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Abstract. The analysis of hyperspectral images on the basis of the spec-
tral decomposition of their pixels through the so called spectral unmixing
process, has applications in tematic map generation, target detection and
unsupervised image segmentation. The critical step is the determination
of the endmembers used as the references for the unmixing process. We
give a comprehensive enumeration of the methods used in practice, be-
cause of its implementation in widely used software packages, and those
published in the literature. We have structured the review according
to the basic computational approach followed by the algorithms: those
based on the computational geometry formulation, the ones following
lattice computing ideas and heuristic approaches with a weak formal
foundation.

1 Introduction

In the �eld of hyperspectral image processing, Spectral Unmixing [15] is the com-
putation of the fractional contribution of elementary spectra, called endmembers
because they constitute the vertices of a convex polytope covering (most of) the
image data points in high dimensional space. Spectral Unmixing can be used
for taget detection, tematic map building and unsupervised segmentation. The
underlying image model is a linear mixture of the endmembers, with positive
coe�cients that sum up to one. Given the endmembers, enforcing these con-
ditions when performing Spectral Unmixing involves constrained non-negative
least squares estimation, which can be a very computationally expensive process
by itself. When the convex polytope de�ned by the provided endmembers does
not cover all te data points, it is not possible to enforce these conditions. Solving
the problem of providing the appropriate set of endmembers is a precondition
to the realization of the Spectral Unmixing. Early approaches to endmember
determination were based on human expertise. The prior knowledge about the
contents of the imaged terrain was used by the expert to select some candidate
endmember spectra from a provided library. The spectra in the library must
have some correspondence with the sensor characteristics, in order to perform
the matching and unmixing. Besides the methodological questions, this approach
is not feasible when trying to process large quantities of image data.

Current approaches try to induce the endmembers from the image data. They
either try to select some image pixel spectra as the best approximation to the



endmembers in the image [20,9], or to compute estimations of the endmembers
on the basis of the transformations of the image data (i.e. [6,13]). The latter is the
predominant class of tecniques in the literature. Previous reviews found in the
literature [21] make some emphasis on the degree of automation to classify the
algorithms. In this review the emphasis will be on the computational foundations,
assuming that user interaction must be minimal or null. We distinguish three
fundamental approaches:

� Geometric approaches, that try to �nd a simplex that covers the image data.
� Lattice computing approaches, that use some kind of lattice theoretic for-
malism or mathematical morphology approach.

� Heuristic approaches, that are not very rigorously formalized under a theo-
retical framework.

There are some problems that we will not touch in deep in this review. The prob-
lem of the endmember induction algorithms initialization is discussed in [19],
where an Endmember Initialization Algorithm (EIA) is proposed. The number
of spectral signatures that form an hyperspectral image is usually unknown. Re-
cently, a new concept denoted Virtual Dimensionality (VD) [5,3,19] has been
used for automated search of the optimal number of endmembers in an image.
Most endmember induction algorithms are quite computationally expensive, so
a mention is due to the e�orts to obtain distributed implementations [22] that
may help them to be a feasible approach for real-life applications. The use of
o�-the-shelf Graphical Processing Units [24] are a low cost way to obtain sub-
stantial speed-ups. The outline of the paper is as follows: section 2 describe some
geometrically oriented metods, section 3 describe methods based on lattice com-
puting or mathematical morphology, section 4 describe some heuristic methods.
Finally, we give some concluding remarks in section 5.

2 Geometric enmember induction methods

Geometric methods follow the formal de�nition of the endmbers, they search
for the vertices of a convex set that covers the image data. Because the distri-
bution of the data in the hyperspace is usually tear-shaped they look for the
minimum simplex that covers all the data. Unless said otherwise, the algorithms
search for a pre�xed number of endmembers, de�ned by the user. The �rst such
methods is the Minimum Volume Transform, proposed by [7] that introduces
two nonortohonormal transforms, the dark-point-�xed (DPF) transform and the
�xed-point-free (FPF) transform that map the data onto the minimal simplex
that contain all the data points.

One of the earliest approaches is the N-FINDR algorithm proposed in [26].
The N-FINDR algorithm is a selection algorithm. Its works are described as
follows: it starts with a random collection of image pixel spectra, corresponding
to the initial set of endmembers. Then, each of the remaining image pixels is
considered as a candidate to replace each endmember, if doing so the volume of
the simplex increases, then it is accepted as the new endmember. The process



ends when no more replacements are possible. The N-FINDR algorithm requires
a dimension reduction step, originally an orthogonal subspace projection (OSP)
to an space of dimension N-1, where N is the number of endmembers. This set of
endmembers found by the N-FINDR would not allow the nonnegative unmixing
of the pixel spectra in general.

