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Projection Pursuit

“... the numerical optimization of a criterion in search of the most
interesting low-dimensional linear projection of a high-dimensional
data cloud.”

So, if we have initial data X, dimensionally reduced data Y and a
parametric orthonormal matrix A where Y = AT X,

PP is the method that computes A, optimizing the porjection index
I(AT X).



Parametric Projection Pursuit

Why parametric and supervised?

> There are a large number of free parameters in the estimation
of the projection indices, and the exact number is not well
known in advance. This could lead to the problem of
overfitting.

» In the case of having a priori knowledge in the form of labeled
samples, the unsupervised indices are not able to exploit such
information.

» Some authors have suggested that data must be centered at
zero and spherized in order to spread the data equally in all
directions. That action causes an enhanced contribution from
noisy variables.



Parametric Projection Pursuit
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Parametric Projection Pursuit

» Given the objective of enhanced classification accuracy, we
proposed the use of Bhattacharyya distance between two
classes as the projection index because of its relationship with
Bayes-classification accuracy and its use of both first-order and
second-order statistics.

» In the case of more than two classes, the minimum
Bhattacharyya distance among the classes can be used after
the Bhattacharyya distance is calculated for all combinations
of pairs of two classes:



Parametric Projection Pursuit
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(' is the number of combinations of pairs of two classes.
Assuming there are L classes, then
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Mj is the mean vector and ZJ"-Y the covariance matrix of j-th class

in the projected subspace Y for the combination of pair of classes i. .,



Sequential Parametric PP

They want to ensure linear independence on A and reduce dimensionality, so:
> Ais definded as A =[A1 ... Acol_1Acol—2]. Every column of A will be filled
with zeros, except at a group of adjacent positions A; = [0..0 a; 0..0]. A; will
combine some adjacent bands, the columns must be orthogonals and no two
A;’'s may have nonzeros at the same locations. In other words, for

i#j; AT -Aj=0.
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Sequential Parametric PP

1) An initial choice for every a;, for every group of

2)

3)

4)

adjacent bands, is made and stored.

Maintaining the rest of the @;’s constant, compute a; (the
vector that projects the first group of adjacent bands) to
maximize the global-minimum Bhattacharyya distance.
Repeat the procedure for the 4th group in which a@; 1s
calculated, optimizing against the global Bhattacharyya
distance while maintaining the a;’s constant, where
When the last group of adjacent bands is projected,
repeat the process from step 2 (compute all the @;’s
sequentially) until the maximization ceases increasing
significantly. The significant increment is relative to each
iteration. If one iteration (steps 2 and 3) is complete, and
the percentage of maximization of the global-projection
index is less than a threshold, then it stops the process.
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Preprocessing block stages and the initial conditions

> In order to avoid reaching a suboptimal local maximum instead
of the desired global one, the preprocessing block is divided
into two stages:

Preprocessing

First Stage Second Stage

Estimation of prefiminary A that maximizes:

1(A7x)

Eslimalion of Numerical
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Fig. 6. Preprocessing block.
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Each group of adjacent bands will have a set of trial values
d;. In this section, we will assume that the values of n;
are given. The procedure to calculate these values will be
explained in the next section. The matrix A will be constructed
by choosing one trial value @; from each set. Among these trial
values, there are two that are very significant. The first one is
based on the assumption that the mean difference is dominant
in the Bhattacharyya distance. The mean-difference portion of
the Bhattacharyya distance is
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The second is based on the assumption that the covari-
ance difference is the part that is dominant. The covariance-
difference portion of the Bhattacharyya distance is
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This can be rewritten in the following form [23, pp.
455-457]:

Bhatte, = H{In[S57'%; + T7'S, +21] = nlnd}  (6)

The mean-difference portion (Bhattys) is maximized by the
Vector @nfmax 123, pp. 455-457]
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In order to compute the vector that maximizes the covari-
ance difference element, a priori matrix A must be computed.
That matrix is defined as

A=%51%). (8)
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Preprocessing block stages and the initial conditions

The vector that maximizes Bhatt+ (ac max) 15 the eigenvec-
tor of A that corresponds to the eigenvalue that maximizes the

function f(\;)

arg,, max f(\;) = arg,, max [/\i + ; + 2} )

where ); is the 7th eigenvalue of A. That vector optimizes the
following linear transformation:

J(d) =1n|(a’ Toa)taTSa+ (@’ Tia)raT T a0] )|
(10)

where  is the dimensionality of the data. It follows that @ jnax
maximizes Bhatt,.
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Preprocessing block stages and the initial conditions

The process of building the initial choice of matrix A4 from
the estimated d; stored in each bank that belongs to each group
of adjacent bands is similar to the iterative procedure of the
numerical optimization of the sequential PP algorithm. The
procedure is as follows.

