The Kazdan Warner problem

Compact surfaces with conical singularities

Case

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Case 2 000000

Prescribing the gaussian curvature on a surface with conical points.

David Ruiz

Departamento de Análisis Matemático (Universidad de Granada, Spain)

joint work with Andrea Malchiodi (SISSA).

The Kazdan Warner problem

Compact surfaces with conical singularities

Case

Case 2 000000

The Kazdan Warner problem

2 Compact surfaces with conical singularities

- * ロ * * 健 * * 注 * ・ 注 ・ の & (や

Case 1

(日) (日) (日) (日) (日) (日) (日)

Case 2 000000

The Kazdan Warner problem

A old problem in geometric analysis consists in prescribing the curvature of a surface. In other words, given Σ a compact surface and $\tilde{K}: \Sigma \to \mathbb{R}$, does there exist \tilde{g} so that $\tilde{K}(x)$ is the curvature of (Σ, \tilde{g}) ?

If we fix a metric g, we can look for the new metric \tilde{g} as a conformal deformation of g, that is, $\tilde{g} = e^{2u}g$. In such case, we get:

$$-\Delta_g u + K(x) = \tilde{K}(x)e^{2u}.$$
 (1)

Case 1

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Case 2 000000

The Kazdan Warner problem

A old problem in geometric analysis consists in prescribing the curvature of a surface. In other words, given Σ a compact surface and $\tilde{K}: \Sigma \to \mathbb{R}$, does there exist \tilde{g} so that $\tilde{K}(x)$ is the curvature of (Σ, \tilde{g}) ?

If we fix a metric g, we can look for the new metric \tilde{g} as a conformal deformation of g, that is, $\tilde{g} = e^{2u}g$. In such case, we get:

$$-\Delta_g u + K(x) = \tilde{K}(x)e^{2u}.$$
 (1)

By integrating, we obtain:

$$\int_{\Sigma} K(x) \, dV_g = \int_{\Sigma} \tilde{K}(x) e^{2u} \, dV_g = \rho$$

Case 1

(日) (日) (日) (日) (日) (日) (日)

Case 2 000000

The Kazdan Warner problem

A old problem in geometric analysis consists in prescribing the curvature of a surface. In other words, given Σ a compact surface and $\tilde{K}: \Sigma \to \mathbb{R}$, does there exist \tilde{g} so that $\tilde{K}(x)$ is the curvature of (Σ, \tilde{g}) ?

If we fix a metric g, we can look for the new metric \tilde{g} as a conformal deformation of g, that is, $\tilde{g} = e^{2u}g$. In such case, we get:

$$-\Delta_g u + K(x) = \tilde{K}(x)e^{2u}.$$
 (1)

By integrating, we obtain:

$$\int_{\Sigma} K(x) \, dV_g = \int_{\Sigma} \tilde{K}(x) e^{2u} \, dV_g = \rho = 2\pi \chi(\Sigma).$$

Here we restrict ourselves to the positive case, $\rho > 0$. Hence, a necessary condition is that \tilde{K} is positive elsewhere.

The case $\rho \leq 0$ has been completely described:

The Kazdan Warner problem	Compact surfaces with conical singularities	Case 1	Case 2
0000	000000	0000	000000

We can rewrite the equation:

$$-\Delta_g u + \mathcal{K}(x) = \rho \frac{\tilde{\mathcal{K}}(x) e^{2u}}{\int_{\Sigma} \tilde{\mathcal{K}}(x) e^{2u} \, dV_g}.$$

This is the Euler-Lagrange equation of the energy functional $I_{\rho}: H^1(\Sigma) \to \mathbb{R}$,

$$I_{\rho}(u) = \int \left(|\nabla u|^2 + 2K(x)u
ight) dV_g -
ho \log \left(\int_{\Sigma} \tilde{K}(x)e^{2u} dV_g
ight).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Kazdan Warner problem	Compact surfaces with conical singularities	Case 1	Case 2
0000	000000	0000	000000

We can rewrite the equation:

$$-\Delta_g u + \mathcal{K}(x) =
ho rac{ ilde{\mathcal{K}}(x) e^{2u}}{\int_{\Sigma} ilde{\mathcal{K}}(x) e^{2u} \, dV_g}.$$

This is the Euler-Lagrange equation of the energy functional $I_{\rho}: H^1(\Sigma) \to \mathbb{R}$,

$$I_{\rho}(u) = \int \left(|\nabla u|^2 + 2K(x)u
ight) dV_g -
ho \log \left(\int_{\Sigma} \tilde{K}(x)e^{2u} dV_g
ight).$$

The Moser-Trudinger inequality implies that I_{ρ} is bounded from below for $\rho \in (0, 4\pi]$. Moreover, I_{ρ} is coercive for $\rho \in (0, 4\pi)$, and then a solution can be found as a minimizer. For instance, that solves the problem for $\Sigma = \mathbb{RP}^2$, since $\chi(\mathbb{RP}^2) = 1$.

