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The wave equation

The wave equation ∂ttu = ∆u, in Rd+1, with initial data u(·, 0) = u0,
∂tu(·, 0) = u1, has solution which can be written as

u(·, t) = S(u0, u1)(·, t)

=
1
2
(
e it
√
−4u0 +

1
i
e it
√
−4u1√
−4

)
+

1
2
(
e−it

√
−4u0 −

1
i
e−it

√
−4u1√
−4

)
,

where

e±it
√
−4u0(x) =

1
(2π)d

∫
Rd

e i(x ·ξ±t|ξ|)û0(ξ)dξ

e±it
√
−4u1√
−4

(x) =
1

(2π)d

∫
Rd

e i(x ·ξ±t|ξ|) û1(ξ)

|ξ|
dξ.
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Setting ĝ(ξ) = f (ξ, |ξ|) and dσ(ξ, τ) = δ(|ξ| − τ)dξ, we have that

e it
√
−4g(x) =

1
(2π)d

∫
e i(x ·ξ+t|ξ|)ĝ(ξ)dξ

=
1

(2π)d

∫
e i(x ·ξ+t|ξ|)f (ξ, |ξ|)dξ

=
1

(2π)d

∫
C

e i(x ·ξ+tτ)f (ξ, τ)dξdτ

= f̂dσ(x , t),

where C :=
{

(ξ, τ) ∈ Rd+1 : |ξ| = τ
}
.

Therefore, if ĝ is supported in a set A, we can interpret e it
√
−4g as the

Fourier transform of a measure supported in{
(ξ, |ξ|) ∈ Rd+1 : ξ ∈ A

}
.
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In 1977, Strichartz proved his fundamental inequality

‖S(u0, u1)‖
L
2 d+1

d−1 (Rd+1)
≤ C (‖u0‖2

Ḣ
1
2 (Rd )

+ ‖u1‖2
Ḣ−

1
2 (Rd )

)
1
2 ,

where

‖f ‖Ḣs = (
∑
k

22ks‖Pk f ‖22)
1
2 ,

with P̂k f = χAk f̂ and Ak = {ξ ∈ Rd ; 2k ≤ |ξ| ≤ 2k+1}.
We improve this inequality to

‖S(u0, u1)‖
L
2 d+1

d−1 (Rd+1)
≤ C (‖u0‖2

Ḃ
1
2
2,q(Rd )

+ ‖u1‖2
Ḃ
− 1
2

2,q (Rd )
)
1
2 ,

where q = 2d+1
d−1 for d ≥ 3, and q = 3 for d = 2.

Here Ḃs
2,q is defined by

‖f ‖Ḃs
2,q

= (
∑
k

2qks‖Pk f ‖q2)
1
q .
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Better refinement

Let S = {wm}m ⊂ Sd−1 be maximally 2−j -separated, and define τ j ,k
m by

τ j ,k
m :=

{
ξ ∈ Ak :

∣∣ ξ
|ξ|
− wm

∣∣ ≤ ∣∣ ξ
|ξ|
− wm′

∣∣ for every wm′ ∈ S , m′ 6= m
}
.

We also set P̂kg j
m = χ

τ j,k
m

ĝ .
For our applications the following refinement will be of more use.

There exist p < 2 and θ > 0 such that

‖S(u0, u1)‖
L
2 d+1

d−1 (Rd+1)
≤C
(
sup
j ,k,m

2k θ2 |τ j ,k
m |

θ
2

p−2
p ‖ ̂Pk(u0)j

m‖θp‖u0‖1−θ
B

1
2
2,q(1−θ)

+ sup
j ,k,m

2−k θ2 |τ j ,k
m |

θ
2

p−2
p ‖ ̂Pk(u1)j

m‖θp‖u1‖1−θ
B
− 1
2

2,q(1−θ)

)
.

Note: Quilodrán posted in the arxiv recently a similar result for the case of
dimension d = 2.
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Previous Strichartz’s refinements in the literature

For the Schrödinger equation:
Bourgain in 1989 in dimension d = 2.
Moyua–Vargas–Vega first in 1996 and then in 1999 improved that
refinement.
Begout–Vargas in 2007 extended the result to dimensions d ≥ 2.