The Convex Cone Analysis (CCA) [13] is based on the fact that the vectors
formed by discrete radiance spectra are linear combinations of nonnegative com-
ponents, and they lie inside a nonnegative convex region. The object of CCA is
to �nd the boundaries of this convex region, which can be used as endmember
spectras. The algorithm performs a Principal Component Analysis (PCA) di-
mension reduction based on the sample spectral correlation matrix of the image.
In this reduced space, the endmembers must de�ne a convex cone on the positive
hyperquadrant of the space, whose apex is in the space origin. Endmembers are
points with exactly c−1 zero coe�cients in the PCA decomposition, c being the
number of eigenvectors selected.

The approach followed in [1] search for the optimal simplex using a simulated
annealing algorithm (SA) whose state con�guration is given by the partition of
the faces of the convex hull of the f image pixel spectra, after a reduction to N-1
dimensions by the Minimum Noise Fraction (MNF) algorithm. The partition in
the con�guration space de�nes a simplex convering the image data whose vertices
are the candidate endmembers. The objective function minimized is the simplex
volume. This approach is followed by the generation of endmember bundles that
allow the computation of bounds on the abundance images.

The Iterated Constrained Endmembers (ICE) [2]algorithm performs the min-
imization of a regularized residual sum of squares (RSS). The regularization term
is the volume of the simplex. The name of the algorithm comes from the min-
imization schema applied. Given that the free parameters are the endmembers
and the proportions (abundances) for each pixel the algorithm iterates the solu-
tion of the tow interleaved and interdependen minimization problems (much like
in an Expectation Maximization process): �rst the proportions are computed
by quadratic programming problem solving assuming that the endmembers are
known, then the endmembers are computed as the direct minimization of the
RSS functional. The addition of an sparsity promoting term in the RSS func-
tional gives way to SPICE [27]. This sparsity promoting term is derived as the
substitution of a Gaussian prior by a Laplacian prior in a bayesian formulation of
the RSS functional. The SPICE algorithm allows the selection of the appropriate
number of endmembers based on the sparsity measure. The ICE algorithm does
need a dimension refuction step, performed by the MNF algorithm.

The Vertex Component Analysis algorithm (VCA) is presented in [18]. The
algorithm is unsupervised and exploits that the a�ne transformation of a simplex
is also a simplex. It works with projected and unprojected data. The algorithm
iteratively projects data onto a direction orthogonal to the subspace spanned by
the endmembers already determined. The new endmember signature corresponds
to the extreme of the projection. The algorithm iterates until all endmembers
are exhausted.



In [4] a simplex-based endmember extraction algorithm, called Simplex Grow-
ing Algorithm (SGA), is presented. It is a sequential algorithm to �nd a simplex
with the maximum volume every time a new vertex is added. Virtual Dimen-
sionality (VD) is applied as stopping rule to determine the number of vertices
required. SGA improves N-FINDR by including a process of growing simplexes
one vertex at a time until the desired number of vertices is reached, which results
in a high computational complexity reduction; and by selecting an appropiate
initial vector to avoid the use of random vectors as initial condition, which pro-
duces di�erent sets of �nal endmembers if di�erent sets of randomly generated
initial endmembers are used.

In [16] a method for endmember extraction for highly mixed data, when
there are not pure pixels in the hyperspectral image, is presented. The proposed
method, called Minimum Volume Constrained Nonnegative Matrix Factorization
(MVC-NMF) takes advantage of the fast convergence of NMF schemes and at the
same time eliminates the pure-pixel assumption. It consists in the reformulation
of an NMF cost function introducing an volume regularization term, much like
the ICE, substituting the RSS by the NMF criteria.

3 Lattice computing endmember induction methods

Lattice computing can be de�ned as the collection of computational methods
that either are de�ned on the algebra of lattice operators inf and sup, with the
addition, or employ lattice theory to generalize previous approaches. Mathe-
matical Morphology is a very successfull case of this paradigm, but it also em-
compasses some fuzzy systems approaches and neural networks. The Automated
Morphological Endmember Extraction (AMEE) method [20] is a mathematical
morphology inspired algorithm for the extraction of the endmembers from the
data. It is based on the de�nition of multispectral erosion and dilation oper-
ators, which are then used to compute the Morphological Eccentricity Index
(MEI) over kernels of increasing size that are computed over all the pixels in the
image. The result is a MEI image whose maxima correspond to the endmember
pixels. The method does not need a dimension reduction step.