J. Moser, Dynamical Systems (M. Peixoto ed.), Academic Press, New York, 1973.

The Kazdan Warner problem	Compact surfaces with conical singularities	Case 1 0000	Case 2 000000

The case of the sphere is intrinsically more complicated, and there are counterexamples, already found by Kazdan and Warner. Here, $\rho = 4\pi$, which is critical for the Moser-Trudinger inequality.

- S.Y.A. Chang and P. C. Yang, Acta Math. 1987.
- C. C. Chen and C. S. Lin, CPAM 2003.

Moreover, if $\rho > 4\pi$, $I_{\rho}(\varphi_{\lambda}) \rightarrow -\infty$ as $\lambda \rightarrow +\infty$, where:

$$arphi_{\lambda}(x) = \log\left(rac{\lambda}{1+\lambda^2 \textit{dist}(x,x_0)^2}
ight), \quad x_0 \in \Sigma, \ ilde{\mathcal{K}}(x_0) > 0.$$

(日) (日) (日) (日) (日) (日) (日)

The Kazdan Warner problem	Compact surfaces with conical singularities	Case 1 0000	Case 2 000000

The previous choice is not casual: indeed, the functions defined in \mathbb{R}^2 :

$$U(x) = \log\left(rac{\lambda}{1+\lambda^2|x-x_0|^2}
ight), \quad \lambda > 0, \; x_0 \in \mathbb{R}^2,$$

are the unique entire solutions of the problem:

$$-\Delta U(x) = 4e^{2U(x)}, \quad x \in \mathbb{R}^2$$

with $e^{2u} \in L^1(\mathbb{R}^2)$.

W. Chen and C. Li, Duke Math. J. 1991.

We say that p is a conical point of (Σ, g) of degree $\alpha > -1$ if in a neighborhood of p,

 $g=h(x)g_0,$

where g_0 is a smooth metric on Σ , and $h(x) \sim |x - p|^{2\alpha}$.

For instance, the vertex of a cone of total angle θ is a conical point of order α , with $\theta = 2\pi(1 + \alpha)$. The case $\alpha > 0$ gives rise to non-embedded conical points.

Case 2 000000

Compact surfaces with conical singularities

We say that p is a conical point of (Σ, g) of degree $\alpha > -1$ if in a neighborhood of p,

 $g=h(x)g_0,$

where g_0 is a smooth metric on Σ , and $h(x) \sim |x - p|^{2\alpha}$.

For instance, the vertex of a cone of total angle θ is a conical point of order α , with $\theta = 2\pi(1 + \alpha)$. The case $\alpha > 0$ gives rise to non-embedded conical points.

Now we are interested in prescribing both the curvature on Σ and the conical points p_i (with degree α_i). We can build a metric g with those conical points by using partitions of unity. The equation becomes, as previously:

$$-\Delta_g u + K(x) = \tilde{K}(x)e^{2u}.$$

he Kazdan Warner problem	Compact surfaces with conical singularities	Case 1	Case 2
000	00000	0000	000000

As a first difference with respect to the smooth case, the Gauss-Bonnet formula implies now that $\rho = 2\pi(\chi(\Sigma) + \sum_i \alpha_i)$.

Recall the expression of I_{ρ} :

$$I_{\rho}(u) = \int_{\Sigma} \left(|\nabla u|^2 + K(x)u \right) dV_g - \rho \log \left(\int_{\Sigma} \tilde{K}(x) e^{2u} dV_g \right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

e Kazdan Warner problem	Compact surfaces with conical singularities	Case 1	Case 2
000	00000	0000	000000

As a first difference with respect to the smooth case, the Gauss-Bonnet formula implies now that $\rho = 2\pi(\chi(\Sigma) + \sum_i \alpha_i)$.