For other equations:
Rogers–Vargas in 2006 for the nonelliptic Schrödinger equation.
Chae–Hong-Lee in 2009 for higher order Schrödinger equations.
Shao in 2009 for the airy equation.
Killip-Stovall-Visan in 2011 for the Klein–Gordon equation.
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2 key points:
- how to get the Lp norm with p < 2 on the right hand side?

‖S(u0, u1)‖
L
2 d+1

d−1 (Rd+1)
≤C
(
sup
j ,k,m

2k θ2 |τ j ,k
m |

θ
2

p−2
p ‖ ̂Pk(u0)j

m‖θp‖u0‖1−θ
B

1
2
2,q(1−θ)

+ sup
j ,k,m

2−k θ2 |τ j ,k
m |

θ
2

p−2
p ‖ ̂Pk(u1)j

m‖θp‖u1‖1−θ
B
− 1
2

2,q(1−θ)

)
.

- how to improve from `2 to `q with q > 2?

‖S(u0, u1)‖
L
2 d+1

d−1 (Rd+1)
≤C
(
sup
j ,k,m

2k θ2 |τ j ,k
m |

θ
2

p−2
p ‖ ̂Pk(u0)j

m‖θp‖u0‖1−θ
B

1
2
2,q(1−θ)

+ sup
j ,k,m

2−k θ2 |τ j ,k
m |

θ
2

p−2
p ‖ ̂Pk(u1)j

m‖θp‖u1‖1−θ
B
− 1
2

2,q(1−θ)

)
.
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We use the bilinear method to get the Lp norm. Questions:
What is a bilinear estimate?
How do we pass from bilinear to linear?
Why do we want to use a bilinear estimate?
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What is a bilinear estimate for the wave equation?
Asuming that |wm − wm′ | ∼ 1, it is an estimate of the form

‖e it
√
−4P0g1

m e it
√
−4P0g1

m′‖Lq(Rd+1) . ‖P̂0g1
m‖L2(Rd )‖P̂0g1

m′‖L2(Rd ).

Of course, by Cauchy–Schwarz a linear estimate

‖e it
√
−4P0g1

m‖L2q(Rd+1) . ‖P̂0g1
m‖L2(Rd ).

implies the bilinear one.
But while q = d+1

d−1 is the lowest value of q for the linear estimate
(Strichartz estimate), on the other hand, we can push down this value in
the bilinear case thanks to the angular separation.
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How do we pass from linear to bilinear?
Tao–Vargas–Vega in 1998 gave a way to deduce linear estimates from
bilinear ones. The key ingredient is the Whitney decomposition. Let ĝ
supported in A1, we have

A1 ×A1 =
⋃
j

⋃
m,m′:τ j

m∼τ j
m′

τ j
m × τ

j
m′

where we write τ j
m ∼ τ j

m′ if |wm − wm′ | ∼ 2−j . Therefore

‖e it
√
−4P0g‖2L2q(Rd+1) = ‖e it

√
−4P0g e it

√
−4P0g‖Lq(Rd+1)

. ‖
∑

j

∑
m,m′:τ j,k

m ∼τ j,k+`

m′

e it
√
−4P0g j

m e it
√
−4P0g

j
m′‖Lq(Rd )

.
∑

j

∑
m,m′:τ j

m∼τ j
m′

‖e it
√
−4P0g j

m e it
√
−4P0g

j
m′‖Lq(Rd )

A rescaling argument permits us to use the bilinear estimate. The step
when we use the triangle inequality can be improved, as we will see.
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Why do we want to use a bilinear estimate?
As we have seen, in the linear restriction if we have the L2 norm in the
right hand we can not push down the L2 d+1

d−1 norm of the left hand side to
some Lq with q < 2d+1

d−1 , while in the bilinear setting we can push down the

L
d+1
d−1 norm. Moreover, as a consequence of this and interpolating we can

get estimates

‖e it
√
−4P0g1

m e it
√
−4P0g1

m′‖
L

d+1
d−1 (Rd+1)

