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0.1. Introduction

0.1.1. Hyperspectral Imagery. Spectral imaging [7] refers to the collection
of optical images taken in multiple wavelength bands that are spatially aligned such
that at each pixel there is a vector representing the response to the same spatial
location for all wavelengths. Hyperspectral imaging systems (HSI) di�er from color
and multispectral imaging systems (MSI) in three points:

• Number of bands: color and MSI images use to have three to ten spectral
bands, while HSI images tend to have hundred of co-registered bands.

• Spectral resolution (center wavelength divided by the width of the spectral
band, λ/∆λ): color and MSI system's spectral resolution is on the order
of 10, HSI systems on the order of 100.

• Contiguity : MSI systems have their spectral bands widely and irregularly
spaced, while HSI systems have contiguous and regularly spaced bands.

Although MSI systems and HSI systems have a common background in the �eld of
Remote Sensing and the later appears as a natural evolution from the MSI systems
when technology made possible the development of such kind of detector arrays, the
nature of their data is very di�erent and requires speci�c analysis tools. While color
and MSI systems analysis techniques are very related to the spatial characteristics
of the data and they usually deal with each spectral band individually, techniques
used with hyperspectral imagery exploit the spectral information contained in the
hundreds of contiguous and regularly spaced bands that can be seen as a continuous
spectrum measured for each pixel.

HSI images use to be illustrated as an image cube with the spatial information
on the face and the spectral along the sides. Figure 0.1.1 is a sample image from
the JPL's airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor.

An schema of a typical hyperspectral imaging system (HSI) is showed in Figure
0.1.2. There are four basic parts into an Earth Observation (EO) acquisition system
[26]:

• The radiation source, the sun and the thermal radiation of the surface in
HSI systems.

• The atmospheric path that introduce lots of artifacts to the signal.
• The Earth surface, the imaged scene whose interaction with the illumina-
tion energy originates the radiance signal.

• The sensor where the electromagnetic �eld is sampled, spatially, spec-
trally, temporally and radiometrically to create the image cube.
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Figure 0.1.1. AVIRIS image cube of Mo�et Field in California.
The sensor has 224 channels along visible and near infrared bands.

Figure 0.1.2. Hyperspectral imaging system (HSI).

0.1.2. Spectral Unmixing. The hyperspectral imagery could be seen as a
mixing model where an hyperspectral image is the result of the linear combination
of the pure spectral signature of ground components, named endmembers, with a
fractional abundance matrix. Let E = [e1, . . . , ep] be the pure endmember sig-
natures (normally corresponding to macroscopic objects in scene, such as water,
soil, vegetation, ...) where each ei ∈ <L is an L-dimensional vector. Then, the
hyperspectral signature r at each pixel on the image is de�ned by the expression:

(0.1.1) r = s + n =
p∑
i=1

eiφi + n

where the hyperspectral signature r is formed by the sum of the pixel's signal s
and an independent additive noise component n. φ is the p-dimensional vector of
fractional abundances at given pixel . This equation can be generalized to the full
image by

(0.1.2) H = EΦ + n
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where H is the hyperspectral image and Φ is a matrix of fractional abundances.
There are two constraints in the equation 0.1.1, the abundance non-negative

constraint (ANC) 0.1.3 and the abundance sum-to-one constraint (ASC) 0.1.4, re-
spectively de�ned as

(0.1.3) φi ≥ 0, for all 1 ≤ i ≤ p

(0.1.4)

p∑
i=1

φi = 1

In the �eld of hyperspectral image processing, Spectral Unmixing [24] is the
procedure by which the measured spectrum of a mixed pixel is decomposed into
a collection of constituent spectra (endmembers) and a set of corresponding frac-
tions (abundances), that indicate the proportion of each endmember present in the
pixel. This is usually done by the computation of the fractional contribution of
endmembers given the ANC and ASC restrictions. These restrictions require care-
ful numerical methods for the computation of the fractional abundances [48, 20]
when the endmembers are known, involving constrained non-negative least squares
estimation, which can be a very computationally expensive process by itself. The
image spectral signatures could be a good characterization of the image but, ad-
ditionally, the abundance matrices could be used as spatial information about the
image. The idea of using the spectral unmixing fractional abundances as a kind of
feature extraction for classi�cation purposes was introduced in [14]. Spectral Un-
mixing can be used for target detection, thematic map building and unsupervised
segmentation.

The key problem for spectral unmixing is the de�nition of the set of endmember
spectral signatures. A library of known pure ground signatures or laboratory sam-
ples could be used. However, this poses several problems, such as the illumination
invariance, the di�erence in sensor intrinsic parameters and the a priori knowledge
about the material composition of the scene. Besides the methodological questions,
this approach is not feasible when trying to process large quantities of image data.
Current approaches try to induce the endmembers from the image data. They
either try to select some image pixel spectra as the best approximation to the end-
members in the image [34, 15], or to compute estimations of the endmembers on
the basis of the transformations of the image data (i.e. [10, 23]). The latter is
the predominant class of techniques in the literature. Previous reviews found in
the literature [35] make some emphasis on the degree of automation to classify
the algorithms. In this review the emphasis will be on the computational founda-
tions, assuming that user interaction must be minimal or null. We distinguish three
fundamental approaches:

• Geometric approaches, that try to �nd a simplex that covers the image
data.

• Lattice computing approaches, that use some kind of lattice theoretic for-
malism or mathematical morphology approach.

• Heuristic approaches, that are not very rigorously formalized under a the-
oretical framework.
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The hyperspectral images have a very high dimensionality and they su�er from the
typical problems derived of the well known curse of dimensionality [26]. Information
is usually spanned over a lower dimensionality subspace. That's why the analysis
of hyperspectral data is usually preceded for a dimensionality reduction what also
improves the computational e�ciency and the data storage capability. However, the
nature of hyperspectral data makes traditional dimensionality reduction techniques
be not as successful as they are with multispectral data, and new methods focused
in the hyperspectral data have been developed.

The number of spectral signatures that form an hyperspectral image is usually
unknown. Recently, a new concept denoted as Virtual Dimensionality (VD) [33,
9, 6] has been used for automated search of the optimal number of endmembers in
an hyperspectral image.

There are some problems that we will not touch in deep in this review. The
problem of the endmember induction algorithms initialization is discussed in [33],
where an Endmember Initialization Algorithm (EIA) is proposed. Most endmember
induction algorithms are quite computationally expensive, so a mention is due to
the e�orts to obtain distributed implementations [36] that may help them to be
a feasible approach for real-life applications. The use of o�-the-shelf Graphical
Processing Units [47] is a low cost way to obtain substantial speed-ups.

The outline of the paper is as follows: section 0.2 describes some techniques to
reduce the dimensionality of hyperspectral data, section 0.3 describes the Virtual
Dimensionality concept and some approaches to �nd the correct number of end-
members in image. Next sections present the di�erent approaches for endmember
induction: section 0.4 describes some geometrically oriented methods, section 0.5
describes methods based on lattice computing or mathematical morphology and
section 0.6 describes some heuristic methods. Finally, some concluding remarks are
given in section 0.7.

0.2. Dimensionality Reduction

Hyperspectral data sets consist of hundreds to thousands of spectral bands
what is a huge amount of data to explore. [25, 26] showed that high-dimensional
data spaces have some rather unusual and unintuitive characteristics, that is, high-
dimensional space is mostly empty and data are usually concentrated in a lower
dimensional structure. Because hyperspectral images contain a lot of spectral re-
dundancy and data are localized in a lower-dimensionality subspace, the �rst step
is usually to apply dimensionality reduction techniques to hyperspectral data what
also deals to improvements in computational performance and data storage.

The most widely used dimensionality reduction algorithms are detailed be-
low. Principal Component Analysis (PCA) [21] computes the Karhunen-Loéve
transform that maximizes data variance while Maximum Noise Fraction (MNF)
[17] or Noise-Adjusted Principal Components (NPCA) [28], which are mathemati-
cally equivalents, search for the projection that maximizes the signal-to-noise ratio
(SNR). Singular Value Decomposition (SVD) [19] searches for the projection of
maximum signal power. The number of dimensions to be retained is usually given
by a criteria based on the number of eigenvalues needed to represent a certain per-
centage of energy to be preserved. PCA, SVD and MNF's major issue is that many
subtle material substances that are uncovered by very high spectral resolution hy-
perspectral imaging sensors cannot be characterized by second-order statistics [52].
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Independent Component Analysis (ICA) [22] uses high-order statistics to overpass
this concern but however, its source statistical independence premise is generally
violated in hyperspectral data and it can lead to poor results over some condi-
tions [31]. Another dimensionality reduction method based on the selection of a
subspace of the orthogonally transformed data is the Maximum Autocorrelation
Factor (MAF) [49]. In [38], a novel multilineal algebra method is proposed to
jointly archive denoising and dimensionality reduction. This method, referred to as
LRTAdr-(K1,K2,D3), performs a Lower Rank Tensor Approximation and then an
spectral Dimensionality Reduction.

0.2.1. Principal Component Analysis (PCA). Principal Component Anal-
ysis (PCA) is an orthogonal linear transformation that transforms the data to a
new coordinate system such that the greatest variance by any projection of the
data comes to lie on the �rst coordinate (called the �rst principal component),
the second greatest variance on the second coordinate, and so on. PCA identi�es
orthogonal axes for dimensionality reduction by performing an eigendecomposition
of the sample covariance matrix of the data

(0.2.1) Σ̂ =
1
N

N∑
n=1

(xn − µ̂)(xn − µ̂)T

where µ̂ is the sample mean vector. The resulting eigendecomposition can be
expressed as

(0.2.2) Σ̂ = UΛUT

where U is the matrix of eigenvectors and Λ the diagonal matrix of eigenval-
ues. The magnitude of the eigenvalues indicates the power of the data along each
associated eigenvector, so the most used criteria to reduce the data dimensionality
is to reorder the eigenvectors according to their respective eigenvalues and keep as
many eigenvectors as needed to represent a given percentage of the data variance.