1) Choose one d; from each bank for every group of n;-
adjacent bands. Every @; belongs to the proper place in
the ith column of A that corresponds to the 7th group
of adjacent bands.

2) Maintaining the rest of the @;’'s constant, choose the
d; from the first bank of samples that maximizes the
global-projection index.

3) Repeat the procedure for each group, such that the d@;
is chosen from the 4th bank of samples. Meanwhile, the
&j’s for 7 7 y will be held constant.

4) Once the last &; is chosen, repeat the process from step
2 until the maximization converges or stops increasing
significantly.
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Estimating number of adjacent bands n;

» They use decision trees estimate the value of the n;’s.

» They present top-down, botton-up and hybrid heuristic
methods of decision-tree classifiers .

» They do nos clearly state which they used.



Experiment 1

METHODS:

» DA 100-20: The multispectral data was reduced in dimensionality
from 200 dimensions. Using DA at full dimensionality, the data was
reduced from 100 bands (one in every two bands from the original
200) to a 20-dimensional subspace (20-D) . From the original
number of bands, 100 were used because of the limited number of
training samples (179).

» PP: Here is an iterative sequential PP with only a
numerical-optimization stage applied to the data in order to reduce
the dimensionality, maximizing the minimum-Bhattacharyya
distance among the classes. This mehtods does not use the decision
tree to find the number of bands required to be combined. 10 bands
combined per group.

» PP-Opt: Optimum PP with the first stage, which estimates matrix
and the numerical-optimization stage, used to project from 200 to a
20-D subspace . The algorithm estimates the dimensionality of the
data as 20.

» PP-Opt-FS: This was used to project the data to a subset of bands
that is suboptimum in the sense of maximizing the Bhattacharyya
distances amoneg the classes This aleorithm uses the feature



Experiment 1

DATABASE: AVIRIS
CLASS DISTRIBUTION:

TABLE 1
Classes Training Samples | Test Samples
Corn-notill 52 620
Soybean-notill 44 737
Soybean-min 61 1910
Corn 22 234
Total 179 3501
TABLE II

MiNiMUM BHATTACHARY YA DISTANCE AMONG THE CLASSES

[ DA 100-20 | PP-OptFS | _PP_| PP-Opi

Min. Bhatt. Dist. |

753 | 833

| 10773 | 1830
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Experiment 1

TABLE 111
NUMBER OF BANDS IN ADIACENT GROUPS FOR PP-Opt
LTI LS WL LU LS U LU LPSS BLCTE BT U LU LIPS IR Mo | Ay | g | Mg g Moy
Number of
ﬂgﬂ‘;ﬁ?‘ 200 10 5 51101 10[20] 5 sl1o)1e| s 5120( 5 51101 20¢ 10| 10
group
TABLE 1V
NUMBER OF BANDS IN ADJACENT GROUPS FOR PP-Opt-FS
n n L} 0y L3 Ny N Ng Ny M | Ny Np o Mgs | my § e | oy
Number
Ol
adjacent 6 6 7 [ 9 0] 6 6 3 4 12 121 13125] 251 50
bands/
group
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Experiment 1
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Fig. 8. Test-fields classification accuracy comparison between direct use of
DA (DA 100-20) and the use of DA after different methods based on PP,

PP-Opt, and PP-Opt-FS methods for an ML classifier.
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Experiment 1
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Fig. 9. Test-fields classification accuracy comparison between direct use of

DA (DA 100-20) and the use of DA after different methods based on PP,
PP-Opt, and PP-Opt-FS methods for an ML with 2% threshold.
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Experiment 2

Methods: DBFE, DAFE, PP-Opt and PP-Opt-FS

Estimation of Estimation of -
parameters at A such that Projection
Data full dimensionality, ATX) jg ¥ =ATX

Examples:
M,s and L's

optimized.

Fig. 2. DAFE process order.
DBFE stands for Decision Boundary Feature Extraction.



Experiment 2

DATABASE: AVIRIS
CLASS DISTRIBUTION:

TABLE V
Classes Training Test Samples
Samples
Corn-min 229 232
Corn-notill 232 222
Soybean-notill 221 217
Soybean-min 236 262
Grass/Trees 227 216
Grass/Pasture 223 103
Woods 215 240
Hay-windrowed 207 138
Total 1790 1630
TABLE VI
Method DBFE DAFE PP-Opt PP-Opt-ES
Minimum
Bhattacharyya 2.64 1.52 275 1.90
Distance
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Experiment 2
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Fig. 10. Training-fields classification accuracy comparison between direct
use of DBFE and the use of DBFE after different methods based on PPDBFE
and PPFSDBFE for an ML classifier.



Experiment 2
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Fig. 11. Test-fields classification accuracy comparison between DBFE and
the use of DBFE after different methods based on PPDBFE and PPFSDBFE
for an ML classifier.



Experiments 2

There are more graphics with similar results. (Very bad quality,
welcome to 1999).