. ‖P̂0g1
m‖Lp(Rd )‖P̂0g1

m′‖Lp(Rd ).

with p < 2.
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The Cone Bilinear Restriction Theorem

More precisely, we have the trivial bilinear estimate

‖e it
√
−4P0g1

m e it
√
−4P0g1

m′‖L∞(Rd+1) . ‖P̂0g1
m‖L1(Rd )‖P̂0g1

m′‖L1(Rd ). (1)

And the (sharp except for the end-point) following estimate

Theorem (Wolff 2000)

Let d+3
d+1 < r1, and suppose that ∠(wm,wm′) ∼ 1. Then,

‖e it
√
−4P0g1

m e it
√
−4P0g1

m′‖Lr1 (Rd+1) . ‖P̂0g1
m‖L2(Rd )‖P̂0g1

m′‖L2(Rd ). (2)

interpolating (1) and (2):

‖e it
√
−4P0g1

m e it
√
−4P0g1

m′‖
L

d+1
d−1 (Rd+1)

. ‖P̂0g1
m‖Lp(Rd )‖P̂0g1

m′‖Lp(Rd ).

with p = 2(d+1)
2(d+1)−(d−1)r1

< 2.
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A naive attempt: Wolff’s estimate needs (up to rescaling) that the input
functions are Fourier supported in the same annulus. We could use
Littlewood-Paley theory and get

‖e it
√
−4g‖2

L
2 d+1

d−1 (Rd+1)
=
∑
k

‖e it
√
−4Pkg‖2

L
2 d+1

d−1 (Rd+1)

=
∑
k

‖e it
√
−4Pkg e it

√
−4Pkg‖

L
d+1
d−1 (Rd+1)

.

which would yield to (with p < 2 and θ > 0)

‖e it
√
−4g‖Lq(Rd+1) .

(∑
k

2k(
∑

j

∑
m

|τ j ,k
m |

q p−2
2p ‖P̂kg j

m‖qp)
2
q

) 1
2
.

‖e it
√
−4g‖Lq(Rd+1) .

(∑
k

2k( sup
j ,k,m
|τ j ,k

m |
θ
2

p−2
p ‖P̂kg j

m‖θp‖P̂kg‖1−θ2
)2) 1

2
.

and it is not possible to take a supremum in k without losing some
regularity !!!
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Instead of using Wolff’s estimate, we need to use the following bilinear
estimate

Theorem (Tao 2001)

Let d+3
d+1 ≤ r1 ≤ 2, and suppose that ∠(wm,wm′) ∼ 1. Then for all ε > 0,

‖e it
√
−4P0g1

me it
√
−4P`g1

m′‖Lr1 (Rd+1) . 2`(
1
r1
− 1

2+ε)‖P̂0g1
m‖L2(Rd )‖P̂`g1

m′‖L2(Rd ).

There is some gain when working at different Fourier scales!
We explote this to improve the `2 summation. Therefore, instead of
Littlewood–Paley we have

‖e it
√
−4g‖Lq(Rd+1) = ‖e it

√
−4g e it

√
−4g‖

1
2
L2(Rd+1)

= ‖
∑
k>`

e it
√
−4Pkg e it

√
−4P`g +

∑
k≤`

e it
√
−4Pkg e it

√
−4P`g‖

1
2
L2(Rd+1)

.
(∑
`>0

‖
∑
k

e it
√
−4Pkg e it

√
−4Pk+`g‖Lr (Rd+1)

) 1
2
,

and we have to deal with the summation in `.
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When we decompose with Whitney we have to deal with

‖e it
√
−4Pkg e it

√
−4Pk+`g‖Lr (Rd+1)

= ‖
∑

j

∑
m,m′:τ j,k

m ∼τ j,k+`

m′

e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖Lr (Rd+1).

