TOMA DE DECISIÓN CON CERTIDUMBRE

Bajo el nombre de “Método de Monte Carlo” o “Simulación Monte Carlo” se agrupan una serie de procedimientos que analizan distribuciones de variables aleatorias usando simulación de números aleatorios.

 El Método de Monte Carlo da solución a una gran variedad de problemas matemáticos haciendo experimentos con muestreos estadísticos en una computadora. El método es aplicable a cualquier tipo de problema, ya sea estocástico o determinístico.

 Generalmente en estadística los modelos aleatorios se usan para simular fenómenos que poseen algún componente aleatorio. Pero en el método de Monte Carlo, por otro lado, el objeto de la investigación es el objeto en sí mismo, un suceso aleatorio o pseudo-aleatorio se usa para estudiar el modelo.

 A veces la aplicación del método de Monte Carlo se usa para analizar problemas que no tienen un componente aleatorio explícito; en estos casos un parámetro determinista del problema se expresa como una distribución aleatoria y se simula dicha distribución. Un ejemplo sería el famoso problema de las Agujas de Bufon.

 La simulación de Monte Carlo fue creada para resolver integrales que no se pueden resolver por métodos analíticos, para resolver estas integrales se usaron números aleatorios. Posteriormente se utilizó para cualquier esquema que emplee números aleatorios, usando variables aleatorias con distribuciones de probabilidad conocidas, el cual es usado para resolver ciertos problemas estocásticos y determinísticos, donde el tiempo no juega un papel importante.

 El método fue llamado así por el principado de Mónaco por ser ``la capital del juego de azar'', al tomar una ruleta como un generador simple de números aleatorios. El nombre y el desarrollo sistemático de los métodos de Monte Carlo data aproximadamente de 1944 con el desarrollo de la computadora electrónica. Sin embargo hay varias instancias (aisladas y no desarrolladas) en muchas ocasiones anteriores a 1944.

El uso real de los métodos de Monte Carlo como una herramienta de investigación, viene del trabajo de la bomba atómica durante la Segunda Guerra Mundial. Este trabajo involucraba la simulación directa de problemas probabilísticos de hidrodinámica concernientes a la difusión de neutrones aleatorios en material de fusión.

Aún en la primera etapa de estas investigaciones, John von Neumann y Stanislao Ulam refinaron esta curiosa ``Ruleta rusa'' y los métodos``de división''. Sin embargo, el desarrollo sistemático de estas ideas tuvo que esperar el trabajo de Harris y Herman Kahn en 1948. Aproximadamente en el mismo año, Fermi, Metropolos y Ulam obtuvieron estimadores para los valores característicos de la ecuación de Schrödinger para la captura de neutrones a nivel nuclear.

 

Árboles de decisión.

El árbol de decisión es un diagrama que representan en forma secuencial condiciones y acciones; muestra qué condiciones se consideran en primer lugar, en segundo lugar y así sucesivamente. Este método permite mostrar la relación que existe entre cada condición y el grupo de acciones permisibles asociado con ella.
Un árbol de decisión sirve para modelar funciones discretas, en las que el objetivo es determinar el valor combinado de un conjunto de variables, y basándose en el valor de cada una de ellas, determinar la acción a ser tomada.
Los árboles de decisión son normalmente construidos a partir de la descripción de la narrativa de un problema. Ellos proveen una visión gráfica de la toma de decisión necesaria, especifican las variables que son evaluadas, qué acciones deben ser tomadas y el orden en la cual la toma de decisión será efectuada. Cada vez que se ejecuta un árbol de decisión, solo un camino será seguido dependiendo del valor actual de la variable evaluada.
Se recomienda el uso del árbol de decisión cuando el número de acciones es pequeño y no son posibles todas las combinaciones.

Uso de árboles decisiones.
El desarrollo de árboles de decisión beneficiado analista en dos formas. Primero que todo, la necesidad de describir condiciones y acciones llevan a los analistas a identificar de manera formal las decisiones que actualmente deben tomarse. De esta forma, es difícil para ellos pasar por alto cualquier etapa del proceso de decisión, sin importar que este dependa de variables cuantitativas o cualitativas. Los árboles también obligan a los analistas a considerar la consecuencia de las decisiones.

Se ha demostrado que los árboles de decisión son eficaces cuando es necesario describir problemas con más de una dimensión o condición. También son útiles para identificar los requerimientos de datos críticos que rodean al proceso de decisión, es decir, los árboles indican los conjuntos de datos que la gerencia requiere para formular decisiones o tomar acciones. El analista debe identificar y elaborar una lista de todos los datos utilizados en el proceso de decisión, aunque el árbol de decisión no muestra todo los datos.
Si los árboles de decisión se construyen después de completar el análisis de flujo de datos, entonces es posible que los datos críticos se encuentren definidos en el diccionario de datos (el cual describe los datos utilizados por el sistema y donde se emplean). Si únicamente se usan árboles de decisiones, entonces el analista debe tener la certeza de identificar con precisión cada dato necesario para tomar la decisión.

Los árboles de decisión no siempre son la mejor herramienta para el análisis de decisiones. El árbol de decisiones de un sistema complejo con muchas secuencias de pasos y combinaciones de condiciones puede tener un tamaño considerable. El gran número de ramas que pertenecen a varias trayectorias constituye más un problema que una ayuda para el análisis. En estos casos los analistas corren el riesgo de no determinar qué políticas o estrategias de la empresa son la guía para la toma de decisiones específicas. Cuando aparecen estos problemas, entonces es momento de considerar las tablas de decisión.

Ejemplo de Árbol de Decisión.