[The Kazdan Warner problem](#page-2-0) [Compact surfaces with conical singularities](#page-9-0) [Case 1](#page-18-0) [Case 2](#page-22-0)
 $\frac{1}{000000}$ Cooperation Compact surfaces with conical singularities Case 1 Case 2

KOD CONTRACT A BOAR KOD A CO

Prescribing the gaussian curvature on a surface with conical points.

David Ruiz

Departamento de Análisis Matemático (Universidad de Granada, Spain)

joint work with Andrea Malchiodi (SISSA).

[The Kazdan Warner problem](#page-2-0) [Compact surfaces with conical singularities](#page-9-0) [Case 1](#page-18-0) [Case 2](#page-22-0)
 $\frac{1}{000000}$ Cooperation Compact surfaces with conical singularities Case 1 Case 2

1 [The Kazdan Warner problem](#page-2-0)

2 [Compact surfaces with conical singularities](#page-9-0)

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

[The Kazdan Warner problem](#page-2-0) [Compact surfaces with conical singularities](#page-9-0) [Case 1](#page-18-0) [Case 2](#page-22-0)

KORK ERKER ADAM ADA

The Kazdan Warner problem

A old problem in geometric analysis consists in prescribing the curvature of a surface. In other words, given Σ a compact surface and $\tilde{K}: \Sigma \to \mathbb{R}$, does there exist \tilde{g} so that $\tilde{K}(x)$ is the curvature of (Σ, \tilde{g}) ?

If we fix a metric q , we can look for the new metric \tilde{q} as a conformal deformation of g , that is, $\tilde{g} = e^{2u}g.$ In such case, we get:

$$
-\Delta_g u + K(x) = \tilde{K}(x)e^{2u}.
$$
 (1)

[The Kazdan Warner problem](#page-2-0) [Compact surfaces with conical singularities](#page-9-0) [Case 1](#page-18-0) [Case 2](#page-22-0)

nnnn

KORK ERKER ADAM ADA

The Kazdan Warner problem

A old problem in geometric analysis consists in prescribing the curvature of a surface. In other words, given Σ a compact surface and $\tilde{K}: \Sigma \to \mathbb{R}$, does there exist \tilde{g} so that $\tilde{K}(x)$ is the curvature of (Σ, \tilde{g}) ?

If we fix a metric q , we can look for the new metric \tilde{q} as a conformal deformation of g , that is, $\tilde{g} = e^{2u}g.$ In such case, we get:

$$
-\Delta_g u + K(x) = \tilde{K}(x)e^{2u}.\tag{1}
$$

By integrating, we obtain:

$$
\int_{\Sigma} K(x) dV_g = \int_{\Sigma} \tilde{K}(x) e^{2u} dV_g = \rho
$$

E

[The Kazdan Warner problem](#page-2-0) [Compact surfaces with conical singularities](#page-9-0) [Case 1](#page-18-0) [Case 2](#page-22-0)
 \bullet 000 000 00000 000000 000000 00000

ററററ

KORK EXTERNED ARA

nnnnn

The Kazdan Warner problem

A old problem in geometric analysis consists in prescribing the curvature of a surface. In other words, given Σ a compact surface and $\tilde{K}: \Sigma \to \mathbb{R}$, does there exist \tilde{g} so that $\tilde{K}(x)$ is the curvature of (Σ, \tilde{g}) ?

If we fix a metric *g*, we can look for the new metric *g*˜ as a conformal deformation of g , that is, $\tilde{g} = e^{2u}g.$ In such case, we get:

$$
-\Delta_g u + K(x) = \tilde{K}(x)e^{2u}.\tag{1}
$$

By integrating, we obtain:

$$
\int_{\Sigma} K(x) dV_g = \int_{\Sigma} \tilde{K}(x) e^{2u} dV_g = \rho = 2\pi \chi(\Sigma).
$$

Here we restrict ourselves to the positive case, $\rho > 0$. Hence, a necessary condition is that \tilde{K} is positive elsewhere.