0.2.2. Maximum Noise Fraction (MNF). PCA is theoretically the opti-
mum transform for a given data in least square terms but it works independently of
any estimate of the noise in the signal. Maximum Noise Fraction (MNF) incorpo-
rates information about the sources of additive noise in addition to the covariance
of the data. The Noise-adjusted Principal Component Analysis (NPCA) is math-
ematically equivalent to the MNF where the �rst applies PCA to the previously
noise-whitened data and the second transforms the data to maximize the signal-
to-noise ratio. If the estimated noise covariance is given by Σ̂n and the estimated
signal covariance is Σ̂s, the MNF maximizes the signal-to-noise ratio by

(0.2.3)
UT ˆΣnU
UT ˆΣsU

The projection axes de�ned by U are given by the eigendecomposition of Σ̂n/Σ̂s,
which are not necessarily orthogonal.

0.2.3. Singular Value Decomposition (SVD).
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0.2.4. Independent Component Analysis (ICA). Independent Compo-
nent Analysis (ICA) main idea is to assume that data are formed by a set of in-
dependent sources so it tries to �nd that sources by their statistical independence.
To do it one more assumption has to be made, that at most one of the sources
is Gaussian, due to the fact that a linear mixture of Gaussian sources is still a
Gaussian source. Let x be the hyperspectral data expressed by

(0.2.4) x = As

where A is a mixing matrix and s is a d-dimensional signal source vector. ICA
looks for a demixing matrixW that separates the signal source vector s into a set of
statistically independent sources. Several di�erent criteria have been proposed to
measure source independence as minimizing mutual information [51], maximizing
non-gaussianity [22] or by maximum likelihood estimation.

0.2.5. Maximum Autocorrelation Factor (MAF). PCA orthogonaliza-
tion computes eigenvectors U and eigenvalues Λ by the spectral decomposition
UΣ(0)UT = Λ for the matrix of multivariate covariances Σ(0) at zero lag dis-
tance. This approach use is limited to multivariate covariances Σ(h) with intrinsic
coregionalization, that is, when all covariance and cross-covariance structures are
proportional to each other

(0.2.5) Σ(h) = Bc(h)

where c(h) is the elementary covariance structure for all attributes.
The Linear Model of Coregionalization (LMC) given by

(0.2.6) Σ(h) =
q∑
i=1

Bic
i(h)

is an alternative to 0.2.5 where the coregionalization matrices Bi are diago-
nalized by the spectral decomposition UiΣiUTi = Λi and the scalar elementary
covariance ci(h) with unit variance just multiply the eigenvalues in c(h), una�ect-
ing the eigenvectors. This approach does not provide a single matrix that can
orthogonalize Σ(h) for all lag distances. This approach is related to discriminant
analysis of diagonalization of an asymmetric covariance matrix as

(0.2.7) U [B1B
−1]UT = Λ

[49, 50] introduces the Minimum/Maximum Autocorrelation Factors (MAF)
method that allows the orthogonalization of data vector Z(x) when the sample
matrix covariance can be modelled by up to two nested structures in the LMC
model in 0.2.6. MAF method developes a rotation that maximizes and minimizes
the autocorrelation of the factors, this is

(0.2.8) U2Γ(∆)(U1BU
T
1 )−1UT2 = Λ

where Γ(∆) is the matrix variogram for non-standarized PCA factor scores
Y (x) = Z(x)U at a lag distance ∆ smaller than the range, U1ΣUT1 is a matrix
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of PCA eigenvalues, B is the sum of the coregionalization matrices for the origi-
nal attributes, same as Σ(0), U2 is the matrix of eigenvectors for the standarized
variogram Γ(∆)(U1BU

T
1 )−1 at some lag ∆, and Λ is a matrix of eigenvalues.

The multivariate matrix of covariance is

(0.2.9) Σ(h) = B1c
1(h) +B2c

2(h)

For h = 0 this is Σ = B1 +B2, and 0.2.9 becomes

(0.2.10) Σ(0) = B1c
1(0) +Bc2(0)−B1c

2(0)

Computing the eigenvectors gives a symmetric rotation

(0.2.11) U1BU
T
1 = U1[B1 +B2]UT1

Scaling the eigenvectors by the standard deviation of the factors yields

(0.2.12) A1 = UΛ−
1
2

that standarized the PCA factors so the covariance matrix for the PCA scores
for lag distance zero ΣY (0) is the identity matrix that cannot be a�ected by any
subsequent rotation. The PCA factors A1 are applied to the coregionalization
matrices as

(0.2.13) A1BA
T
1 = A1[B1 +B2]AT1

Since the eigenvalues are the variances of the factors, the factor scores Y (x) of
0.2.7 are standarized by

(0.2.14) ΣY (h) = A1B1A
T
1 c

1(h) +A1BA
T
1 c

2(h)−A1B1A
T
1 c

2(h)

ΣY (0) is a diagonal matrix so 0.2.14 becomes

(0.2.15) ΣY (h) = V1c
1(h) + (I − V1)c2(h)

where V1 = A1B1A
T
1 is used to denote the new coregionalization matrices.

0.2.15 shows that the variances of two non-orthogonal nested components are com-
plementary and that the cross-variances have opposite signs to provide the identity
matrix ΣY (0).

The matrix ΣY (h) is usually asymmetric. MAF builds on the assumption that
ΣY (h) can be substituted by the multivariate matrix variogram for factors that is
symmetric

(0.2.16) ΓY (h) = I − ΣY (h)T + ΣY (h)
2

The matrix V1 is made symmetric which yields

(0.2.17) ΓY (h) = I − (V T1 + V1)(c1(h)− c2(h))
2

− Ic2(h)
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Assuming a lag distance h = ∆ and ∆ 6= 0, MAF are obtained by a second
computation of eigenvectors as

(0.2.18)

ΓMAF (∆) = U2ΓY (∆)UT2 = I − Q2(V T1 + V1)
2

×QT2 (c1(∆)− c2(∆))− Ic2(∆)

0.2.6. LRTArd-(K1,K2,D3). LRTArd-(K1,K2,D3) performs spatial lower rank
approximation and spectral dimensionality reduction by the use of the Tucker3
decomposition that generalizes Singular Value Decomposition (SVD) for multilin-
eal algebra. From this point of view an hyperspectral image is seen as a third-
order tensor, two ways for rows and columns, and one way for spectral band, de-
noted by X ∈ <I1×I2×I3 , with elements arranged as xi1,i2,i3 where i1 = 1, . . . , I1,
i2 = 1, . . . , I2, i3 = 1, . . . , I3 and < is the real manifold. Each index is called
way or mode, and the number of levels on one mode is called dimension of that
mode. The n-mode vectors are the In-dimensional vectors obtained from a tensor
by varying index in while keeping the other indexes �xed. The so-called n-mode
�attened matrix Xn of X its such that its columns are the n-mode vectors. The
n-mode rank of multiway data X ∈ <I1×I2×I3 , denoted by Rankn(X) is de�ned as
the dimension of the vector space generated by the In-dimensional vectors obtained
from X by varying index in while keeping the other indexes �xed. X is called a
rank-(K1,K2,K3) tensor if Rankn(X) = Kn for all n = 1, 2, 3.

It's assumed that each spectral band of an hyperspectral image is impaired by
additive noise. This additive noise can also be represented as a three-way array N .
Thus an hyperspectral image can be represented as H = X + N where H, X and
N are three-way array data of <I1×I2×I3 . The purpose of LRTA-(K1,K2,K3) is to

�nd the lower rank-(K1,K2,K3) multiway data X̂, with Kn < In, for all n = 1, 2, 3,

which minimizes the quadratic Frobenius norm
∥∥∥X − X̂∥∥∥2

F
. The best lower rank-

(K1,K2,K3) multiway approximation of X is expressed as

(0.2.19) X̂ = X ×1 P
(1) ×2 P

(2) ×3 P
(3)

where P (n) = U (n)U (n)T , with n = 1, 2, 3 and being U (n) = [u1, . . . , uKn ] the
projector upon the n-mode signal space. P (n) is archieved after an Alternating
Least Squares (ALS) algorithm convergence [27].

LRTA-(K1,K2,K3) is then turned into an spectral dimensionality reduction tool
by incorporating to it the principles of PCAdr-(D3). The aim of PCA dimension-
ality reduction is to extract an small number D3 < I3 of features, called principal
components, generating a reduced matrix Z ∈ <D3×p

(0.2.20) Z = H ×3 Λ−1/2U (3)T

LRTArd-(K1,K2,D3) jointly reduces the dimensionality of the spectral mode and
protects the information along the spatial modes onto lower (K1,K2)-dimensional
subspaces. The LRTArd-(K1,K2,D3) model reads

(0.2.21) Z = H ×1 P
(1) ×2 P

(2) ×3 Λ−1/2U (3)T
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0.3. Virtual Dimensionality

Dimensionality reduction is usually the �rst step to analyze hyperspectral im-
ages, but �nd the correct subspace dimensionality in which the hyperspectral data
are localized is a very challenging problem. According to the de�nition given by
[13], the Intrinsic Dimensionality (ID), also de�ned as e�ective dimensionality, is
the minimum number of parameters required to account for the observed properties
of the data. However, the traditional dimensionality reduction techniques seen in
section 0.2 are di�cult to apply to hyperspectral imagery and they may be not
e�ective even if they are applicable since the ID in hyperspectral images is consid-
erably smaller than the component dimensionality given by hundreds or thousands
of bands and because the e�ect of interference in hyperspectral sensors is more
serious than noise, and signal-to-interference ratio (SIR) has more impact on hy-
perspectral applications than signal-to-noise ratio (SNR). In [8] a new PCA-based
algorithm, the Interference and Noise-Adjusted PCA (INAPCA) is developed to
take into account this two problems, the high dimensionality of the data and the
interferences that introduce hyperspectral sensors, and like this, �nd the correct ID
for hyperspectral images.

[6, 9] introduces a new concept to deal with these di�culties, the Virtual
Dimensionality (VD), which is the minimum number of spectrally distinct signal
sources that characterize the hyperspectral data from a perspective view of target
detection and classi�cation. These signal sources may include unknown interfering
sources, which cannot be identi�ed by a priori knowledge. These works also include
three eigen-thresholding based methods to determine VD of hyperspectral data,
they all derived from the Neyman-Pearson detection theory.