Where are the functions {e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′}j ,m,m′ Fourier

supported?
Answer: surprisingly they are disjoint Fourier supported!
Wolff observed it for a fixed index j (in the case of ` = 0).
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A calculation shows that they are supported in

Hk,`
j ,m,m′ =

{
(ξ, τ) ∈ Ãk+` × R : d

(
(ξ, τ),C

)
∼ 2−2j2k , ∠(wm, ξ) . 2−j

}
.

That is, the index j gives the distance to the cone.
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How can we take advantage of this Fourier orthogonality?
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In L2 if a collection of functions (fk)k has disjoint Fourier support, then

‖
∑
k

fk‖2L2 ≤
∑
k

‖fk‖22

This orthogonality is only valid in dimension d = 3:

‖
∑

j

∑
m,m′:τ j,k

m ∼τ j,k+`

m′

e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖

2
L2(R3+1)

.
∑

j

∑
m,m′:τ j,k

m ∼τ j,k+`

m′

‖e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖

2
L2(R3+1).
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For different norm than L2, Tao–Vargas–Vega used a substitute of the L2

orthogonality:

Lemma (Vargas-Vega-Tao 1998)
Let Rk be a collection of rectangles in frequency space such that the dilates
(1 + c)Rk with c > 0 are almost disjoint, and suppose that fk are collection
of functions whose Fourier transforms are supported on Rk . Then for all
1 ≤ p ≤ ∞

‖
∑
k

fk‖p .
(∑

k

‖fk‖p
∗

p
) 1

p∗

where p∗ = min(p, p′).

In our case we can not find a collection of rectangles Rj ,m,m′ almost
disjoints such that Hk,`

j ,m,m′ ⊂ Rj ,m,m′ .
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We need to measure the loss if we use different sets than rectangles.

Lemma
Let (Ek)k∈Z be a collection of sets such that there exist almost disjoint
(Fk)k∈Z, with Ek ⊂ Fk for every k, such that there exist bump functions
φEk equal to 1 on Ek and 0 outside Fk , and such that∫

|φ̂Ek (ξ)|dξ ≤ C (3)

uniformly in k. Suppose that (fk)k∈Z are a collection of functions whose
Fourier transforms are supported on (Ek)k∈Z. Then for all 1 ≤ p ≤ ∞, we
have

‖
∑
k

fk‖p . C 1− 2
p∗

(∑
k

‖fk‖p∗p

) 1
p∗

where p∗ = min(p, p′) and p∗ = max(p, p′).
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Therefore by last Lemma

‖
∑

j

∑
m,m′:τ j,k

m ∼τ j,k+`

m′

e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖

r∗
Lr (Rd+1)

. 2`
d−1
2 (r∗−2 r∗

r∗ )
∑

j

∑
m,m′:τ j,k

m ∼τ j,k+`

m′

‖e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖

r∗
Lr (Rd+1)

,

and also by orthogonality at single scale:

‖
∑

j

∑
m,m′:τ j,k

m ∼τ j,k+`

m′

e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖

r∗
Lr (Rd+1)

. (
∑

j

(
∑

m,m′:τ j,k
m ∼τ j,k+`

m′

‖e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖

r∗
Lr (Rd+1)

)
1
r∗ )r∗ .
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The first one is not sufficient as the constant 2`
d−1
2 (r∗−2 r∗

r∗ ) does not permit
to sum in `

‖
∑

j

∑
m,m′:τ j,k

m ∼τ j,k+`

m′

e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖

r∗
Lr (Rd+1)

. 2`
d−1
2 (r∗−2 r∗

r∗ )
∑

j

∑
m,m′:τ j,k

m ∼τ j,k+`

m′

‖e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖

r∗
Lr (Rd+1)

.