Recall the expression of I_{ρ} :

$$I_{\rho}(u) = \int_{\Sigma} \left(|\nabla u|^2 + K(x)u \right) dV_g - \rho \log \left(\int_{\Sigma} \tilde{K}(x) e^{2u} dV_g \right).$$

If we write this expression in terms of g_0 , we obtain:

$$I_{\rho}(u) = \int_{\Sigma} \left(|\nabla u|^2 + K(x)h(x)u \right) dx - \rho \log \Big(\int_{\Sigma} h(x)\tilde{K}(x)e^{2u} dx \Big),$$

where h(x) is positive outside p_i and $h(x) \sim |x - p_i|^{2\alpha_i}$.

A second difference: now I_{ρ} is bounded from below if $\rho \leq 4\pi \min\{1, 1 + \alpha_i : i = 1 \dots k\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Kazdan Warner problem	Compact surfaces with conical singularities	Case 1 0000	Case 2 000000

Theorem

Assume that $0 < \rho < 4\pi \min\{1, 1 + \alpha_i : i = 1...k\}$, and take $\tilde{K}(x)$ positive elsewhere. Then there exists a minimizer for I_{ρ} .

M. Troyanov, TAMS 1991.

There are also some non-existence results. It is known that there does not exist a metric on the sphere with one conical point and constant positive curvature.

Moreover, a metric on the sphere with constant positive curvature and two conical points exists if and only if $\alpha_1 = \alpha_2$.

(日) (日) (日) (日) (日) (日) (日)

M. Troyanov, Lect. Notes Math., 1410, Springer, NY, 1989.

(ロ) (同) (三) (三) (三) (○) (○)

Motivation from physics

This equation arises also from physical models such as the abelian Chern-Simons-Higgs theory and the Electroweak theory. In this framework, the points p_i represent vortexes.

- J. Hong, Y. Kim, P. Y. Pac, Phys. Rev. Lett. 1990.
- R. Jackiw and E. J. Weinberg, Phys. Rev. Lett. 1990.
- C. H. Lai (ed.), Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions, World Scientific, Singapore, 1981.

🛸 G. Dunne. Self-dual Chern-Simons Theories. Lecture Notes in Physics, Springer-Verlag 1995.

S. Tarantello, Self-Dual Gauge Field Vortices: An Analytical Approach, PNLDE 72, Birkhäuser Boston, 2007.

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, 2001.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The result

Theorem

Assume that $\tilde{K}(x)$ is strictly positive. We rearrange the conical points so that $0 = \alpha_0 < \alpha_1 \le \alpha_2 \le \ldots \alpha_k \le 1$. Assume $\rho \in (4\pi, 8\pi)$, $\rho \ne 4\pi(1 + \alpha_i)$ for any *i*. Assume also that either Σ is not homeomorphic to a sphere or $\rho \notin (4\pi(1 + \alpha_{k-1}), 4\pi(1 + \alpha_k))$. Then problem (1) has a solution.

A. Malchiodi and D. Ruiz, Geom. and Funct. Anal. 2011.

The second condition may look technical. However, there holds:

Theorem

Assume that k = 1, $\Sigma = S^2$. If $\tilde{K}(x) = \tilde{K} > 0$, then (1) does not admit any solution for any $\rho \in (4\pi, 4\pi(1 + \alpha))$.

D. Bartolucci, C.S. Lin and G. Tarantello, DCDS 2010.

Case 1

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Case 2

The variational argument

The argument of the proof is reminiscent of Morse theory. For any $L \in \mathbb{R}$, we define:

$$I_{\rho}^{L} = \{ u \in H^{1}(\Sigma) : I_{\rho}(u) < L \}.$$

By Morse theory, if I_{ρ}^{a} is not homotopically equivalent to I_{ρ}^{b} , then there exists a critical point $u \in H^{1}(\Sigma)$ with $I_{\rho}(u) \in [a, b]$.

Compact surfaces with conical singularities $\circ \circ \circ \circ \circ \bullet$

Case 1

(日) (日) (日) (日) (日) (日) (日)

Case 2 000000

The variational argument

The argument of the proof is reminiscent of Morse theory. For any $L \in \mathbb{R}$, we define:

$$I_{\rho}^{L} = \{ u \in H^{1}(\Sigma) : I_{\rho}(u) < L \}.$$

By Morse theory, if I_{ρ}^{a} is not homotopically equivalent to I_{ρ}^{b} , then there exists a critical point $u \in H^{1}(\Sigma)$ with $I_{\rho}(u) \in [a, b]$.