A new minimummean square error-based approach to infere the signal subspace
in hyperspectral imagery is presented in [4]. The method, denoted as Hyperspec-
tral signal identi�cation by minimum error (HySime) infers the data subspace by
minimizing the sum of the projection error power with the noise power, which are,
respectively, decreasing and increasing functions of the subspace dimension.

0.3.1. Interference and Noise-Adjusted PCA (INAPCA). A signal model
corrupted by noise is formulated by

(0.3.1) x = s + n

which is the base of signal-to-noise ratio based methods as NAPC. Separate
interference from the model given by 0.3.1 helps to process hyperspectral images
where interference is highly present due to the hyperspectral sensors high spectral
resolution. A signal-to-interference plus noise ratio (SINR) model can be expressed
by

(0.3.2) x = s + i + n

[8] presents two approaches referred as SINR-PCA and IANW-PCA for the
INACA to take care of the interference and noise prior to the use of PCA and
NPCA.

Signal-to-Interference Plus Noise Ratio-Based PCA (SINR-PCA). The Signal-
to-Interference Plus Noise Ratio-Based PCA (SINR-PCA) method is an improved
version of NAPC transform where the SNR is replaced by SINR. Here, the noise
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energy is assumed to be insigni�cant compared to the interference energy so SINR
is almost equal to SIR. SINR-PCA adds interference to the linear mixing model
formulation of hyperspectral images 0.1.2, so it is rewritten as

(0.3.3) H = EΦ + IΨ + η

where I = [i1, . . . , im] is a set of interferers with each interference signature
ij being a vector of same dimensionality than signal sources, and Ψ is a matrix
of the fractional abundances of the interferers subject to he ANC and ASC con-
straints. Based on 0.3.3 the SINR-PCA method consists of three steps. First it
applies an orthogonal subspace projector P⊥E [18] to the data to obtain the desired

interference-plus-noise subspace (the signal annihilated space) 〈E〉⊥. In second

stage the interference/noise covariance matrix, Σi+n, is obtained from 〈E〉⊥. Fi-
nally, Σi+n is whitened before apply PCA transform to the data (NAPC method).

Interference-Annihilated Noise-Whitened PCA (AINW-PCA). The Interference-
Annihilated Noise-Whitened PCA (AINW-PCA) treats the interference as an un-
wanted source and annihilates it before a PCA or a NPCA transform is applied.
The AINW-PCA algorithm has also three steps. Firstly AINW-PCA �nds the

interference-annihilated subspace 〈I〉⊥ by applying an orthogonal subspace projec-

tor P⊥I . Secondly, noise covariance matrix Σ(EI)⊥ is obtained from space 〈EI〉⊥ by

previously apply an P⊥EI orthogonal subspace projector. Finally the NAPC trans-

form is applied to the orthogonal complement space of I, 〈I〉⊥, using the Σ(EI)⊥

covariance matrix.

0.3.2. Neyman-Pearson detection theory-based eigen-thresholding anal-
ysis (HFCmethod). The main idea of the HFC (Harsanyi-Farrand-Chang) method
is that if an hyperspectral image's band doesn't contain a signal source, its sample
correlation matrix eigenvalues and its sample covariance matrix eigenvalues will
only re�ect noise energy and so, they must be equal. Using a Neyman-Pearson
test where the null hypothesis represents the case when the eigenvalues di�erence
is zero, and the alternative hypothesis represents that the di�erence is greater than
zero, the number of times that the test fails indicates how many signal sources are
present in the image.

Being RL×L the sample correlation matrix and KL×L the sample covariance

matrix, and
{
λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂L

}
and {λ1 ≥ λ2 ≥ . . . ≥ λL} the ordered eigenval-

ues of RL×L and KL×L respectively. Assuming that signal sources have positive
energies and noise variance in band l is given by σ2

l , the problem of �nding the VD
can be formulated as a binary hypothesis as follows:

(0.3.4)

{
H0 : zl = λ̂l − λl = 0
H1 : zl = λ̂l − λl > 0

for l = 1, 2, . . . , L

λ̂l and λl can be modelled under hypothesis H0 and H1 as random variables
with their asymptotic conditional probability densities given by

(0.3.5) p0(zl) = p(zl|H0) ∼= N(0, σ2
l )

and
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(0.3.6) p1(zl) = p(zl|H1) ∼= N(µ, σ2
l )

where µl is an unknown constant and σ2
l when samples are large enough, as

demonstrated in [6, 8], is given by:

(0.3.7) σ2
l = V ar[zl] ∼= σ2

λ̂l
+ σ2

λl
as N →∞

De�ning the false alarm probability, PF , and the detection probability, PD, as

(0.3.8) PF =

∞̂

τ

p0(zl)dz

(0.3.9) PD =

∞̂

τ

p1(zl)dz

the use of the Neyman-Pearson detector in each band gives the VD.
This method can be modi�ed by including a noise-whitening process to remove

the second-order statistical correlation. The resulting method is referred to as
Noise-Whitened HFC (NWHFC).

0.3.3. Noise Subspace Projection (NSP). The e�ectiveness of HFC and
NWHFC methods relies in the condition that data is large enough to validate the
use of 0.3.7. Noise Subspace Projection (NSP) was introduced in [6, 8] to resolve
the cases where this condition is not ful�lled. NSP requires the computation of
sample covariance matrix KL×L or sample correlation matrix, RL×L, but not both.

Given KL×L, it can be represented by KL×L = Ks +Kn where Ks and Kn are
the covariance matrices of signals and noise respectively. Using the eigendecompo-
sition of KL×L it can be expressed as

(0.3.10) KL×L =
V D∑
l=1

(λl + σ2
l )uluT

l +
L∑

l=V D+1

(σ2
l )uluT

l

where {ul}V Dl=1 and {ul}Ll=V D+1 represent two sets of orthonormal vectors to

span signal space and noise space respectively. λl and σ
2
l are the energies of signal

sources and noise respectively in the l-th band. Assuming that the energies of
signals are greater than noise energies the problem becomes the following binary
composite hypothesis test

(0.3.11)

{
H0 : zl = µl = 1
H1 : zl = µl = λl/σl + 1 > 1

for l = 1, 2, . . . , L

being

(0.3.12) p0(zl) = p(zl|H0) ∼= N(1, σ2
l )

(0.3.13) p1(zl) = p(zl|H1) ∼= N(µl, σ2
l )
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where σ2
l is given by σ2

λl
.

0.3.4. Hyperspectral signal identi�cation by minimum error (HySime).
Hyperspectral signal identi�cation by minimum error (HySime) infers the signal
subspace by minimizing the sum of the projection error power with the noise power,
which are, respectively, decreasing and increasing functions of the subspace dimen-
sion. If the subspace dimension is underestimated, the projection error power is
dominant; if it is overestimated, the dominant term is the noise power. The algo-
rithm's details are presented at continuation.

The �rst step is to identify a set of orthogonal directions of which an unknown
subset spans the signal subspace. This subset is determined by seeking the minimum
square estimation between the data y and the original signal x taking into account
that the data is a noisy projection of the original signal

(0.3.14) y = x + n

where noise is assumed to be zero-mean Gaussian distributed n ∼ N(0, R̂n)
with the covariance matrix R̂n given by

(0.3.15) R̂n =
1
N

∑
i

(ξ̂iξ̂i
T

)

and where ξ̂i is the estimated noise. ξ̂i is usually calculated by shift dif-
ference (nearest neighbor di�erence), however [4] follows a multiple regression
methodology-based approach which outperforms the shift di�erence method. Let
E = [e1, e2, . . . , eL] be the eigenvectors of the signal sample correlation matrix

R̂x = [x̂1, . . . , x̂N ][x̂1, . . . , x̂N ]T /N rewritten as R̂x = EΣET and estimated by

(0.3.16) R̂x =
1
N

∑
i

((yi − ξ̂i)(yi − ξ̂i)T )

Given a permutation π = {i1, . . . , iL} of indices i = 1, . . . , L let space <L
be decomposed into two orthogonal subspaces, the k-D subspace 〈Ek〉 spanned
by Ek ≡ [ei1 , . . . , eik ] and its orthogonal complement 〈Ek〉⊥ spanned by Ek ≡[
eik+1 , . . . , eiL

]
. Let Uk = EkE

T
k be the projection matrix onto 〈Ek〉 and x̂k ≡ Uky

the projection of the observed spectral vector y onto the subspace 〈Ek〉. The �rst
and the second order moments of x̂k given x are

(0.3.17) E[x̂k|x] = UkE[y|x] = UkE[x+ n|x] = Ukx = xk

(0.3.18) E[(x̂k − xk)(x̂k − xk)T |x] = E[(Uky − Ukx)[(Uky − Ukx)T |x] = UkR̂nU
T
k

The minimum squares estimation between x and x̂k is given by

(0.3.19) mse(k|x) = E[(x− x̂k)T (x− x̂k)|x] = (x− xk)T (x− xk) +
(
UkR̂nU

T
k

)T
Computing the mean of 0.3.19 with respect to x:
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(0.3.20) mse(k) = E[(U⊥k x)T (U⊥k x)] +
(
UkR̂nU

T
k

)T
= (U⊥k Ry)T + 2(UkR̂n)T + c

where c is an irrelevant constant. The criterion to estimate the signal sub-
space, X, is the minimization of 0.3.20 with respect to all the permutations π =
{i1, . . . , iL} of size L and with respect to k, with the correlation matrix Ry replaced

with the sample correlation matrix R̂y = Y Y T /N .