Javier Ramos (U.A.M) A refinement of the Strichartz inequality January 2012 25 / 46



The second one is not sufficient due to the power of 1
r∗ that appears

‖
∑

j

∑
m,m′:τ j,k

m ∼τ j,k+`

m′

e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖

r∗
Lr (Rd+1)

. (
∑

j

(
∑

m,m′:τ j,k
m ∼τ j,k+`

m′

‖e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖

r∗
Lr (Rd+1)

)
1
r∗ )r∗ ,
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The combination of both instead will permit to obtain the result:

‖
∑

j

∑
m,m′:τ j,k

m ∼τ j,k+`

m′

e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖

r∗
Lr (Rd+1)

.
(∑

j

(
∑

m,m′:τ j,k
m ∼τ j,k+`

m′

‖e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖

r∗
Lr (Rd+1)

)
1
r∗

)αr∗

(
2`

d−1
2 (r∗−2 r∗

r∗ )
∑

j

∑
m,m′:τ j,k

m ∼τ j,k+`

m′

‖e it
√
−4Pkg j

m e it
√
−4Pk+`g

j
m′‖

r∗
Lr (Rd+1)

)1−α

for some 0 < α < 1.
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The first one is bad because of the 1
r∗ exponent, but even though it does

not permit to get the Lp norm on the right hand side with p < 2, we can
still get the L2 norm.
The key Lemma is

Lemma
Let q > 2, and 1 < p < 2. Then∑

j

(
∑
m

|τ j ,k
m |

q p−2
2p ‖P̂kg j

m‖qp)
2
q . ‖Pkg‖22.
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The last lemma is proved using the atomic decomposition of Keel and Tao.

Lema (Keel-Tao 1999)

Let f ∈ Lp(Rd ) for some 1 < p <∞. Then, we can decompose

f (x) =
∑
n∈Z

cnχn(x),

where χn are functions bounded in magnitude by 1 and supported in
disjoint sets of measure at most 2n, and cn are non-negative real numbers
such that ∑

n∈Z
2n|cn|p ∼ ‖f ‖pp.
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Using some polarization arguments we get finally the result.

Theorem
There exist p < 2 and θ > 0 such that

‖S(u0, u1)‖
L
2 d+1

d−1 (Rd+1)
≤C
(
sup
j ,k,m

2k θ2 |τ j ,k
m |

θ
2

p−2
p ‖ ̂Pk(u0)j

m‖θp‖u0‖1−θ
B

1
2
2,q(1−θ)

+ sup
j ,k,m

2−k θ2 |τ j ,k
m |

θ
2

p−2
p ‖ ̂Pk(u1)j

m‖θp‖u1‖1−θ
B
− 1
2

2,q(1−θ)

)
.
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Introduction of the Profile decomposition

Let F : X → Y be a linear transformation between two Banach spaces.

F is called compact if for every bounded sequence xn ∈ X , the sequence
F (xn) has a convergent subsequence.

Let consider the wave operator

S : Ḣ
1
2 × Ḣ−

1
2 −→ L2 d+1

d−1

(u0, u1) −→ S(u0, u1)
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Symmetries of the Ḣ
1
2 × Ḣ−

1
2 wave equation

Let (u0, u1) ∈ Ḣ
1
2 × Ḣ−

1
2 , then the following u(x , t) transformations of

S(u0, u0)(x , t) are also solutions of the wave equation

u(x , t) = S(u0, u1)(rx , rt) with r > 0
u(x , t) = r S(u0, u1)(x , t) with r > 0
u(x , t) = S(u0, u1)(x + x0, t + t0) with x0 ∈ Rd and t ∈ R
u(x , t) = S(u0, u1)(x − xv + xv−vt√

1−|v |2
, t−vx√

1−|v |2
) with |v | < 1 and xv is

the projection of x onto the line parallel to v .
u(x , t) = S(u0, u1)(θx , t) with θ ∈ SO(d)

u(x , t) = eθ+iS+(u0, u1)(x , t) + eθ−iS−(u0, u1)(x , t) with
θ+, θ− ∈ [0, 2π).