It is easy to show that I_{ρ}^{L} is contractible for L >> 1. Therefore, we will be done if we prove that low sub-levels of I_{ρ} are not contractible.

- W. Ding, J. Jost, J. Li and G. Wang, AIHP 1999.
- Z. Djadli and A. Malchiodi, Ann. of Math. 2008.

Case 1

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Case 2 000000

Case 1: $\rho \in (4\pi(1 + \alpha_k), 8\pi)$.

Proposition

Assume $h: \Sigma \to \mathbb{R}$ with $0 \le h(x) \le C_0$. Let Ω_1, Ω_2 be two subsets of Σ with dist $(\Omega_1, \Omega_2) \ge \delta_0 > 0$, and fix $\gamma_0 > 0$. Then, for any $\varepsilon > 0$ there exists a constant $C = C(C_0, \varepsilon, \delta_0, \gamma_0)$ such that

$$\log \int_{\Sigma} h(x) e^{2u} \leq C + rac{1}{8\pi - arepsilon} \int_{\Sigma} |
abla u|^2 + 2 \int_{\Sigma} u.$$

for all functions $u \in H^1(\Sigma)$ satisfying

$$\frac{\int_{\Omega_j} h(x)e^{2u}}{\int_{\Sigma} h(x)e^{2u}} \ge \gamma_0, \qquad j = 1, 2.$$
(2)

W. Chen and C. Li, J. Geom. Anal. 1991.

The Kazdan Warner problem	Compact surfaces with conical singularities	Case 1 ○●○○	Case 2 000000

As a consequence we have that for any $u_n \in H^1$ such that $I_{\rho}(u_n) \to -\infty$,

$$\frac{he^{u_n}}{\int he^{u_n}} \rightharpoonup \delta_x$$

for some $x \in \Sigma$. This provides us with a continuous map:

$$\Psi: I_{\rho}^{-M} \to \Sigma,$$

for *M* large enough.

The Kazdan Warner problem	Compact surfaces with conical singularities	Case 1	Case 2
0000	000000	0000	000000

Moreover, for $\lambda > 0$ large we define $\Phi_{\lambda} : \Sigma \to I_{\rho}^{-M}$ as:

$$\Phi_{\lambda}[x_0](x) = \log\left[\frac{\lambda}{1+\lambda^2|x-x_0|^{2(1+\alpha_k)}}\right]$$

for x in a neighborhood of x_0 .

Again, those functions correspond to the unique entire solutions of the problem

$$-\Delta u = 4(1+\alpha_k)^2 |x-x_0|^{2\alpha_k} e^{2u}.$$

J. Prajapat and G. Tarantello, PRSE 2001.

In order to compute that indeed $I_{\rho}(\Phi_{\lambda}[x_0]) < -M$ for any $x_0 \in \Sigma$ we use strongly that $\rho > 4\pi(1 + \alpha_k)$.

(日) (日) (日) (日) (日) (日) (日)

Case 1

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Case 2 000000

Topological properties of sublevels

We can compute the composition:

$$\Sigma \stackrel{\Phi_{\lambda}}{\longrightarrow} I_{\rho}^{-M} \stackrel{\Psi}{\longrightarrow} \Sigma.$$

It is possible to show that $\Psi \circ \Phi_{\lambda} \to Id$ as $\lambda \to +\infty$. So, the composition is $\Psi \circ \Phi_{\lambda}$ is homotopycally equivalent to the identity. Since Σ is not contractible, neither is I_{ρ}^{-M} .

Case 2: $\rho \in (4\pi(1 + \alpha_i), 4\pi(1 + \alpha_{i+1}))$

In this case it seemed impossible to us to define a map $\Phi_{\lambda} : \Sigma \to I_{\rho}^{-M}$ as before. The problem appears when defining $\Phi_{\lambda}[p_j], j > i$. A result that may explain why is the following:

Theorem

Let B be the unit ball of \mathbb{R}^2 . Then, for any $u \in H^1(B)$ radial, there holds:

$$\log \int_{B} |x|^{2lpha} e^{2u} \leq rac{1}{4(1+lpha)\pi} \int_{B} |
abla u|^2 + 2 \int_{B} u + C.$$

That makes one think that now sublevels will not contain functions concentrated around p_j , j > i.

he Kazdan Warner problem	Compact surfaces with conical singularities	Case 1	Case 2

Theorem

Fix $\rho \in (4\pi, 8\pi)$. There exists M > 0 and a map $\beta : I_{\rho}^{-M} \to \Sigma$ such that for any $\varepsilon > 0$

$$\log \int_{\Sigma} |x-p|^{2\alpha} e^{2u} \leq \frac{1}{4\pi(1+\alpha)-\varepsilon} \int_{\Sigma} |\nabla u|^2 + 2 \int_{\Sigma} u + C_{\varepsilon},$$

for any $u \in I_{\rho}^{-M}$ with $\beta(u) = p$.