(0.3.21) X̂ =
〈[
eî1 , . . . , eîk̂

]〉

(0.3.22) (k̂, π̂) = arg min
k,π

{
(U⊥k R̂y)T + 2(UkR̂n)T

}
Given that Uk = EkE

T
k is a projection matrix and that (AB)T = (BA)T ,0.3.22

can be rewritten as

(0.3.23) (k̂, π̂) = arg min
k,π

c+
k∑
j=1

(−pij + 2σ2
ij )


where c is an irrelevant constant, pij = eTij

ˆRyeij and σ2
ij

= eTij R̂neij . Being

δij = −pij + 2σ2
ij
, the minimization is archived simply by including all the negative

terms δi, with i = 1, . . . , L, in the sum. The virtual dimensionality is then given

by the number of negative terms δ̂i.

0.4. Geometric-Based Induction Methods

Geometric methods follow the formal de�nition of the endmembers, they search
for the vertices of a convex set that covers the image data. Because the distribution
of the data in the hyperspace is usually tear-shaped they look for the minimum
simplex that covers all the data. Unless said otherwise, the algorithms search for a
pre�xed number of endmembers, de�ned by the user.

The �rst such methods is the Minimum Volume Transform, proposed by [12]
that introduces two non-orthonormal transforms, the dark-point-�xed (DPF) trans-
form and the �xed-point-free (FPF) transform that map the data onto the minimal
simplex that contain all the data points. One of the earliest approaches is the
N-FINDR algorithm proposed in [53]. The N-FINDR algorithm is a selection al-
gorithm. Its works are described as follows: it starts with a random collection of
image pixel spectra, corresponding to the initial set of endmembers. Then, each
of the remaining image pixels is considered as a candidate to replace each end-
member, if doing so the volume of the simplex increases, then it is accepted as
the new endmember. The process ends when no more replacements are possible.
The Convex Cone Analysis (CCA) [14] is based on the fact that the vectors formed
by discrete radiance spectra are linear combinations of nonnegative components,
and they lie inside a nonnegative convex region. The object of CCA is to �nd
the boundaries of this convex region, which can be used as endmember spectra.
The approach followed in [1] searches for the optimal simplex using a simulated
annealing algorithm (SA) whose state con�guration is given by the partition of
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the faces of the convex hull of the image pixel spectra. The partition in the con-
�guration space de�nes a simplex covering the image data whose vertices are the
candidate endmembers. The objective function minimized is the simplex volume.
This approach is followed by the generation of endmember bundles that allow the
computation of bounds on the abundance images. The Iterated Constrained End-
members (ICE) [2] algorithm performs the minimization of a regularized residual
sum of squares (RSS). The regularization term is the volume of the simplex. The
name of the algorithm comes from the minimization schema applied. Given that
the free parameters are the endmembers and the proportions (abundances) for each
pixel the algorithm iterates the solution of the tow interleaved and interdependent
minimization problems (much like in an Expectation Maximization process): �rst
the proportions are computed by quadratic programming problem solving assuming
that the endmembers are known, then the endmembers are computed as the direct
minimization of the RSS functional. The addition of an sparsity promoting term
in the RSS functional gives way to SPICE [54]. This sparsity promoting term is
derived as the substitution of a Gaussian prior by a Laplacian prior in a Bayesian
formulation of the RSS functional. The SPICE algorithm allows the selection of
the appropriate number of endmembers based on the sparsity measure. The Vertex
Component Analysis algorithm (VCA) is presented in [32]. The algorithm is unsu-
pervised and exploits that the a�ne transformation of a simplex is also a simplex.
It works with projected and unprojected data. The algorithm iteratively projects
data onto a direction orthogonal to the subspace spanned by the endmembers al-
ready determined. The new endmember signature corresponds to the extreme of
the projection. The algorithm iterates until all endmembers are exhausted. In
[11] a simplex-based endmember extraction algorithm, called Simplex Growing Al-
gorithm (SGA), is presented. It is a sequential algorithm to �nd a simplex with
the maximum volume every time a new vertex is added. SGA improves N-FINDR
by including a process of growing simplexes one vertex at a time until the desired
number of vertices is reached, which results in a high computational complexity
reduction; and by selecting an appropiate initial vector to avoid the use of random
vectors as initial condition, which produces di�erent sets of �nal endmembers if
di�erent sets of randomly generated initial endmembers are used. In [30] a method
for endmember extraction for highly mixed data, when there are not pure pixels
in the hyperspectral image, is presented. The proposed method, called Minimum
Volume Constrained Nonnegative Matrix Factorization (MVC-NMF) takes advan-
tage of the fast convergence of NMF schemes and at the same time eliminates the
pure-pixel assumption. It consists in the reformulation of an NMF cost function
introducing a volume regularization term, much like the ICE, substituting the RSS
by the NMF criteria.

0.4.1. Minimum Volume Transform (MVT). In [12], two non-orthonormal
Minimum Volume Transforms methods, the dark-point-�xed (DPF) transform and
the �xed-point-free (FPF) transform are introduced. Both map the data onto the
minimal volume simplex that contains all the data points. Both transforms require
a dimensionality reduction before been applied, being MNF the method used in
[12].

0.4.1.1. Dark-Point-Fixed (DPF) transform. The dark-point-�xed (DPF) trans-
form takes advantage of the usually tear-drop-shaped distribution of the data, radi-
ating away from the so-called dark point, the response to a target of nil re�ectance
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in all bands. DPF transform searches for the axes that enclose the data cloud with
a minimum volume after translating the data origin to the darkpoint (generally
not the origin, because of instrument settings and atmospheric backscatter). To do
that, DPF transform projects the data from O to lie within the hyperplane

(0.4.1) uTx = 1.

Here, the objective is to determine the points on 0.4.1 such that the simplex
OP1P2 . . . Pn has the least possible volume. If P is the matrix whose ith column is
the coordinate vector for Pi, then

(0.4.2) uTP = uT = uTQ

where Q is the inverse of P . The simplex volume is given by

(0.4.3)
abs(detP )

n!
The condition for x to be within the face opposite O is that all the components

of y should be nonnegative where x = Py. The task is then to maximize the
quantity abs(detQ) subject to the nonnegative of Qx constraint.

The algorithm consists on �rst choose an initial Q and then re�ne it iteratively.
The identity matrix I could be an initial choice for Q, but [12] suggests a way for
a better initialization given in the 3-D case by

(0.4.4) Q =

 1− a −a −a
−b 1− b −b
−c −c 1− c


being trivial its expansion to n > 3.
The re�nation ofQ is made by varying one at a time the directions of the vectors

forming its rows, while the remaining rows are rescaled but held �xed in direction.
Geometrically, it implies to vary the orientation of one face, while preserving the
others. In an algebraic form, if the kth row, qkj , is going to be varied introducing
an scale factor zi for each remaining row i, by 0.4.2 the new value of qkj will be
1 −

∑
i 6=k ziqij . To keep the nonnegative constraint the following conditions have

to be considered

(0.4.5)
∑
i 6=k

qijxj ≥ 0 and zi
∑
i 6=k

qijxj ≥ 0

In view of the value of qkj and 0.4.1 is concluded that

(0.4.6)
∑
i6=k

aizi ≤ 1

where ai =
∑
j qijxj . The e�ect of variation over the determinant of Q is to

multiply detQ by the product of the scale factors zi. The problem is therefore
reduced to maximizing the product of n − 1 nonnegative variables zi subject to
0.4.6.
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0.4.1.2. Fixed-Point-Free (FPF) transform. If x is an n vector, the augmented
vector associated to x is an N = n+ 1 vector given by

(0.4.7) XT = (xT , 1)

Let pi, 0 ≤ i ≤ n, the components of a full-rank simplex S in n space, and let
P be the N -rowed square augmented matrix of S. The barycentric coordinates of
x are Y0, . . . , Yn where

(0.4.8) x =
∑
i

Yipi,
∑
i

Yi = 1

Being Q the inverse of P , the barycentric coordinates can be resolved by Y =
QX. Equation 0.4.2 is adapted to

(0.4.9) ETP = UT hence ET = UTQ

denoting E the augmentation of the zero n vector and U the augmented vector
associated to u.

The algorithm consists in maximizing the absolute determinant of a matrix Q
subject to the nonnegative constraint of vectors QX. The method is analogous to
DPF transform algorithm.

0.4.2. N-FINDR. [53] introduces the N-FINDR algorithm that works by in-
�ating a simplex inside the data, beginning with a random set of pixels. Previously,
data dimensionality has to be reduced to n− 1 dimensions, being n the number of
endmembers searched for.

Let E be the matrix of endmembers augmented with a row of ones

(0.4.10) E =
[

1 1 . . . 1
e1 e2 . . . en

]
where ei is a column vector containing the spectra of the ith endmember. The

volume of the simplex is proportional to the determinant of E

(0.4.11) V (E) =
abs(det(E))

(l − 1)!

The algorithm starts by selecting an initial random set of pixels as endmembers.
Then for each pixel and each endmember, the endmember is replaced with the
spectrum of the pixel and the volume recalculated by 0.4.11. If volume increases,
the endmember is replaced by the spectrum of the pixel. The procedure ends when
no more replacements are done. The algorithm needs of some random initializations
to avoid local maxima.

0.4.3. Convex Cones Analysis (CCA). The idea of Convex Cone Analysis
(CCA) introduced in [23] relies on the nonnegative values of radiance or mass
spectra, so data formed by such spectra lies into a convex region. CCA tries to �nd
the boundaries of this convex region as de�ned by its vertices, which are used as
endmembers.
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Given an n×m image with d bands, the hyperspectral cube is rearranged into
an nm × d matrix S. The sample correlation matrix C is then obtained from the
normalized spectral matrix S

(0.4.12) C = STS

Then an eigendecomposition of C is made

(0.4.13) C = UΛUT

where U is the matrix of eigenvectors and Λ the diagonal matrix of eigenvalues.
Given the number of endmembers in image, p, CCA selects the eigenvectors cor-
responding to the p largest eigenvalues and looks for the boundaries of the convex
cone, where the linear combinations of these eigenvectors are nonnegative

(0.4.14) x = u1 + α1u2 + . . .+ αp−1up ≥ 0

The coe�cients can be multiplied by an scalar factor so as to make the coe�-
cient of u1 unity, giving p−1 free parameters. The eigenvector u1 associated to the
largest eigenvalue is aligned along the direction of the cone axis. The objective is to
�nd a set of coe�cients {αi}p−1

i=1 that produces a linear combination containing p−1
elements of x that are exactly zero, with all the other elements being nonnegative.
These points represent the corners of the convex cone.