These cause a defect of compactness in the wave operator.
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For example: Let u0, u1 ∈ Ḣ
1
2 × Ḣ−

1
2 , we define Ḣ

1
2 × Ḣ−

1
2 :

u0,n(x) = n
d−1
2 u0(nx), u1,n(x) = n

d−1
2 +1u1(nx). We have that

‖u0,n‖Ḣ 1
2

= ‖u0‖Ḣ 1
2
, ‖u1,n‖Ḣ− 1

2
= ‖u1‖Ḣ− 1

2
.

but

S(u0,n, u1,n)(x , t) = n
d−1
2 S(u0, u1)(nx , nt)

does not have any convergent subsequence.
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And in general this defect of compactness comes always from:
Let (rn, `n,wn, xn, tn)n∈N be a sequence in
R+ \ {0} × [1,∞)× Sd−1 × Rd × R, we define the transformations Γn by

ΓnS(x , t) =
( rn

`n

) d−1
2 S
(

(T `n

wn)−1rn(x − xn, t − tn)
)
,

where letting w ∈ Sd−1, and ` ∈ [1,∞), the transformation (T `n
wn)−1 is a

Lorentz transformation rescaled by ∼ `n and with v = (wn, 1).

We want to express the wave operator acting on any bounded subsequence
in terms of this defect of compactness, and that it is the so called profile
decomposition.
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Idea of the Profile decomposition

Roughly speaking, the profile decomposition states that for any bounded
sequence u0,n, u1,n ∈ Ḣ

1
2 × Ḣ−

1
2 , we have that {S(u0,n, u1,n)}n can be

written, up to taking a subsequence, as a sum of transformations
{{Γn

j vj}n}j called profiles with a small interaction, where vj are also
solutions, and a remainder term rN

n which is very small in some sense:

S(u0,n, u1,n) =
N∑

j=1

Γn
j vj + rN

n
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Some previous linear profile decompositions for dispersive equations:
First profile decomposition for the Schrödinger and wave equation

Bahouri–Gérard (1999) for the Ḣ1 × L2 wave equation in dimension d = 3.

Merle–Vega (1998) for the L2 Schrödinger equation in dimension d = 2.

After that, many works on that

Keraani (2001) for the Ḣ1 Schrödinger equation in dimension d ≥ 3.

Carles–Keraani (2007) for the L2 Schrödinger equation in dimension d = 1.

Bégout–Vargas (2007) for the L2 Schrödinger equation in dimension d ≥ 3.

Shao (2009) for the Airy equation.

Bulut (2010) for the Ḣs × Ḣs−1 wave equation in dimension d ≥ 3 and
s ≥ 1.

Killip–Stovall–Visan (2011) for the Ḣ1 × L2 Klein–Gordon equation

Fanelli–Visciglia (2011) for a large clase of a dispersive propagators.

Using a Sobolev inequality in the spirit of Gérard (1996).
Using Strichartz refinement in the spirit of Bourgain (1998).
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The interaction of the profiles is small:

lim sup
n→∞

‖
N∑

j=1

Γn
j S(φj

0, φ
j
1)‖

2 d+1
d−1

L
2 d+1

d−1 (Rd+1)

=
N∑

j=1

lim sup
n→∞

‖Γn
j S(φj

0, φ
j
1)‖

2 d+1
d−1

L
2 d+1

d−1 (Rd+1)

.

That is, by a change of variables

lim sup
n→∞

‖
N∑

j=1

Γn
j S(φj

0, φ
j
1)‖

2 d+1
d−1

L
2 d+1

d−1 (Rd+1)

=
N∑

j=1

‖S(φj
0, φ

j
1)‖

2 d+1
d−1

L
2 d+1

d−1 (Rd+1)

.