The case $\rho \leq 0$ has been completely described:

J. Kazdan and F. Warner, Ann. of Math. 1974.

We can rewrite the equation:

$$
-\Delta_g u + K(x) = \rho \frac{\tilde{K}(x)e^{2u}}{\int_{\Sigma} \tilde{K}(x)e^{2u} dV_g}.
$$

This is the Euler-Lagrange equation of the energy functional $I_\rho: H^1(\Sigma) \to \mathbb{R},$

$$
I_{\rho}(u) = \int \left(|\nabla u|^2 + 2K(x)u \right) dV_g - \rho \log \left(\int_{\Sigma} \tilde{K}(x) e^{2u} dV_g \right).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

We can rewrite the equation:

$$
-\Delta_g u + K(x) = \rho \frac{\tilde{K}(x)e^{2u}}{\int_{\Sigma} \tilde{K}(x)e^{2u} dV_g}.
$$

This is the Euler-Lagrange equation of the energy functional $I_\rho: H^1(\Sigma) \to \mathbb{R},$

$$
I_{\rho}(u) = \int \left(|\nabla u|^2 + 2K(x)u \right) dV_g - \rho \log \left(\int_{\Sigma} \tilde{K}(x) e^{2u} dV_g \right).
$$

The Moser-Trudinger inequality implies that I_o is bounded from below for $\rho \in (0, 4\pi]$. Moreover, I_{ρ} is coercive for $\rho \in (0, 4\pi)$, and then a solution can be found as a minimizer. For instance, that solves the problem for $\Sigma = \mathbb{RP}^2$, since $\chi(\mathbb{RP}^2) = 1$.

J. Moser, Dynamical Systems (M. Peixoto ed.), Academic Press, New York, 1973.

KORK EXTERNED ARA

The case of the sphere is intrinsically more complicated, and there are counterexamples, already found by Kazdan and Warner. Here, $\rho = 4\pi$, which is critical for the Moser-Trudinger inequality.

S.Y.A. Chang and P. C. Yang, Acta Math. 1987. E.

C. C. Chen and C. S. Lin, CPAM 2003. 歸

Moreover, if $\rho > 4\pi$, $I_{\rho}(\varphi_{\lambda}) \rightarrow -\infty$ as $\lambda \rightarrow +\infty$, where:

$$
\varphi_\lambda(x)=\textup{log}\left(\frac{\lambda}{1+\lambda^2\textup{dist}(x,x_0)^2}\right),\quad x_0\in\Sigma,\ \tilde{K}(x_0)>0.
$$

KID K@ KKEX KEX E 1090

The previous choice is not casual: indeed, the functions defined in \mathbb{R}^2 :

$$
U(x) = \log\left(\frac{\lambda}{1 + \lambda^2 |x - x_0|^2}\right), \quad \lambda > 0, \ x_0 \in \mathbb{R}^2,
$$

are the unique entire solutions of the problem:

$$
-\Delta U(x) = 4e^{2U(x)}, \quad x \in \mathbb{R}^2
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

with $e^{2u} \in L^1(\mathbb{R}^2)$.

W. Chen and C. Li, Duke Math. J. 1991.

KORK EXTERNED ARA

Compact surfaces with conical singularities

We say that *p* is a conical point of (Σ, g) of degree $\alpha > -1$ if in a neighborhood of *p*,

$$
g=h(x)g_0,
$$

 $\textsf{where}~ g_0$ is a smooth metric on Σ, and $h(x) \sim |x-p|^{2\alpha}.$

For instance, the vertex of a cone of total angle θ is a conical point of order α , with $\theta = 2\pi(1 + \alpha)$. The case $\alpha > 0$ gives rise to non-embedded conical points.

KORKARA KERKER DAGA

Compact surfaces with conical singularities

We say that *p* is a conical point of (Σ, g) of degree $\alpha > -1$ if in a neighborhood of *p*,

$$
g=h(x)g_0,
$$

 $\textsf{where}~ g_0$ is a smooth metric on Σ, and $h(x) \sim |x-p|^{2\alpha}.$

For instance, the vertex of a cone of total angle θ is a conical point of order α , with $\theta = 2\pi(1 + \alpha)$. The case $\alpha > 0$ gives rise to non-embedded conical points.