To compute the convex cone the algorithm starts by rewriting 0.4.14 as

(0.4.15) x = [u1 . . . up]


1
α1

...
αp−1

 = Ua ≥ 0

where ui are d-dimensional column vectors. For d > p, Ua = 0 is an overdeter-
mined system of linear equations. The boundary of the convex cone is the set of
all solution vectors a that satisfy 0.4.15, or equivalently

(0.4.16) min(x) = 0

where the minimum is taken over all xi ∈ x, i = 1, . . . , d. What is the same, a
boundary occurs when at least one of the vector elements in the linear combination
of eigenvectors is zero while the others are nonnegative. In resume, the algorithm
searches through all possible combinations of p− 1 bands to �nd all sets of coe�-
cients α1, . . . , αp−1 that satisfy 0.4.16. An small tolerance ε for negative numbers
is introduced to allow for numerical errors.

0.4.4. Simulated Annealing (SA)-based method. [1] describes a method
for constructing an uniquely simplex from a partition of the facets of the convex hull
that encloses the data cloud. Let CV be the convex hull of a �nite set of data points
in a d-dimensional space. If the points in CV do not lie on a (d − 1)-hyperplane,
then they are the vertices of a set of (d − 1)-simplexes completely covering the
boundary of the convex closure of the data points and having the property that if
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any two simplexes in the set intersect they do it along a common k-face (k < d−1).
Each (d− 1)-simplex in the set is named a facet of the CV.

Since a �nite number of hull facets has only �nitely many partitions, there are
only �nitely many simplexes the method can construct, and �nding the one with
the smallest volume is a combinatorial optimization problem resolved in the work
by Simulated Annealing (SA).

A system con�guration is a partition of the facets of the CV into D + 2 sets,
being D the data space dimensionality. Each of the �rst D + 1 sets is nonempty,
and its facets form a connected region on the CV, the last set contains all facets
not in the union of the �rst D + 1 sets. These D + 1 sets determine the faces of
an D-simplex containing the data. The algorithm begins by generating a random
initial partition P0. The algorithm iterates by generating random partitions and
calculating the objective function given by the volume of the simplex computed for
the current partition, V , then the partition is accepted if the di�erence between
the volume of the current simplex and the smallest volume previously encountered
(∆V ) is negative or zero, if it's positive the partition is accepted with a probability
given by the Boltzmann probability distribution

(0.4.17) P (∆V ) = exp(
−∆V
T

)

where T , referred to as the temperature, rules the annealing process. The value
of T is initialized to the volume V0 of the simplex generated by the initial partition
P0. After each 100NF iterations, where NF is the number of facets of the CV, T
is decreased by 0.1V0, making smaller the probability of accepting a new partition.
The algorithm stops when no partitions are accepted for a �xed value of T .

For a given partition the simplex is calculated by �tting an hyperplane orthog-
onally to the vertices of the facets of each �rst D + 1 sets in the partition, and
translating the D + 1 hyperplanes until they enclose the data cloud. The simplex
is determined by the intersections of the hyperplanes.

0.4.5. Iterated Constrained Endmembers (ICE). The Iterated Constrained
Endmembers (ICE) method proposed in [2] searches for the simplex enclosing the
dimensionality reduced data cloud by MNF method, that minimizes the following
objective function

(0.4.18) RSSreg = (1− µ)
RSS

N
+ µV

where N is the number of samples in the data, RSS is the residual sum of
squares, V is the sum (over the dimensionality reduced bands) of the variances of
the simplex vertices and 0 ≤ µ ≤ 1 is a regularization term. The RSS formulation
is given by

(0.4.19) RSS =
d∑
j=1

(xj − Pej)T (xj − Pej)

where P is an M ×N matrix of proportions of the M endmembers, ei, for all
N pixels, xk.
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RSSreg objective function incorporates the constraining of the size of the sim-
plex, V , as additional information into the penalty term governed by the least
squares error given the linear mixing model 0.1.2 and the restrictions 0.1.3 and
0.1.4. If µ → 0 the solution is the M -simplex in the hyperplane spanned by the
�rstM −1 MNF bands, whose vertices have minimum total variance. On the other
hand if µ → 1 all the endmembers converge to one point, the mean of the data,
which has the minimum simplex volume.

ICE algorithm is an iterative minimization of 0.4.18. First, given endmember
estimates, the proportion matrix P is calculated. Then, given P , 0.4.18 is minimized
for each endmember ej . Its conditional minimizer has the explicit solution

(0.4.20) ej =
{
PTP + λ(IM −

11T

M
)
}−1

PTxj

where λ = Nµ
(M−1)(1−µ) . The iterating process stops when the ratio of successive

values of RSSreg is less than a tolerance value, tol. Experimentally, [2] gives the
following tentative values for the parameters of the ICE algorithm: tol = 0.99999
and µ = 0.05.

0.4.6. SPICE. [54] introduces an extension of the ICE algorithm that incor-
porate sparsity-promoting priors to �nd the correct number of endmembers. The
proposed algorithm is denoted as Sparsity Promoting Iterated Constrained End-
member detection algorithm (SPICE).

The SPICE algorithm incorporates a new term into ICE's objective function
0.4.18 which yields

(0.4.21) RSS∗reg = (1− µ)
RSS

N
+ µV + SPT

where SPT is the sparsity-promoting term introduced by SPICE by introducing
a zero-mean Laplacian distribution for the parameters prior to promote sparsity

(0.4.22) LSSP = −1
2

N∑
i=1

(xi −
M∑
j=1

pijej)2 −
M∑
j=1

γj

N∑
i=1

|pij |

so the SPT term should be of the form

(0.4.23) SPT =
M∑
j=1

γj

N∑
i=1

|pij | =
M∑
j=1

γj

N∑
i=1

pij

with

(0.4.24) γj =
Γ∑N
i=1 pij

Γ is a constant associated with the degree that the proportion values are driven
to zero. γj becomes larger as the sum of a particular endmember's proportion
values becomes small, accelerating the minimization of those proportion values.
The iterating process presented in ICE still works for minimizing 0.4.21. When
solving for the proportion values given endmember estimates, each of the N terms
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of the following sum need to be minimized given the constraints in 0.1.3 and 0.1.4
using quadratic programming

(0.4.25)

RSSreg,term1 =
(1− µ)
N

N∑
i=1

(xi −
M∑
j=1

pijej)T (xi −
M∑
j=1

pijej) +
M∑
j=1

γ∗j pij


where

(0.4.26) γ∗j =
Γ∗∑N
i=1 pij

, Γ∗ =
NΓ

(1− µ)

After each iteration, endmembers with their maximum proportion values,MAX(Pj) =
maxi {pij}, under a given threshold can be pruned from the endmember set.

0.4.7. Vertex Component Analysis (VCA). Vertex Component Analysis
introduced in [32] searches for the vertices of a simplex enclosing the data points
by exploiting that the a�ne transformation of a simplex is also a simplex. The
algorithm iteratively projects data onto a direction orthogonal to the subspace
spanned by the endmembers already determined. The new endmember signature
corresponds to the extreme of the projection. The algorithm iterates until all
endmembers are exhausted.

VCA assumes the linear mixing model in 0.1.2 and introduces an scale factor,
γ, modeling illumination variability due to surface topography

(0.4.27) h = x+ n = Eγφ+ n

Since the set
{
φ ∈ <p : 1Tφ = 1, φ ≥ 0

}
is a simplex, then the set Sx =

{
x ∈ <D : x = Eφ, 1Tφ = 1, φ ≥ 0

}
is also a simplex. However even assuming zero noise, n = 0, the observed vector
set belongs to Cp =

{
h ∈ <D : h = Eγφ, 1Tφ = 1, φ ≥ 0, γ ≥ 0

}
that is a convex

cone, owing to scale factor γ. The projective projection of the convex cone Cp
onto a properly chosen hyperplane is a simplex with vertices corresponding to the
vertices of the simplex Sx. The simplex Sp =

{
y ∈ <D : y = h/(hTu), r ∈ Cp

}
is

the projective projection of the convex cone Cp onto the plane hTu = 1, where the
chosen u assures that there is no observed vectors orthogonal to it.

In the absence of noise, observed vectors r lie in a convex cone Cp contained in
a subspace of dimension p. VCA algorithm starts by applying a SVD dimensional-
ity reduction technique to �nd the p-dimensionality subspace containing the data.
Then points in Cp are projected onto a simplex Sp by computing y = h/(hTu).
This simplex is contained into an a�ne set with p − 1 dimensions. After identify-
ing Sp, VCA iteratively projects data onto a direction orthogonal to the subspace
spanned by the endmembers already determined. The new endmember signature
corresponds to the extreme of the projection.

When SNR decreases the rescaling y = h/(hu) process ampli�es the noise,
being preferable to identify directly the a�ne space of dimension p − 1 by PCA.
Based on experimental results, [32] proposes that if SNR is higher than a threshold
SNRth = 15 + 10 log10(p)dB data should be projected onto the p-dimensionality
subspace followed by the y = h/(hTu) rescaling, otherwise data should be projected
directly onto (p− 1)-dimensionality subspace.
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The VCA algorithms �rst tests if the data's SNR is higher than SNRth. If so,
the projection matrix Up is obtained by SVD and the projective projection obtained
by

(0.4.28) [Y ]:,i =
[X]:,i

[X]T:,iu
, i = 1, . . . , N

where X = UTp H and u is an 1× p vector given by the mean of X. If SNR is lower
than SNRth the projection matrix Up−1 is obtained by PCA and the projective
projection obtained by

(0.4.29) Y =
[

X
c

]
where [X]:,i = UTp−1([H]:,i − H̄) with i = 1, . . . , N and being H̄ the sample

mean of [H]:,i. c = [c|c| . . . |c] is an 1×N vector where c = arg maxi=1,...,N ‖[X]:,i‖
that assures that the colatitude angle between u and any vector [X]:,i is between
0o and 45o avoiding numerical errors occurring for angles near 90o.