How can we ensure this property?
The sequences (rn

j , `
n
j ,w

n
j , x

n
j , t

n
j )j∈N in R+ × [1,∞)× Sd−1 × Rd × R must be

orthogonal.
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If (rn
j , `

n
j ,w

n
j , x

n
j , t

n
j )j∈N is a family of sequences in

R+ \ {0} × [1,∞)× Sd−1 × Rd × R, then we say that the family is orthogonal if
one of the following properties is satisfied for all j 6= k:

A. Lorentz property
`nj
`nk

+
`nk
`nj
−→
n→∞

+∞

B. Rescaling property
rn
j

rn
k

+
rn
k

rn
j
−→
n→∞

+∞

C. Angular property

rn
j = rn

k , `
n
j = `nk and `nj |wn

j − wn
k | −→n→∞

+∞

D. Space-time translation property

rn
j = rn

k , `
n
j = `nk , wn

j = wn
k and

∣∣∣(T `n
j

wn
j

)−1rn
j (xn

j − xn
k , t

n
j − tn

k )
∣∣∣ −→
n→∞

+∞
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The remainder term is small:

lim
N→∞

lim sup
n→∞

‖rN
n ‖

L
2 d+1

d−1 (Rd+1)
= 0.
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Theorem
Let (u0,n, u1,n)n be a bounded sequence in Ḣ

1
2 × Ḣ−

1
2 (Rd) with d ≥ 2. Then,

there exist a subsequence (still denoted (u0,n, u1,n)n), a sequence
(φj

0, φ
j
1)j∈N ⊂ Ḣ

1
2 × Ḣ−

1
2 (Rd) and a family of orthogonal sequences

(rn
j , `

n
j ,w

n
j , x

n
j , t

n
j )j∈N in R+ \ {0} × [1,∞)× Sd−1 × Rd × R, such that for every

N ≥ 1,

S(u0,n, u1,n)(x , t) =
N∑

j=1

Γn
j S(φj

0, φ
j
1)(x , t) + S(RN

0,n,R
N
1,n)(x , t),

with

lim
N→∞

lim sup
n→∞

‖S(RN
0,n,R

N
1,n)‖

L
2 d+1

d−1 (Rd+1)
= 0.

Furthermore, we also have for every N ≥ 1,

‖(u0,n, u1,n)‖2
Ḣ

1
2×Ḣ−

1
2

=
N∑

j=1

‖(φj
0, φ

j
1)‖2

Ḣ
1
2×Ḣ−

1
2

+ ‖(RN
0,n,R

N
1,n)‖2

Ḣ
1
2×Ḣ−

1
2

+ o(1).
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Property of compact operator: let F : X → Y be a linear transformation
between two Banach spaces.

For every sequence un ⇀
n→∞

0, we have F (xn)→ 0 in norm.

Theorem

Let d ≥ 2, and let (u0,n, u1,n)n be a sequence in Ḣ
1
2 × Ḣ−

1
2 (Rd ) such that

‖(u0,n, u1,n)‖
Ḣ

1
2×Ḣ−

1
2 (Rd )

≤ M and ‖S(u0,n, u1,n)‖
L
2 d+1

d−1 (Rd+1)
≥ A.

Then, there exists a sequence (rn, `n,wn, xn, tn) in
R+ \ {0} × [1,∞)× Sd−1 × Rd × R such that, up to a subsequence,

(Γn)−1S(u0,n, u1,n) ⇀
n→∞

U with ‖U‖
L
2 d+1

d−1 (Rd+1)
≥ C (A,M).
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Steps of the proof of the profile decomposition.
1. Obtaining a profile decomposition but assuming that the initial
data has compact Fourier support away from zero. The
transformations on the profiles are space-time translations.
2. Using the argumentation of Bourgain (1998) (and Merle–Vega
(1998)) to reduce to the case when the initial data has compact
Fourier support away from zero, but with an epsilon dependence, that
is, for a fixed ε > 0 we find some profiles with a remainder term
smaller in the Strchartz norm than ε.
Key observation: The transformations T 2j

wm maps a a set τ j ,1
m into a

set in A0 ∪ A1 ∪ A2 of measure ∼ 1.
Observe that for every cap τ j ,k

m in which the supremun of the
refinement is taken, we have that

suppχ
τ j,k
m

((T 2j

wm)−12k(x)) ⊂ A0 ∪ A1 ∪ A2.