Actually the map β applies to $f = \frac{he^{\mu}}{\int he^{\mu}}$. Let us define:

$$\mathcal{A} = \{f \in L^1(\Sigma), f(x) > 0 \text{ a.e.}, \int_{\Sigma} f = 1\},$$

$$\sigma: \Sigma \times \mathcal{A} \to (\mathbf{0}, +\infty),$$

where $\sigma = \sigma(x, f)$ is chosen such that (for some C > 0 large):

$$\int_{B_x(\sigma)} f = \int_{B_x(C\sigma)^c} f.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Kazdan Warner problem

Compact surfaces with conical singularities

ase 1

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Case 2

A barycenter map

Let us define $T: \Sigma imes \mathcal{A} o (0, +\infty)$,

$$T(x,f)=\int_{B_x(\sigma(x,f))}f.$$

Both σ and T are continuous.

There exists $\tau = \tau(C) > 0$ such that

$$\max_{x\in\Sigma} T(x,f) > 2\tau \ \forall \ f \in \mathcal{A}.$$

The Kazdan Warner problem

Compact surfaces with conical singularities

ase 1

Case 2

A barycenter map

Let us define $T: \Sigma \times \mathcal{A} \to (0, +\infty)$,

$$T(x,f)=\int_{B_x(\sigma(x,f))}f.$$

Both σ and T are continuous.

There exists $\tau = \tau(C) > 0$ such that

$$\max_{x\in\Sigma} T(x,f) > 2\tau \ \forall \ f \in \mathcal{A}.$$

By Nash embedding Theorem, we can assume that $\Sigma \subset \mathbb{R}^N$ isometrically. Let us define:

$$\eta: I_{\rho}^{-M} \to \mathbb{R}^{N}, \ \eta(u) = \frac{\int_{\Sigma} [T(x, f) - \tau]^{+} x}{\int_{\Sigma} [T(x, f) - \tau]^{+}}$$

Moreover, the integrand is nonzero in a very small region for *M* large. So, we can simply define $\beta(u)$ as the projection of $\eta(u)$ onto Σ .

The Kazdan Warner problem	Compact surfaces with conical singularities	Case 1	Case 2
0000	000000	0000	000000

That map β defined in that way is somehow a barycenter of *u*. In particular, if $u \in H^1(B)$ is radial, $\beta(u) = 0$.

Now we need to show that if $\beta(u) = p$, then

$$\log \int_{\Sigma} |x-p|^{2\alpha} e^{2u} \leq \frac{1}{4\pi(1+\alpha)-\varepsilon} \int_{\Sigma} |\nabla u|^2 + 2 \int_{\Sigma} u + C_{\varepsilon}.$$

The proof of that is quite technical and will be skipped in this talk.

The Kazdan Warner problem	Compact surfaces with conical singularities	Case 1	Case 2
0000	000000	0000	000000

Therefore, we can use the barycenter map:

$$\beta: I_{\rho}^{-M} \to \Sigma \setminus \{p_{i+1}, \dots p_k\}$$

for *M* large enough. By using a deformation retract, we can define:

$$\Psi: I_{\rho}^{-M} \to \Sigma \setminus \left(\cup_{j=i+1}^{k} B_{\rho_{j}}(\delta) \right),$$

for small δ fixed. Moreover, we can also define:

$$\Phi_{\lambda}: \Sigma \setminus \left(\cup_{j=i+1}^{k} B_{\rho_{j}}(\delta) \right) \rightarrow I_{\rho}^{-M},$$

$$\Phi_{\lambda}[x_0](x) = \log\left[\frac{\lambda}{1+\lambda^2|x-x_0|^{2(1+\alpha_{i+1})}}\right]$$

So, we conclude again whenever $\Sigma \setminus \left(\bigcup_{j=i+1}^{k} B_{\rho_j}(\delta) \right)$ is not contractible.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

The Kazdan Warner problem

Compact surfaces with conical singularities

Case 1

Case 2 000000

Thank you for your attention!