Then VCA algorithm searches for the p endmembers iteratively. The founded
endmembers are allocated in a p×p matrix A initialized as A = [eu|0|0| . . . |0] where
eu = [0, 0, . . . , 0, 1]T . In each iteration a vector f orthonormal to the space spanned
by the columns of the auxiliary matrix A is randomly generated by

(0.4.30) f =
(I −AA#)w
‖(I −AA#)w‖

where A# is the pseudoinverse matrix of A, and w = rand(0, Ip).
Then Y is projected onto f by v = fTY . Since pure endmembers is assumed to

occupy the vertices of as simplex then a ≤ fT [Y ]:,i ≤ b for i = 1, . . . , N , where val-
ues a and b correspond to pure pixels. The signature corresponding to max(|a| , |b|)
given by k = arg maxi=1,...,N [v]:,i is stored as a new endmember signature

(0.4.31) [A]:,i = [Y ]:,i

0.4.8. Simplex Growing Algorithm (SGA). Simplex Growing Algorithm
(SGA) is presented in [11]. SGA �nd a set of endmembers by growing a sequence
of simplexes increasing its vertices one at a time. The algorithm �nishes when the
number of vertices reaches the number of endmembers p.

The SGA algorithm begins by randomly generate a target pixel, t, and �nding
the �rst endmember e1 by maximizing the absolute value of the determinant of

the augmented matrix

[
1 1
t r

]
over all sample vectors r where the sample data

dimensionality has been reduced to the �rst principal component by PCA (or MNF)

(0.4.32) e1 = arg max
r

{∣∣∣∣det
[

1 1
t r

]∣∣∣∣}
The generated e1 is always a pixel which has either a maximum or minimum

value in the �rst component of dimensionality reduction transform.
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Then SGA adds vertices iteratively one at a time. To do it, in each iteration
i, for each sample data r the volume of the simplex speci�ed by e1, . . . , ei, r is
calculated by

(0.4.33) V (e1, . . . , ei, r) =

∣∣∣∣det
[

1 . . . 1 1
e1 . . . ei r

]∣∣∣∣
i!

where the sample data dimensionality has been reduced to i dimensions. The
new vertex is the one that yields the maximum of 0.4.33

(0.4.34) ei+1 = arg max
r
{V (e1, . . . , ei, r)}

0.4.9. Minimum Volume Constrained Nonnegative Matrix Factor-
ization (MVC-NMF). Nonnegative Matrix factorization (NMF) is a technique
that �nds a set of nonnegative basis vectors that approximates the original data
through linear combinations. These basis vectors play a similar role as the end-
members, however any constraint is imposed to the model except nonnegativity
which is not enough to deal with the endmember induction problem. [30] inte-
grates the least squares analysis and the convex-geometry model by incorporating
a volume constraint into the NMF formulation. The resulting method is denoted
as Minimum Volume Constrained Nonnegative Matrix Factorization (MVC-NMF).

Given a nonnegative matrix Y ∈ <m×n and a positive integer r < min(m,n),
the task of NMF is to �nd two matricesW ∈ <m×r andH ∈ <r×n with nonnegative
elements such that

(0.4.35) Y ≈WH

or equivalently, the columns {yi}nj=1 are expressed as

(0.4.36) yj ≈Whj

This can be solved by minimizing the Euclidean distance between Y and WH

(0.4.37) arg min
W,H

{
1
2

m∑
i=1

n∑
i=1

(Yij − (WH)ij)2

}
subject to W � 0 and H � 0. There are many solutions to this optimization

problem which can be found in [3].
In a NMF problem all data points lie in a positive simplical cone C

(0.4.38) C =

x|x =
∑
j

θjvj

 , θ � 0

where {vj}pj=1, vj � 0 are a set of basis vectors such that all the data points

can be approximated as linear combinations of these bases and θ is a column vector
with is components being the weight of the basis vectors.

The sum-to-one constraint 0.1.4 in the unmixing model con�nes the data points
to reside within a simplex S
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(0.4.39) S =

x|x =
∑
j

θjvj

 , θ � 0, 1T θ = 1

In the geometry-based endmembers induction techniques the best simplex is
de�ned by the minimum volume simplex circumscribing the data cloud, or by the
simplex that inscribes the data cloud with maximum volume. Under pure pixel
assumption the vertices of the simplex correspond to the pure pixels. MVC-MNF
method deals with highly-mixed data where the pure pixel assumption is not valid,
extended the searching space outside the given data cloud.

Given the unmixing problem in 0.1.2 and combining the goal of minimum ap-
proximation error with the volume constraint, the optimization problem is de�ned
by

(0.4.40) arg min
E,Φ
{f(E,Φ)} = arg min

E,Φ

{
1
2

N∑
i=1

(Xi − EΦi)2 + λJ(E)

}
subject to E � 0, Φ � 0 and 1Tp Φ = 1TN . J(E) is the penalty function,

calculating the simplex volume determined by the endmember estimates. The reg-
ularization parameter λ ∈ < is used to control the trade-o� between the accurate
reconstruction and the volume constraint. The simplex is the resulting of the bal-
ance between external force given by the �rst term of 0.4.40 that makes simplex
increase, and the volume constraint that acts like an internal force that keeps the
simplex small. The resulting simplex doesn't include every data point, particularly,
the noisy pixels on the boundary, making the method robust to noisy data.

The penalty function J(E) is determined by

(0.4.41) J(E) =
1

2(p− 1)!

{
det(

[
1Tp
Ẽ

]
)
}2

where Ẽ = (ẽ1, . . . , ẽp) is a low dimensional transform of E given by

(0.4.42) Ẽ = UT (E − µ1Tp )

where the matrix U is formed by the p−1 most signi�cant principal components
of data X through PCA, and column vector µ is the data mean. Then 0.4.41 can
be reformulated as

(0.4.43) J(E) =
τ

2
{det(Z)}2

where τ = λ/(p − 1)! and the matrix Z = C + BUT (A − µ1Tp ) and the vector
µ are constants. C and B are given by

(0.4.44) C =
[

1Tp
0

]
B =

[
0Tp−1

I

]
with 0 being a (p− 1)× p zero matrix, I is a (p− 1)× (p− 1) identity matrix

and 0p−1 is a (p− 1)-dimensional zero column vector.
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The MVC-MNF algorithm to solve the optimization problem 0.4.40 given the
penalty error 0.4.43 starts by selecting randomly p points from the given data and
arrange them as columns of the initial E. Minimizing the objective function in
0.4.40 is treated as two optimization subproblems where the iteration rule is to
update one matrix while the other one is kept �xed

(0.4.45) Ek+1 = arg min
E

{
f(E,Φk) ≤ f(Ek,Φk)

}
(0.4.46) Φk+1 = arg min

Φ

{
f(Ek+1,Φ) ≤ f(Ek+1,Φk)

}
For each subproblem the projected gradient learning is adopted to impose the

nonnegative constraint and the update rule is expressed as

(0.4.47) Ek+1 = max(0, Ek − αk∇Ef(Ek,Φk))

(0.4.48) Φk+1 = max(0,Φk − βk∇Φf(Ek+1,Φk))

where αk and βk are an small learning rates. αk is given by

(0.4.49) αk = ρmkα0

where α0 is the initial learning rate, ρ ∈ (0, 1) is an scaling factor and mk is
the �rst integer such that

(0.4.50) f(Ek+1,Φk)− f(Ek,Φk) ≤ σρmkα0∇f(Ek,Φk)T (Ek+1 − Ek)

The same procedure is used for βk. The gradient learnings ∇Ef(E,Φ) and
∇Φf(E,Φ) are given by

(0.4.51) ∇Ef(E,Φ) = (EΦ−X)ΦT + τ {det(Z)}2 UBT (Z−1)T

(0.4.52) ∇Φf(E,Φ) = ET (EΦ−X)

The algorithm stops when the euclidean norm of the gradient of the objective
function is less than a threshold or after a �xed iterations number.

0.5. Lattice Computing-Based Induction Methods

Lattice computing can be de�ned as the collection of computational methods
that either are de�ned on the algebra of lattice operators inf and sup, with the
addition, or employ lattice theory to generalize previous approaches. Mathematical
Morphology is a very successful case of this paradigm, but it also encompasses some
fuzzy systems approaches and neural networks.

Lets review some basic concepts from lattice theory [39, 44]. The lattice
theory is based on the algebraic lattice structure (<±∞,∨,∧,+,+′) or <±∞-blog,
where <±∞ = < ∪ {−∞,∞} is the set of extended real numbers, ∨ and ∧ denote,
respectively, the discrete max and min operators (resp. sup and inf in a continuous
setting) and +, +′ denote addition and its dual operation de�ned by
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(0.5.1) x+′ y = y + x ∀x ∈ <, y ∈ <±∞

(0.5.2) ∞+′ (−∞) =∞ = (−∞) +′∞

(0.5.3) ∞+ (−∞) = −∞ = (−∞) +∞

If x ∈ <±∞, then its additive conjugate is given by x∗ = −x. Similarly, for a
given vector x ∈ <n±∞, its conjugate is de�ned by x∗ = −xT .

Scalar addition is component wise, that is, if a ∈ <±∞ and x ∈ <n±∞, then
a+ x = (a+ x1, . . . , a+ xn)T , the dual operation a+′ x is similar.

Given two m × n matrices A = (aij) and B = (bij) belonging to <±∞, the
pointwise maximum of A and B, is C = A ∨B where cij = aij ∨ bij . Similarly, the
pointwise minimum of A and B, is de�ned as C = A ∧B where cij = aij ∧ bij .

If A is an m × p matrix and B is a p × n matrix, then the max product of
A and B, is the m × n matrix C = A ∨� B whose i, j-th element, cij , is given
by equation 0.5.4. Similarly, the min product of A and B, is the m × n matrix
C = A ∧� B whose entries are computed following equation 0.5.5. Both products
are collectively referred to as minimax products.