Now we are interested in prescribing both the curvature on Σ and the conical points p_i (with degree α_i). We can build a metric q with those conical points by using partitions of unity. The equation becomes, as previously:

$$
-\Delta_g u + K(x) = \tilde{K}(x)e^{2u}.
$$

As a first difference with respect to the smooth case, the Gauss-Bonnet formula implies now that $\rho = 2\pi (\chi(\Sigma) + \sum_i \alpha_i).$

Recall the expression of *I*ρ:

$$
I_{\rho}(u) = \int_{\Sigma} \left(|\nabla u|^2 + K(x)u \right) dV_g - \rho \log \Big(\int_{\Sigma} \tilde{K}(x) e^{2u} dV_g \Big).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

As a first difference with respect to the smooth case, the Gauss-Bonnet formula implies now that $\rho = 2\pi (\chi(\Sigma) + \sum_i \alpha_i).$

Recall the expression of *I*ρ:

$$
I_{\rho}(u) = \int_{\Sigma} \left(|\nabla u|^2 + K(x)u \right) dV_g - \rho \log \left(\int_{\Sigma} \tilde{K}(x) e^{2u} dV_g \right).
$$

If we write this expression in terms of $g₀$, we obtain:

$$
I_{\rho}(u)=\int_{\Sigma}\left(|\nabla u|^{2}+K(x)h(x)u\right)dx-\rho\log\left(\int_{\Sigma}h(x)\tilde{K}(x)e^{2u}dx\right),
$$

where $h(x)$ is positive outside ρ_i and $h(x) \sim |x - \rho_i|^{2\alpha_i}.$

A second difference: now *I_p* is bounded from below if $\rho \leq 4\pi m$ in $\{1, 1 + \alpha_i : i = 1 ... k\}.$

KORK EXTERNED ARA

Theorem

 \mathcal{A} ssume that $0 < \rho < 4\pi$ min $\{1, 1 + \alpha_i: \ i = 1 \dots k\}$, and take $\widetilde{\mathcal{K}}(x)$ *positive elsewhere. Then there exists a minimizer for I_ρ.*

M. Troyanov, TAMS 1991.

There are also some non-existence results. It is known that there does not exist a metric on the sphere with one conical point and constant positive curvature.

Moreover, a metric on the sphere with constant positive curvature and two conical points exists if and only if $\alpha_1 = \alpha_2$.

KORKARA KERKER DAGA

M. Troyanov, Lect. Notes Math., 1410, Springer, NY, 1989.

[The Kazdan Warner problem](#page-2-0) **[Compact surfaces with conical singularities](#page-9-0)** [Case 1](#page-18-0) [Case 2](#page-22-0)
 Case 2 Cooperation Compact surfaces with conical singularities Case 2

Cooperation Compact surfaces with conical singularities Case 1

nnnn

KORK EXTERNED ARA

nnnnn

Motivation from physics

This equation arises also from physical models such as the abelian Chern-Simons-Higgs theory and the Electroweak theory. In this framework, the points *pⁱ* represent vortexes.

- J. Hong, Y. Kim, P. Y. Pac, Phys. Rev. Lett. 1990.
- R. Jackiw and E. J. Weinberg, Phys. Rev. Lett. 1990.
- 暈 C. H. Lai (ed.), Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions, World Scientific, Singapore, 1981.

