the three vectors of Sy

! ! | 0
j =i Tk =T Tk — 73,75 —73) 0

R r]lr rklr (rg rlrj 7"}0 (1)
0 0 0 1



and we define the translational matrix from the origin of S; to the origin of
SO?

1002
010y
001z | (2)
000 1

So, composing the two transformations we finally obtain the matrix change
from Sy to S,

sils, =T - R. (3)

Transformation between S1 and Se The transformation between these systems
can be done through the compositions of more elemental transformations. We
will compose the transformations that go from the body system S, to the head
system So.

The first transformation is a translation from the camera base to the top of
the neck, T7. Next, we have to rotate the head, taking into account the nod and
pan articulations, we call this rotational matrix R;. Then, we have to use the
tilt articulation defining the rotational matrix Rs. Finally, the translation T5,
between the neck base and the body center, take the system to the S origin.

The result of the matrix composition is the transformation between the sys-
tems S7 and So

g, 1s, =To - Ra- Ry - T1. (4)

Observed image features The camera reference system is fixed to the robot
head, and define the ball position according to the vision camera of the robot.

The observed image features, ¢ = (u,v)?, are determined by the ball position
in the camera system, according to the following relation

()-rm0-2 ()

The features are expressed in terms of the ball position in the system Ss,
but as we had supposed the ball was fixed respect to Sy, we could obtain the
features expressed in function of the head robot articulations and the support

points positions, using the ball position in Sy and the transformation between
So and SQ.

<u> = f(s:15,-b0) (6)

v

2.4 Feature Jacobian matrix

Now we will construct the Jacobian matrix that relates the variations of the
diverse degrees of freedom of the robot with the variations in the image plane.



Dependence on the features Deriving the equation 5 we get the following
relation:
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We call J. the Jacobian matrix of the equation 7. Then J. defines a linear
transformation from variations of the positions of the ball in S into variations
of the image features.

Ac =~ J - Ab (8)

Dependence on the target object We saw that the ball position in the cam-
era system could be expressed as a function of the support points and the head
robot articulations, equation 6. By deriving this equation we get the Jacobian
matrix that relates the variations in the image ball position with the variations
in the support points positions and in the head articulations

J QI 1 © 1IO
Jb'r’: (S S(STS S)bO (9)

Using the chain rule, we rewrite the equation 9:

5(52151)
or

5(51150)

Tor = | or

O(SlISo)+(S2IS1)O }bo (10)
As g,Ig, is a function of rpeqq (head articulations) and g, I's, is a function with

parameter 7.4, (support points positions), we rewrite 10:

8(s,1s,)
6rlegs

70(51150)—6—(52]‘51)0 }bo (11)

The dependence between the variations in the ball position and the variations
in the head degree of freedoms and in the legs positions can be summarized by:

Ab ~ Jy. - Ar (12)

Dependence on the support points The next step is obtaining a linear
transformation between the variations of the legs degrees of freedom and the
ground support points coordinates in the body reference system.

First we observe that according to which part of the leg is in contact with
the ground there are two possible jacobean matrices, one for the foot (J,, ) an
another for the knee (J,.;). We model the changes in the foot and the knees

K2



coordinates according to the degrees of freedom variations, using the Jacobians
as follows:

Ap; ~ Jp; - AJ; (13)

Being 0J3;, 0J1; and 9.Js; the value of the variations of the degrees of freedom
in leg i.

Composing with the support points Jacobian at every moment, we obtain
the following jacobian matrix:

0P, My 0 0 O 0J;
0Ps _ | 0 M 0 O 0Js (15)
0P; 0 0 M3 O 0Js
0P, 0 0 0 My 0Js

The jacobian matrix receives the name J,9,where M; is:

e Jp;, if the support point for the leg 7 is the foot.

e Jr;, if the support point for the leg ¢ is the knee.

e Zero (the matrix with all the elements equal 0) if this leg has not a lean
point on the plane.

The dependence of the support ground points on the limb’s degrees of freedom
is summarized as follows:

AP ~ Jyg.AJ (16)

Dependence on the robot articulations The following matrix relates the
variations in the generic support points, ér, with the variations in the true legs
support points and the free leg support point, ép. We call dr;, and dp;, the head
articulation variations in order to define r and p.

op, Id 0 0 O

dp1 0 My; Myj; My (;:h
ope | = | 0 My Ma; Moy, 5;_ (17)
dp3 0 Ms; M3z; M3y 67“]
dpa 0 My; My; Myy F

We call J,,. € R¥*12 the Jacobian matrix of equation 17, and we define this
matrix as a composition of matrixes of size 3 x 3. The first row starts with the
identity and the rest of matrixes are null. So, ér;, and dpj, are equals.

To the rest of matrixes:

My, = Id, if the leg x has the support point y,
M, = 0, if the leg = has a support point different from y,
My = agy, if the leg = has not a generic support point.



So, if the leg = has a generic support point, then the row x has a identity
matrix and three null matrix; while for the free leg we get the following row

(0 o o ak) (18)

This coefficient matrixes define the relation between the free leg variations and
the variations in the rest of legs. This coefficients can be used to generate stability
and advance behaviors. If the first element of the row is not 0, then we can make
the free leg position depend on the head articulations variations.