(0.5.4) C = A ∨� B = [cij ]⇔ cij =
∨

k=1,...,n

{aik + bkj}

(0.5.5) C = A ∧� B = [cij ]⇔ cij =
∧

k=1,...,n

{aik + bkj}

A vector x ∈ <n±∞is called a max �xed point of A if A ∨� x = x and a min �xed
point of A if A ∧� x = x.

A set of vectors X =
{
x1, . . . ,xk

}
⊂ <n is said to be max dominant if and

only if for every λ ∈ {1, . . . , k} there exists and index jλ ∈ {1, . . . , n} such that

(0.5.6) xλjλ − x
λ
i =

k∨
ξ=1

(
xξjλ − x

ξ
i

)
∀i ∈ {1, . . . , n}

Similarly, X is said to be min dominant if and only if for every λ ∈ {1, . . . , k} there
exists and index jλ ∈ {1, . . . , n} such that

(0.5.7) xλjλ − x
λ
i =

k∧
ξ=1

(
xξjλ − x

ξ
i

)
∀i ∈ {1, . . . , n}

An n× n square matrix A is said to be diagonally max dominant if and only if for
each i, j ∈ {1, . . . , n} satis�es condition 0.5.8, and it is said to to be diagonally min
dominant if and only if satis�es condition 0.5.9.

(0.5.8) ajj − aij =
n∨
k=1

(ajk − aik)
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(0.5.9) ajj − aij =
n∧
k=1

(ajk − aik)

The Automated Morphological Endmember Extraction (AMEE) method [34] is
a mathematical morphology inspired algorithm for the induction of the endmembers
from the data. It is based on the de�nition of multispectral erosion and dilation
operators, which are then used to compute the Morphological Eccentricity Index
(MEI) over kernels of increasing size that are computed over all the pixels in the
image. The result is a MEI image whose maxima corresponds to the endmember
pixels. The concept of morphological independence, later reformulated as lattice
independence, was the basic tool in the approach proposed in [15, 29]. The set
of endmembers was formulated as a set of morphologically independent vectors,
either in a dilative or erosive sense, or both. There the Associative Morphological
Memories, later renamed Lattice Associative Memories, are proposed as detectors
of morphologically independent vectors. The algorithm works in a single pass over
the sample data. This approach has been followed by the one proposed in [46].
The relationship between strong lattice independence and a�ne independence was
proven. Then it was found that most vectors in the erosive and dilative lattice
memories are strong lattice independent. Therefore, the mere construction of the
lattice memories provides a way to obtain the convex hull of the data. Provided an
endmember selection mechanism, the algorithm can obtain a set of endmembers in
a single pass over the image.

0.5.1. Automated Morphological Endmember Extraction (AMEE).
[34] presents a morphology-based algorithm for endmember induction, denoted as
Automated Morphological Endmember Extraction (AMEE), using both spectral
and spatial information. The algorithm is based on the dilation and erosion mor-
phology operators extended from grayscale morphology to hyperspectral morphol-
ogy:

(0.5.10) d(x, y) = (f ⊗K)(x, y) = arg max
(s,t)∈K

{Dist(f(x+ s, y + t),K)}

(0.5.11) e(x, y) = (f ⊗K)(x, y) = arg min
(s,t)∈K

{Dist(f(x+ s, y + t),K)}

where f(x, y) denotes a data vector of D dimensions at spatial coordinates
(x, y),K is a set of neighboring pixels de�ned by a plain kernel, andDist(f(x, y),K)
is a metric that calculates the cumulative distance between one particular pixel
f(x, y) of the kernel and every other pixel f(s, t)|(s, t) ∈ K

(0.5.12) Dist(f(x, y),K) =
∑
s

∑
t

dist(f(x, y), f(s, t)), ∀(s, t) ∈ K

where dist(f(x, y), f(s, t)) is a pointwise linear distance measure between two
D-dimensional vectors, i.e., the spectral angle distance.

This cumulative distance can order the vectors of a kernel in terms of their
spectral purity, and so, the dilation and erosion operators can be seen as the most
spectrally singular pixel and the most highly mixed element respectively.
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As the computational cost of calculating the cumulative distance is cubic, [34]
presents an alternative based on the distance between every spectral point and the
centroid of the kernel data cloud, de�ned as

(0.5.13) cK =
1
M

∑
s

∑
t

f(s, t), ∀(s, t) ∈ K

where M is the number of elements in the kernel K. The resulting alternative
distance function yields

(0.5.14) Dist′(f(x, y),K) = dist(f(x, y), cK)

where dist(f(x, y), cK) is again a pointwise linear distance measure. This dis-
tance function has a quadratic computational complexity.

The AMEE algorithm consists in elaborating an spectral purity index at kernel
level, so the algorithm iterates over a set of L kernels with di�erent sizes that are
convolved with all data points. The spectrally purest pixel and the spectrally most
highly mixed pixel are obtained at each kernel neighborhood by dilation 0.5.10
and erosion 0.5.11 operations. Then a Morphological Eccentricity Index (MEI) is
associated with the purest pixel by comparing the result of the dilation to the result
of erosion. The associated MEI value of selected pixels at subsequent iterations is
updated by means of newly obtained values, and a �nal MEI image is generated
after L iterations. The automated endmember selection is performed from MEI
image by a threshold value T .

The MEI value is obtained by calculating the spatial coordinates of the max-
imum pixel, based on the dilation operation d(x, y) at the kernel neighborhood of
a selected pixel with coordinates (x, y), and the minimum pixel of the same kernel
neighborhood, based on the erosion operation e(x, y). Then the MEI index is given
by a pointwise distance function, i.e., the spectral angle distance, between them

(0.5.15) MEI(n,m) = dist(d(x, y), e(x, y))

where (n,m) are the spatial coordinates of the maximum pixel.

0.5.2. Associative Morphological Memories (AMM). The work on Lat-
tice Associative Memories (LAM) stems from the consideration of the algebraic
lattice structure (<,∨,∧,+) as the alternative to the algebraic framework given by
the mathematical �eld (<,+, ·) for the de�nition of Neural Networks computation.
The LAM were �rst introduced in [42, 40] as Morphological Associative Memories
and [41, 44] set the works in the more general framework of Lattice Computing.
Given a set of input/output pairs of pattern (X,Y ) =

{(
xξ,yξ

)
; ξ = 1, .., k

}
, a

linear heteroassociative neural network based on the pattern's cross correlation is

built up as W =
∑
ξ yξ ·

(
xξ
)′
. Mimicking this constructive procedure [42, 40]

propose the following constructions of Lattice Memories (LM):

(0.5.16) WXY =
k∧
ξ=1

[
yξ ×

(
−xξ

)′]
and MXY =

k∨
ξ=1

[
yξ ×

(
−xξ

)′]
where × is any of the ∨� or ∧� operators respectively de�ned by 0.5.4 and 0.5.5.
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If X = Y then the LM memories are Lattice Autoassociative Memories (LAM).
Conditions of perfect recall by the LM and LAM of the stored patterns proved in
[42, 40] encouraged the research on them, because in the continuous case, the LAM
is able to store and recall any set of patterns: WXX ∨� X = X = MXX ∧� X, for any
X. However, this result holds when we deal with noise-free patterns. Research on
robust recall [40, 43, 37] based on the so-called kernel patterns lead to the notion
of morphological independence, in the erosive and dilative sense, and �nally to the
de�nition of Lattice Independence (LI) and Strong Lattice Independence (SLI).

Given a set of vectors
{
x1, . . . ,xk

}
⊂ <n a linear minimax combination of

vectors from this set is any vector x ∈<n±∞ which is a linear minimax sum of these
vectors

x = L
(
x1, . . . ,xk

)
=
∨
j∈J

k∧
ξ=1

(
aξj + xξ

)
where J is a �nite set of indices and aξj ∈ <n±∞, ∀j ∈ J , ∀ξ = 1, . . . , k. The linear
minimax span of vectors

{
x1, . . . ,xk

}
= X ⊂ <n is the set of all linear minimax

sums of subsets of X, denoted LMS
(
x1, . . . ,xk

)
.

Given a set of vectors X =
{
x1, . . . ,xk

}
⊂ <n, a vector x ∈<n±∞ is lattice

dependent if and only if x ∈ LMS
(
x1, . . . ,xk

)
. The vector x is lattice independent

if and only if it's not lattice dependent on X. The set X is said to be lattice
independent if and only if ∀λ ∈ {1, . . . , k} , xλ is lattice independent of X\

{
xλ
}

={
xξ ∈ X : ξ 6= λ

}
.

The de�nition of lattice independence supersedes and improves the early de�ni-
tions [43] of erosive and dilative morphological independence, which, however, have
more intuitive appealing. Nevertheless, this de�nition has the additional advantage
of establishing a formal parallelism with the de�nition of linear independence.

A set of lattice independent vectors
{
x1, . . . ,xk

}
⊂ <n is said to be strongly

lattice independent (SLI) if and only if X is max dominant 0.5.6 or min dominant
0.5.7 or both. Min and max dominance are the conditions for perfect recall. Per
construction, the column vectors of Lattice Autoassociative Memories are min or
max dominant, depending of their erosive or dilative nature, therefore they will be
strongly lattice independent, if they are lattice independent.

[44] conjectures that if X =
{
x1, . . . ,xk

}
⊂ <n is strongly lattice independent

then X is a�nely independent. This conjecture (stated as theorem in [41]) is the
key result whose proof would relate the linear convex analysis and the non-linear
lattice analysis. If true, it means that the construction of the LAM provides the
starting point for obtaining sets of a�ne independent vectors that could be used as
endmembers for the unmixing algorithms described below.

Let X =
{
x1, . . . ,xk

}
⊂ <n and let W (M) be the set of vectors consisting

of the columns of the matrix WXX (MXX). Let F (X) denote the set of �xed
points of the LAM constructed from set X. There exist V ⊂ W and N ⊂ M
such that V and N are strongly lattice independent and F (X) = F (V ) = F (N)
or, equivalently, WXX = WV V and MXX = MNN . The key idea of this theorem
is to test the lattice independence of the already known as min or max dominant
sets of vectors. Removing lattice dependent vectors will not a�ect this min/max
dominance property. The smart way to test lattice dependence lies in the fact that
removing a lattice dependent vectors does not alter the set of �xed points of the
remaining ones. This theorem is proved following a constructive reasoning, giving
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Algorithm 1 Endmember Threshold Selection Algorithm (ETSA)

(1) Given a set of vectors X =
{
x1, . . . ,xk

}
⊂ <ncompute the min and max

autoassociative memories,WXX andMXX , from the data. Their columns
vectors denoted as W and M will be the candidate endmembers.