3. Prove a profile decomposition with a weaker condition on the
smallness of the remainder term (not using the Strichartz norm).
4. Deduce the required smallness condition putting together 2 and 3.
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As an application we get that there exists a maximizer for the Strichartz inequality. A
lot of related work has been done in the last years, some of them are:

Kunze (2003) proved the existence of maximizers for the Schrödinger equation in
d = 1.

Foschi (2007) for the Schrödinger and wave equation in dimensions d = 1, 2 found
the maximizers.

Hundertmark–Zharnitsky (2006), Bennett–Bez–Carbery–Hundertmark (2009) and
Carneiro (2009) also found the maximizers in dimension d = 1, 2; with different
techniques.

Shao (2009) proved that maximizers exist for the Schrödinger equation in all
dimensions, and Bulut for the Ḣs × Ḣs−1 wave equation with s ≥ 1 in dimensions
d ≥ 3; both with the profile decomposition.

Duyckaerts, Merle and Roudenko (2011) for the nonlinear Schrödinger equation.

Christ–Shao (2011) for the Fourier extension inequality for the sphere in dimension
d = 2; and Fanelli–Vega–Visciglia (2011) extended it for more general surfaces and
dimensions.

Bez–Rogers found the maximizers for the Ḣ1 × L2 wave equation in dimension
d = 5.

Javier Ramos (U.A.M) A refinement of the Strichartz inequality January 2012 43 / 46



Existence of maximizers for the Stricharz inequality

Corollary

Let d ≥ 2, then there exists a maximizing pair (ψ0, ψ1) ∈ Ḣ
1
2 × Ḣ−

1
2 (Rd )

such that

‖S(ψ0, ψ1)‖
L
2 d+1

d−1 (Rd+1)
= W (d)‖(ψ0, ψ1)‖

Ḣ
1
2×Ḣ−

1
2 (Rd )

,

where

W (d) := sup{‖S(φ0, φ1)‖
L
2 d+1

d−1 (Rd+1)
: (φ0, φ1) ∈ Ḣ

1
2 × Ḣ−

1
2

with ‖(φ0, φ1)‖
Ḣ

1
2×Ḣ−

1
2 (Rd )

= 1}.
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Proof. We choose (u0,n, u1,n) ∈ Ḣ
1
2 × Ḣ−

1
2 such that

‖(u0,n, u1,n)‖
Ḣ

1
2×Ḣ−

1
2 (Rd )

= 1 and ‖S(u0,n, u1,n)‖
L
2 d+1

d−1
−→
n→∞

W (d).

W (d)2 d+1
d−1 = lim sup

n→∞
‖S(u0,n, u1,n)‖

2 d+1
d−1

L
2 d+1

d−1 (Rd+1)

= lim
N→∞

lim sup
n→∞

‖
N∑

j=1

Γn
j S(φj

0, φ
j
1)‖

2 d+1
d−1

L
2 d+1

d−1 (Rd+1)

=
∞∑
j=1

‖S(φj
0, φ

j
1)‖

2 d+1
d−1

L
2 d+1

d−1 (Rd+1)

≤W (d)2 d+1
d−1

∞∑
j=1

‖(φj
0, φ

j
1)‖

2 d+1
d−1

Ḣ
1
2×Ḣ−

1
2

≤W (d)2 d+1
d−1 (

∞∑
j=1

‖(φj
0, φ

j
1)‖2

Ḣ
1
2×Ḣ−

1
2

)
d+1
d−1 ≤W (d)2 d+1

d−1 .

Therefore, in order to have equalities throughout, there should be exactly
one term in the sum, which yields the maximizing pair.
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Application of our Strichartz inequality to the nonlinear theory:
We can prove a concentration pehenomena for solutions of the
nonlinear ∂ttu −∆u = γ|u|

4
d−1 u wave equation. It is based in works

of Bourgain (1998) and Begout–Vargas (2007).
We can prove a nonlinear profile decomposition (based in the linear
decomposition) which permits to prove that there exists a blow-up
solution with minimal initial data, based in the work of Keraani (2006).
We can characterize nonlinear solution with linearizable data based in
work of Bahaouri–Gérard (1998) and Carles–Keraani (2007).
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