G. Dunne, *Self-dual Chern-Simons Theories,* Lecture Notes in Physics, Springer-Verlag 1995.

G. Tarantello, *Self-Dual Gauge Field Vortices: An Analytical Approach,* PNLDE 72, Birkhäuser Boston, 2007.

Y. Yang, *Solitons in Field Theory and Nonlinear Analysis,* Springer Monographs in Mathematics, 2001.

KORK EXTERNED ARA

The result

Theorem

Assume that $K(x)$ is strictly positive. We rearrange the conical points *so that* $0 = \alpha_0 < \alpha_1 < \alpha_2 < \dots < \alpha_k < 1$. Assume $\rho \in (4\pi, 8\pi)$, $\rho \neq 4\pi (1 + \alpha_i)$ for any *i*. *Assume also that either* Σ *is not homeomorphic to a sphere or* $\rho \notin (4\pi(1 + \alpha_{k-1}), 4\pi(1 + \alpha_k)).$ *Then problem* [\(1\)](#page-2-1) *has a solution.*

A. Malchiodi and D. Ruiz, Geom. and Funct. Anal. 2011.

The second condition may look technical. However, there holds:

Theorem

 A ssume that $k = 1$, $\Sigma = S^2$. If $\tilde{K}(x) = \tilde{K} > 0$, then [\(1\)](#page-2-1) does not admit *any solution for any* $\rho \in (4\pi, 4\pi(1 + \alpha))$.

D. Bartolucci, C.S. Lin and G. Tarantello, DCDS 2010.

[The Kazdan Warner problem](#page-2-0) **[Compact surfaces with conical singularities](#page-9-0)** [Case 1](#page-18-0) [Case 2](#page-22-0)
 Compact surfaces with conical singularities Case 1 Case 2
 Conical singularities

nnnn

KORK EXTERNED ARA

The variational argument

The argument of the proof is reminiscent of Morse theory. For any $L \in \mathbb{R}$, we define:

$$
I_{\rho}^{\mathcal{L}}=\{u\in H^{1}(\Sigma):\;I_{\rho}(u)
$$

By Morse theory, if I_ρ^a is not homotopically equivalent to I_ρ^b , then there exists a critical point $u \in H^1(\Sigma)$ with $I_\rho(u) \in [a,b].$

[The Kazdan Warner problem](#page-2-0) **[Compact surfaces with conical singularities](#page-9-0)** [Case 1](#page-18-0) [Case 2](#page-22-0)
 Case 2 Coop Coop Coope

nnnr

KORK EXTERNED ARA

nnnnn

The variational argument

The argument of the proof is reminiscent of Morse theory. For any $L \in \mathbb{R}$, we define:

$$
I_{\rho}^{\mathcal{L}}=\{u\in H^1(\Sigma):\ I_{\rho}(u)
$$

By Morse theory, if I_ρ^a is not homotopically equivalent to I_ρ^b , then there exists a critical point $u \in H^1(\Sigma)$ with $I_\rho(u) \in [a,b].$

It is easy to show that I_ρ^L is contractible for $L>>1.$ Therefore, we will be done if we prove that low sub-levels of I_o are not contractible.

- W. Ding, J. Jost, J. Li and G. Wang, AIHP 1999.
- Z. Djadli and A. Malchiodi, Ann. of Math. 2008.晶

nnnnn

Case 1: $\rho \in (4\pi(1 + \alpha_k), 8\pi)$.

Proposition

Assume h : $\Sigma \to \mathbb{R}$ *with* $0 \leq h(x) \leq C_0$. Let Ω_1, Ω_2 be two subsets of $Σ$ *with dist*($Ω_1, Ω_2$) $≥ δ_0 > 0$ *, and fix* $γ_0 > 0$ *. Then, for any* $ε > 0$ *there exists a constant C* = $C(C_0, \varepsilon, \delta_0, \gamma_0)$ *such that*

$$
\log \int_{\Sigma} h(x) e^{2u} \leq C + \frac{1}{8\pi - \varepsilon} \int_{\Sigma} |\nabla u|^2 + 2 \int_{\Sigma} u.
$$

for all functions u ∈ *H* 1 (Σ) *satisfying*

$$
\frac{\int_{\Omega_j} h(x)e^{2u}}{\int_{\Sigma} h(x)e^{2u}} \geq \gamma_0, \qquad j = 1, 2.
$$
 (2)

W. Chen and C. Li, J. Geom. Anal. 1991.

KEL KALEY KEY E NAG

As a consequence we have that for any $u_n \in H^1$ such that $I_{\rho}(u_n) \rightarrow -\infty$,

$$
\frac{h e^{u_n}}{\int h e^{u_n}} \rightharpoonup \delta_x
$$

for some $x \in \Sigma$. This provides us with a continuous map:

$$
\Psi: I_{\rho}^{-M}\to \Sigma,
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

for *M* large enough.