(2) Register W and M relative to the data set by adding the maximum and
minimum values of each data bands. Obtain W and M as follows:
(a) Compute vi =

∧n
ξ=1 x

ξ
i and u

i =
∨n
ξ=1 x

ξ
i .

(b) Compute mi = mi + vi and wi = wi + ui.
(3) Remove lattice dependent vectors from the joint set W ∪M .
(4) Compute the standard deviation of the candidate endmember vectors,

denoted as σ = {σ1, . . . , σn}.
(5) Assume the �rst vector v1 in the set W ∪M as the initial endmember,

E = {v1}.
(6) Iterate for the remaining vectors v ∈W ∪M :

(a) If ‖v − e‖ < γσ for any e ∈ E discard v, otherwise include v in E.

Algorithm 2 Endmember Induction Heuristic Algorithm (EIHA)

(1) Shift the data sample to zero mean
{f c (i) = f (i)−−→µ ; i = 1, .., n}.

(2) Initialize the set of vertices E = {e1} with a randomly picked sample.
Initialize the set of lattice independent binary signatures X = {x1} ={(
e1
k > 0; k = 1, .., d

)}
(3) Construct the LAM's based on the lattice independent binary signatures:

MXX and WXX .
(4) For each pixel f c (i)

(a) compute the noise corrections sign vectorsf+ (i) = (f c (i) + α−→σ > 0)
and f− (i) = (f c (i)− α−→σ > 0)

(b) compute y+ = MXX ∧� f+ (i)
(c) compute y− = WXX ∨� f− (i)
(d) if y+ /∈ X or y− /∈ X then f c (i) is a new vertex to be added to E,

execute once 3 with the new E and resume the exploration of the
data sample.

(e) if y+ ∈ X and f c (i) > ey+ the pixel spectral signature is more
extreme than the stored vertex, then substitute ey+ with f c (i) .

(f) if y− ∈ X and f c (i) < ey− the new data point is more extreme than
the stored vertex, then substitute ey− with f c (i) .

(5) The �nal set of endmembers is the set of original data vectors f (i) corre-
sponding to the sign vectors selected as members of E.

way to an algorithm for the construction of the set of a�ne independent sets of
vectors from LAM discussed in [44, 16].

Two endmember induction methods based on the lattice independence theorems
are presented, the Endmember Threshold Selection Algorithm (ETSA) [44] given
by 1 and the Endmember Induction Heuristic Algorithm (EIHA) [16, 15] described
in 2.
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0.6. Heuristic-Based Induction Methods

The heuristic methods collects a set of heterogeneous endmember extraction
methods that use di�erent approaches not grouped under an strict theoretical back-
ground for endmember induction. The most famous and widely used method, due
to its inclusion in the ENVI software package, it is the Pixel Purity Index (PPI)
[5]. The algorithm reduces the data dimensionality and makes a noise whitened
process by MNF method, and then it determines the pixel purity by repeatedly
projecting data onto random unit vectors. The extreme pixel in each projection is
counted, identifying the purest pixels in scene. PPI requires human intervention
to select those extreme pixels that best satisfy the target spectrum. Although PPI
has been intensively used, its implementation aspects are kept unknown due to the
limited published results. In [10] PPI is investigated and a fast iterative algorithm
to implement PPI is proposed. The Fast Iterative PPI algorithm (FIPPI) improves
PPI in several aspects. FIPPI produces an appropiate initial set of endmembers
to speed up the process. Additionally, it estimates the number of endmembers to
be generated by Virtual Dimensionality (VD). FIPPI is also an unsupervised and
iterative algorithm, where an iterative rule is developed to improve each of the
iterations until it reaches a �nal set of endmembers.

The Spatial-Spectral Endmember Extraction algorithm (SSEE) proposed in
[45] is another projection based method that works by analyzing a scene in parts
(subsets), such that it increases the spectral contrast of low contrast endmembers,
thus improving the potential for these endmembers to be selected. The SSEE
method uses a singular value decomposition (SVD) to determine a set of basis
vectors that describe most of the spectral variance for subsets of the image. Then
the full image dataset is projected onto the locally de�ned basis vectors to determine
a set of candidate endmember pixels from where the �nal endmembers are selected.
For that, it searches for spectrally similar but spatially independent endmembers.
This is realized by imposing spatial constraints for averaging spectrally similar
endmembers.

0.6.1. Fast Iterative Pixel Purity Index (FIPPI). The Fast Iterative
Pixel Purity Index (FIPPI) [10] method is an improve of the Pixel Purity Index
[5] algorithm for endmembers induction. PPI is an heuristic algorithm based on
the projection of the dimensionality reduced dataset onto a set of k random unit

vectors denoted as skewers, {skewerj}kj=1, where k is a su�ciently large positive

integer. All the data sample vectors are projected onto each skewerj , selecting the
extreme vectors that form an extrema set, denoted by S(skewerj). The PPI score
for each point vector r is calculated by

(0.6.1) NPPI(r) =
∑
j

IS(skewerj)(r)

where IS(skewerj) is an indicator function of an extrema set de�ned as

(0.6.2) IS(skewerj) =

{
1, if r ∈ S(skewerj)
0, if r /∈ S(skewerj)

After �nding the PPI scores, NPPI(r), for all the sample vectors, the vectors
with a PPI scores such that NPPI(r) ≥ t are selected as endmember candidates.
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The PPI algorithm involves de�ning two parameters k and t, being k the number
of random generated skewers and t the threshold value to �nd the endmember
candidates.

PPI has several drawbacks, it's not an iterative process and does not guar-
antee that the generated endmembers are actually true endmembers due to the
randomness of generated skewers, a di�erent set of skewers generate a di�erent set
of endmembers; it's very sensible to noise, there is no criteria to select the correct
values for the k and t parameters, which determine the number of �nal endmembers,
and it requires human intervention to manually select a �nal set of endmembers.

FIPPI algorithm addresses these major drawbacks. FIPPI uses the HFCmethod
to �nd the virtual dimensionality of the data being p the number of endmembers
required to generate. Then apply a MNF transform to reduce the data to the �rst
resulting p components. FIPPI also uses the Automated Target Generation Process
(ATGP) [33] which is an Endmember Initialization Algorithm (EIA) to generate

the initial set of p skewers,
{
skewers

(0)
j

}p
j=1

. After algorithm initialization, FIPPI

iterates projecting in each iteration k all the sample vectors onto each skewer,

skewer
(k)
j to �nd those which are at its extreme positions to form an extrema set,

denoted by S(skewer(k)
j ), and then to �nd the sample vectors that produce the

largest NPPI(r
(k)
j ) de�ned by 0.6.1 and let them be denoted as

{
r

(k)
j

}
. In each it-

eration the joint set
{
skewer

(k+1)
j

}
=
{
r

(k)
j

}
NPPI(r

(k)
j )>0

∪
{
skewer

(k)
j

}
is formed.

If
{
skewer

(k+1)
j

}
=
{
skewer

(k)
j

}
no new endmembers are added to the skewer

set and the algorithm is terminated being the vectors with NPPI(r
(k+1)
j ) > 0 the

desired endmembers.

0.6.2. Spatial-Spectral Endmember Extraction algorithm (SSEE). Spectral-
based image endmember induction methods hinge on the ability to discriminate
between pixels based on spectral characteristics. Those endmembers with distinct
spectral features (high spectra contrast) are easy to select, whereas those with
minimal unique spectral information (low spectral contrast) are more problematic.
Spatial-Spectral Endmember Extraction (SSEE) algorithm works in the basis that
it's possible for an endmember to have low spectral contrast with respect to the
full image, but have high spectral contrast within a subset of the image. So, SSEE
analyzes an hyperspectral image in subscenes such that the spectral contrast of low
contrast endmembers is increased, improving the potential for these endmembers
to be selected.

The algorithm has four steps, �rstly the Singular Value Decomposition (SVD)
method is applied to determine a set of eigenvectors that describe most of the spec-
tral variance of image subsets, secondly the entire image data is projected onto the
eigenvectors to determine a set of candidate endmember pixels, thirdly spatial con-
straints are used to combine and average spectrally similar candidate endmember
pixels, and �nally candidate endmembers are listed in spectral similarity order.

SSEE's �rst step is to apply SVD to subsets of the image that are square,
equally sized and that do not overlap. Eigenvectors that account for 99% of total
spectral variance are retained from each subset been compiled into a single set of
vectors. For each subset the minimum number of vectors is set to 2, while the
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maximum is de�ned by the variance threshold value. The minimum size of the
subset is de�ned by the square root of the number of bands in image data.

In step two, the entire image data is projected onto the compiled vector set,
retaining the pixels that lie at either extreme of the vectors. These pixels represent
the candidate pixel endmember set, SE .

Step three analyzes the spatial and spectral characteristics of the candidate
endmember set to average spectrally similar endmember candidates that are spa-
tially related. This is done by scanning the image with a sliding window of size
equal to the subset size used in step one. For each candidate endmember ej ∈ SE ,
j = 1, . . . ,K pixels within the window that are similar to the candidate endmem-
bers based on a distance metric, i.e. the spectral angle or root mean square, form

the candidate endmember pixels set,
{
Pej
}K
j=1

. Then each of the candidate end-

member pixels is averaged. The averaging process is repeated for n number of
iterations reducing the e�ect of noise, �nding image pixels that are spectrally simi-
lar but spatially related within the window and compressing candidate endmembers
into clusters with reduced variance.

Finally, in the fourth step the endmember set derived from step three is re-
ordered based on spectral angle, grouping similar spectra for user inspection.

0.7. Conclusions
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