The concept of morphological independence, later reformulated as lattice in-
dependence, was the basic tool in the approach proposed in [9,12,11,10]. The set
of endmembers was formulated a set of morphologically independent vectors, ei-
ther in a dilative or erosive sense, or both. There the Associative Morphological
Memories, later renamed Lattice Associative Memories, are proposed as detec-
tors of morphologically independent vectors. The algorithm works in a single
pass over the sample data.

This approach has been followed by the one proposed in [8]. The relation-
ship between strong lattice independence and a�ne independence was proven.
Then it was found that most vectors in the erosive and dilative lattice memories
are strong lattice independent. Therefore, the mere construction of the lattice
memories provide a way to obtain the convex hull of the data. Provided an end-



member selection mechanism, the algorithm can obtain in a single pass over the
image a set of endmembers.

4 Heuristic endmember extraction methods

The heuristic methods collects a set of heterogeneus endmember extraction
methods that use di�erent approaches not grouped under a strict theorical back-
ground for endmember induction. The most famous and widely used method,
due to its inclusion in the ENVI software package, it is the Pixel Purity Index
(PPI) algorithm introduced in [14]. The algorithm reduce the data dimensional-
ity and makes a noise whitened process by MNF method, and then it determines
the pixel purity by repeatedly projecting data onto random unit vectors. The ex-
treme pixel in each projection is counted, identifying the purest pixels in scene.
PPI requires the human intervention to select those extreme pixels that best
satisfy the target spectrum.

Althought PPI has been intesively used, its implementation aspects are kept
unknown due to the limited published results. In [6] PPI is investigated and
a fast iterative algorithm to implement PPI is proposed. The Fast Iterative
PPI algorithm (FIPPI) improves PPI in several aspects. FIPPI produces an
appropiate initial set of endmembers to speed up the process. Additionally, it
estimates the number of endmembers to be generated by Virtual Dimensionality
(VD). FIPPI is also an unsupervised and iterative algorithm, where an iterative
rule is developed to improve each of the iterations until it reaches a �nal set of
endmembers.

In [25] the well known Independent Component Analysis (ICA) method is
the base of the proposed approach for endmember extraction and abundance
quanti�cation. The algorithm, called ICA-based Abundance Quanti�cation Al-
gorithm (ICA-AQA), is a high-order statistics-based technique, that can ac-
complish endmember extraction and abundance quanti�cation simultaneously
in one-shot operation. [17] analyzes the use of ICA and Independent Factor
Analysis (IFA) for unmixing tasks, showing that the statistically independent of
the sources, assumed by ICA and IFA, is violated in the hyperspectral unmix-
ing, compromising the performance of ICA/IFA algorithms for this purpose. It
concludes that the accuracy of this ICA/IFA-based methods tends to improve
with the increase of the signature variability and the signal-to-noise ratio.

The Spatial-Spectral Endmember Extraction algorithm (SSEE) proposed in
[23] is another projection based method that works by analyzing a scene in parts
(subsets), such that it increases the spectral contrast of low contrast endmem-
bers, thus improving the potential for these endmembers to be selected. The
SSEE method uses a singular value decomposition (SVD) to determine a set
of basis vectors that describe most of the spectral variance for subsets of the
image. Then the full image dataset is projected onto the locally de�ned basis
vectors to determine a set of candidate endmember pixels from where the �nal
endmembers are selected. For that, it searchs for spectrally similar but spatially



independent endmembers. This is realized by imposing spatial constraints for
averaging spectrally similar endmembers.

5 Conclusions

The �eld of hyperspectral image processing has been an applicaction domain for
many pattern recognition techniques. Among them, spectral unmixing o�ers the
appealing of a physical image formation model with an easy interpretation. It
also allows subpixel resolution results. Therefore, increasingly Spectral Unmixing
will be a tool of hyperspectral image analysis. The requisite for this analysis is
the determination of the endmembers. The current approaches reviewed in this
paper favor the endmember induction from the image data. It is desirable that
the endmembers have some physical meaning, which is more likely in the case
of approaches that perform a selection from the image pixel spectra. However,
these approaches usually do not produce convex polytopes that cover all the
image data points, so that the candidate set of endmembers do not �t into the
formal de�nition of endmembers. Geometrically oriented methods are the best
theretically grounded ones, however they ask for great computational resources
and the endmembers that they obtain do not have a clear physical meaning.
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