Moreover, for $\lambda > 0$ large we define $\Phi_\lambda : \Sigma \to \mathit{I}^{-M}_\rho$ as:

$$
\Phi_{\lambda}[x_0](x) = \log \left[\frac{\lambda}{1 + \lambda^2 |x - x_0|^{2(1 + \alpha_k)}} \right]
$$

for *x* in a neighborhood of *x*0.

Again, those functions correspond to the unique entire solutions of the problem

$$
-\Delta u=4(1+\alpha_k)^2|x-x_0|^{2\alpha_k}e^{2u}.
$$

F J. Prajapat and G. Tarantello, PRSE 2001.

In order to compute that indeed $I_{\rho}(\Phi_{\lambda}[x_0]) < -M$ for any $x_0 \in \Sigma$ we use strongly that $\rho > 4\pi(1 + \alpha_k)$.

KORK EXTERNED ARA

KEL KALEY KEY E NAG

Topological properties of sublevels

We can compute the composition:

$$
\Sigma \stackrel{\Phi_{\lambda}}{\longrightarrow} I_{\rho}^{-M} \stackrel{\Psi}{\longrightarrow} \Sigma.
$$

It is possible to show that $\Psi \circ \Phi_{\lambda} \to \mathcal{U}$ as $\lambda \to +\infty$. So, the composition is $\Psi \circ \Phi_{\lambda}$ is homotopycally equivalent to the identity. Since Σ is not contractible, neither is I_ρ^{-M} .

[The Kazdan Warner problem](#page-2-0) [Compact surfaces with conical singularities](#page-9-0) [Case 1](#page-18-0) [Case 2](#page-22-0)
 $\frac{1}{20000}$

nnnr

KORK EXTERNED ARA

Case 2: $\rho \in (4\pi(1 + \alpha_i), 4\pi(1 + \alpha_{i+1}))$

In this case it seemed impossible to us to define a map $Φ_λ : Σ → I_ρ^{−M}$ as before. The problem appears when defining $\Phi_\lambda[p_j],\,j>i.$ A result that may explain why is the following:

Theorem

Let *B* be the unit ball of \mathbb{R}^2 . Then, for any $u \in H^1(B)$ radial, there *holds:*

$$
\log \int_B |x|^{2\alpha} e^{2u} \leq \frac{1}{4(1+\alpha)\pi} \int_B |\nabla u|^2 + 2 \int_B u + C.
$$

That makes one think that now sublevels will not contain functions concentrated around *p^j* , *j* > *i*.

Theorem

 $\mathsf{Fix}\ \rho\in(4\pi,8\pi).$ There exists $\mathsf{M}>0$ and a map $\beta:\mathsf{\mathit{l}}_\rho^{-\mathsf{M}}\to\Sigma$ such *that for any* $\varepsilon > 0$

$$
\log \int_{\Sigma} |x - \rho|^{2\alpha} e^{2u} \leq \frac{1}{4\pi(1+\alpha) - \varepsilon} \int_{\Sigma} |\nabla u|^2 + 2 \int_{\Sigma} u + C_{\varepsilon},
$$

for any $u \in I_\rho^{-M}$ *with* $\beta(u) = p$ *.*

Actually the map β applies to $f = \frac{h e^{\omega}}{\int h e^{\omega}}.$ Let us define:

$$
\mathcal{A} = \{f \in L^1(\Sigma),\ f(x) > 0\ a.e.,\ \int_{\Sigma} f = 1\},\
$$

$$
\sigma:\Sigma\times\mathcal{A}\to(0,+\infty),
$$

where $\sigma = \sigma(x, f)$ is chosen such that (for some $C > 0$ large):

$$
\int_{B_x(\sigma)} f = \int_{B_x(C\sigma)^c} f.
$$

KORKAR KERKER E VOOR

[The Kazdan Warner problem](#page-2-0) [Compact surfaces with conical singularities](#page-9-0) [Case 1](#page-18-0) [Case 2](#page-22-0)

KORKARYKERKE PORCH

A barycenter map

Let us define $T : \Sigma \times A \rightarrow (0, +\infty)$,

$$
T(x,f)=\int_{B_x(\sigma(x,f))}f.
$$

Both σ and T are continuous.