The dependence between the variations in the legs articulations with the sup-
porting points positions and the head articulations variations can be summarized
in the following equation

Ap >~ Jp, - Ar (19)

Defining the Jacobian matrix J.¢, as the product J;; o Jpg, we get the following
dependence relation between the variations of support points positions and robot

articulations,
Ar ~ J.g - A6 (20)

Full Jacobian matrix Finally, to obtain the full Jacobian matrix that models
the dependence of the image features on the diverse degrees of freedom of the
robot we must compose the previous transformations given by equations (8),
(12), (19) and (16).

Ac = [(Jcb o Jbr) o rg].Ae (21)

We denote the composite matrix Jep = (Jep © Jprr) © Jrg-

3 Inverse Kinematics

The goal of the stated visual servoing problem is to determine the instantaneous
variation at each robot degree of freedom that will be needed to bring the ball
center to the image plane center.

In order to determine the velocity at each robot degree of freedom we should
obtain the inverse of the J.9 matrix in equation 21. However, this is not possible
because the matrix is not invertible. As we have more degrees of freedom than
image features, the problem is overconstrained, because there are not sufficient
features to determine the movements in an unique way.

The general solution is to use the pseudoinverse of Jc‘g, thus obtaining the
following approximation to the instantaneous robot degree of freedom velocity
vector:

0=Jhe¢+ (I —JhJe)n (22)

Being n an arbitrary vector of R1®.

In general, (I — J;;ij)n # 0, and all the vectors of the form (I — J;szj)n
belong to the kernel of the transformation associated to J.9. This solution min-
imizes the norm

&= (enrd (23)



As our objective is to bring the ball to the image center, we can neglect the
second order term, so our estimation of the velocity vector will be

0=Jhé (24)

This solution does not take into account the restriction of keeping the dis-
tances between supporting points constant. So, we need to determine how the
variations in the supporting points positions, as a consequence of the robot joint
movement, affect the distances between them. Let us consider the vector of dis-
tances:

2] [[ri =7l
L= {2l | = | llmj — 7l (25)
l|23]] 17 — il

Differencing | we get the Jacobian matrix J;,- that relates these changes in posi-
tion with the change in relative distances between supporting points:

0 ol 8l oy
67‘i 6rj 67‘1«

67‘j 5Tk
o 3la 8la oly
ory Orj 0T

Finally this dependence is summarized in the following equation:
Al >~ Jp,. - Ar (27)

Now we may combine the following Jacobian matrices: J,.c, J; and J.¢ to com-
pute the variations on the robot articulations that make the image features
converge to the desired features, keeping constant the distances between the
supporting points. To fulfill this restriction, the Ar vector must belong to the
kernel of the transformation associated to Jj.. The following equation ensures
that Ar belongs to the kernel of Jj,..

Ar = [(I = Ty Jie){(I = Ty i) T} ) Ac (28)

As our final objective is to compute the movements at the robot joints, we
multiply by the seudoinverse of J.g9. The control of the robot joints bringing the
ball center to the image center is given by the following iterative rule:

A0 = (T — J D) (T = JiEJ) JE) T Ac, (29)

where « is the control gain that modulates the application of the rule, the ex-
perimental results show the sensitivity of the approach to the values of this
gain.

This equation is unrestricted and may drive the robot into unstable configu-
rations, that is, to articulation configurations that fall out of the region of stable
poses in configuration space. Stable poses are characterized by the existence of
a triplet of ground support points which fulfill the condition illustrated in figure
3. When this does not happen, or the projection point is too close to the triangle



boundary, we restrict the visual servoing to the head degrees of freedom, using
the transformation So(I)S2 to construct a reduced Jacobian M}, that relates the
image features to the head degrees of freedom. Its seudoinverse gives the control
for the head degrees of freedom. This reduced approach has already been applied
in [2,3] :

dd=M ;’ .dr (30)

4 Experimental results

We tested our approach on the Aibo robot. In the real life experiments the start-
ing position of the ball is in the lower left corner of the image. The experimental
results show the sensitivity of our control rule convergence to the gain parame-
ter. Figure 7 show some instances of trajectories of the ball center in the image
plane obtained for different settings of the gain parameter. It can be observed
that a = 1 produces a fast convergence followed by strong oscillations. Lower
vales equivalent to damped control, show slower but oscillation free convergence.
Very small values result in control commands below the precision of the robot
joints.

The experiments have also show that there is some sensitivity to the initial
robot pose. In order to prevent the robot to escape its standing configuration
region, if we detect that the robot tries to perform a joint movement that risks
escaping the standing configuration region, we block all motion of the body joints
and restrict the calculation of the motion of the head joints, as described above.

Fig. 7. Trajectories in the image plane of the ball center for different values of the gain
parameter (a) a =1, (b) @ =0.5, (c) a =0.3

5 Conclusion

We have developed the visual servoing for the whole set of degrees of freedom
of the Aibo 7 following a principled approach. From the geometrical description
of the robot we have constructed the full Jacobian matrix that linearizes the



functional dependence of the image plane viewed by the robot camera on the
robot degrees of freedom. The seudoinverse of this Jacobian matrix provide the
desired controls. The blind application of this control strategy may lead the robot
to unstable or unfeasible configurations for a standing pose. Therefore, we test
the stability of the robot configuration. When it is compromised we restrict the
visual servoing to the head. The implementation shows that the approach gives
real time response when the seudoinverse is computed in the onboard processor
of the robot. We are actually performing the real time experiments and collecting
performance information.
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