There exists $\tau = \tau(C) > 0$ such that

$$
\max_{x\in\Sigma}T(x,f)>2\tau\ \forall\ f\in\mathcal{A}.
$$

[The Kazdan Warner problem](#page-2-0) [Compact surfaces with conical singularities](#page-9-0) [Case 1](#page-18-0) [Case 2](#page-22-0)

Case 2 Case 2 Cooperation Compact surfaces with conical singularities Case 1 Case 2 Cooperation Compact 2 Cas

nnnr ററ∩ററ

 000

A barycenter map

Let us define $T : \Sigma \times A \rightarrow (0, +\infty)$,

$$
T(x,f)=\int_{B_x(\sigma(x,f))}f.
$$

Both σ and T are continuous.

There exists $\tau = \tau(C) > 0$ such that

$$
max_{x\in\Sigma}T(x,f)>2\tau\ \forall\ f\in\mathcal{A}.
$$

By Nash embedding Theorem, we can assume that $\Sigma \subset \mathbb{R}^{\mathsf{A}}$ isometrically. Let us define:

$$
\eta: I_{\rho}^{-M} \to \mathbb{R}^N, \ \ \eta(u) = \frac{\int_{\Sigma} [\mathcal{T}(x,f) - \tau]^+ x}{\int_{\Sigma} [\mathcal{T}(x,f) - \tau]^+}.
$$

Moreover, the integrand is nonzero in a very small region for *M* large. S[o](#page-28-0), we ca[n](#page-21-0) simply define $β(u)$ $β(u)$ $β(u)$ $β(u)$ as the projectio[n o](#page-24-0)f $η(u)$ $η(u)$ on[t](#page-22-0)o [Σ](#page-21-0)[.](#page-22-0)

That map β defined in that way is somehow a barycenter of *u*. In particular, if $u\in H^1(B)$ is radial, $\beta(u)=0.$

Now we need to show that if $\beta(u) = p$, then

$$
\log \int_{\Sigma} |x-p|^{2\alpha} e^{2u} \leq \frac{1}{4\pi(1+\alpha)-\varepsilon} \int_{\Sigma} |\nabla u|^2 + 2 \int_{\Sigma} u + C_{\varepsilon}.
$$

KORKARA KERKER DAGA

The proof of that is quite technical and will be skipped in this talk.

Therefore, we can use the barycenter map:

$$
\beta: I_{\rho}^{-M} \to \Sigma \setminus \{p_{i+1}, \ldots p_k\}
$$

for *M* large enough. By using a deformation retract, we can define:

$$
\Psi: I_{\rho}^{-M} \to \Sigma \setminus \left(\cup_{j=i+1}^k B_{\rho_j}(\delta)\right),
$$

for small δ fixed. Moreover, we can also define:

$$
\Phi_\lambda : \Sigma \setminus \left(\cup_{j=i+1}^k B_{p_j}(\delta) \right) \to I_\rho^{-M},
$$

$$
\Phi_\lambda[x_0](x) = \log \left[\frac{\lambda}{1 + \lambda^2 |x - x_0|^{2(1 + \alpha_{i+1})}} \right]
$$

So, we conclude again whenever $\Sigma \setminus \left(\,\cup_{j=i+1}^k B_{\rho_j}(\delta) \right)$ is not contractible.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

[The Kazdan Warner problem](#page-2-0) [Compact surfaces with conical singularities](#page-9-0) [Case 1](#page-18-0) [Case 2](#page-22-0)
 $\frac{20000}{000000}$

Thank you for your attention!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*