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The wave equation

The wave equation 9t = Auw, in R, with initial data u(-,0) = up,
Oru(+,0) = vy, has solution which can be written as

where
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Setting g(&) = f(&,[£]) and do(&,7) = 0(|¢] — 7)dE, we have that

B0 = ooy [ DR (E)de

= Gyt | €U K

1

— @n)? / ei(X'§+tT)f(§,T)d§dT
C

= fdo(x, t),

where C := {(5,7) e R |¢| = T}.

Therefore, if g is supported in a set A, we can interpret e®V~"g as the
Fourier transform of a measure supported in

{€leh erT: ceal.
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In 1977, Strichartz proved his fundamental inequality

2 1
1SCuo: )l 2geg oy < Clluoly )2

-1 (Rd+1)

2
Gl

where

1
IFllge = Q2211 P 113)2,
k

with Pof = ya,f and A, = {¢ € RY; 2K < |¢| < 2kH1},
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In 1977, Strichartz proved his fundamental inequality

2 2 1
1500 0)l g sy < CCl0I o+ ey g )
where
1
1Fllgs = Q2 1Puf13)2,
k
with Pof = ya,f and A, = {¢ € RY; 2K < |¢| < 2kH1},
We improve this inequality to
S(ug, u u||? u %,
15000015954 gy < oIy + sl y )

Whereq:2%ford23,andq:3ford:2.

Here Biq is defined by
. qgks q
IFllss, = (32 2% 1Puf )5

k

-nh-'
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Better refinement

Let S ={wm}m C S9-1 be maximally 2 J-separated, and define T’,;;k by

Wy

Thk = {56./4;(:

— Wp|

_||§|

| = g for every w,y € S, m' # m} .

We also set Pygl, = X,k
For our applications the following refinement will be of more use.

There exist p < 2 and 6 > 0 such that
K&\ ik N0 —6

15, 0)l g 0y SO s0P 2478757 Pulubnl o

5K, 2,q(1—0)

., ep—2 — .
+ sup 27K3 782" || Pe(un Yl 1P ).
j,k,m P 2
" 2,9(1-0)

Note: Quilodran posted in the arxiv recently a similar result for the case of
dimension d = 2.
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Previous Strichartz's refinements in the literature

@ For the Schrédinger equation:

e Bourgain in 1989 in dimension d = 2.
o Moyua—Vargas—Vega first in 1996 and then in 1999 improved that
refinement.
o Begout—Vargas in 2007 extended the result to dimensions d > 2.
@ For other equations:
Rogers—Vargas in 2006 for the nonelliptic Schrédinger equation.
o Chae—Hong-Lee in 2009 for higher order Schrédinger equations.
e Shao in 2009 for the airy equation.
e Killip-Stovall-Visan in 2011 for the Klein—Gordon equation.

Javier Ramos (U.A.M) A refinement of the Strichartz inequality January 2012 7/ 46



2 key points:
- how to get the LP norm with p < 2 on the right hand side?

/\
15 (w0, i)l g <C( sup 23|74 2% (1P Yl 1ol
1(Rd+1) o k,m 2
Km 2,q(1-0)
kG K EESE s  N 0, (10
+sup 272 2 | Pe(i)mllpllenl” )
J,K,m 2,q(1—6)

- how to improve from ¢? to ¢9 with g > 27

0 ik ee=2 ST _
1S (uo, u1)]] 24 <C( sup 252 |75<|2 77 || Pr(uo Yl | wo "
1(Rd+1) . k,m >
o 2,q(1-0)
_pb g 0p=2 T _
+ sup 27F2|7hk|2 " HPk(Ul)Jmllﬁchlll_o% )-
J?kam 2,q(1—0)
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We use the bilinear method to get the LP norm. Questions:
@ What is a bilinear estimate?

@ How do we pass from bilinear to linear?

@ Why do we want to use a bilinear estimate?
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What is a bilinear estimate for the wave equation?
Asuming that |wy, — wyy| ~ 1, it is an estimate of the form

€™V =2 Pogp, €Y% Pogoy |l rara+1y S < |1Poghl 2 Rd)HPogm/HLz(Rd)

Of course, by Cauchy-Schwarz a linear estimate

He’tﬁPogmHqu (RI+1) HPOgmHL2 Rd)-

implies the bilinear one.
But while g = % is the lowest value of g for the linear estimate
(Strichartz estimate), on the other hand, we can push down this value in

the bilinear case thanks to the angular separation.
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How do we pass from linear to bilinear?

Tao—Vargas—Vega in 1998 gave a way to deduce linear estimates from
bilinear ones. The key ingredient is the Whitney decomposition. Let g
supported in A;, we have

.Al X .Al = U U T{n X 7‘,1;7/
Jj m,m’:7-,’;,~7-";1,

where we write 74, ~ 77, if |Wm — Wpy| ~ 277, Therefore
1€V Pog|F2q(gasay = €Y~ Pog €Y= " Pog|l ja(gan,
Sl Z Z "™V ="Pogl, ™ _APOg,jn/HLq(Rd)
J m,m’:ﬁ;’,kwﬂ;;f(M
< Z Z €™V~ Pogh, €™~ Pogl || La(ze)
J m7ml:7'rl;1N7_,,;1/

A rescaling argument permits us to use the bilinear estimate. The step
when we use the triangle inequality can be improved, as we will see.

Javier Ramos (U.A.M) A refinement of the Strichartz inequality January 2012



Why do we want to use a bilinear estimate?
As we have seen, in the linear restriction if we have the L2 norm in the

d+1
right hand we can not push down the L2371 norm of the left hand side to
some L9 with g < 2%, while in the bilinear setting we can push down the

d+1 . . .
La-1 norm. Moreover, as a consequence of this and interpolating we can
get estimates

it/— 15 it/ — 2 b o1 Dol
etV Pogl e Pogrlr,/HL%(RdH) S [1Pogi |l Lora) | Pogmy Il Lo (e -

with p < 2.
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The Cone Bilinear Restriction Theorem

More precisely, we have the trivial bilinear estimate

o i T — —
€™V =2 Pogp, V"5 Pogoy |l 1o (me+1) S 1| Pogll 12 ey || Pogity Il 2 ey (1)

And the (sharp except for the end-point) following estimate

Theorem (Wolff 2000)

Let Z—i‘;’ < ri, and suppose that /(Wp,, wpy) ~ 1. Then,

Py N — —
€™V Poga, €V =2 Pogay | (res1y < 1Poghlli2(may | Pogay ll 2(me)- (2)

interpolating (1) and (2):

itvV—Ap 1 .itV—Ap 1 51 D1
e Pogl et Pog’”'”L%(Rd“) S Pogh | o (rey | Pogy Il o (-

2(d+1
_2(d+1—()—(d)—1)r1 <2
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A naive attempt: Wolff's estimate needs (up to rescaling) that the input
functions are Fourier supported in the same annulus. We could use
Littlewood-Paley theory and get

le™v™ g||2 —Z\Ie’” Pkgll2

Rd+1) Rd+1)

_ it it
lee TP VTPl gy

which would yield to (with p <2 and 6 > 0)

He’trgHLq(Rdﬂ < (Z2k ZZ ’TJk

PhlD?)

1
He't\/igHLq RA+1) S <Z2k s,ljp ‘Tjk‘z g H'DkBJmH HPkgH ’) )2'
Jk,

and it is not possible to take a supremum in k without losing some
regularity !l
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Instead of using Wolff's estimate, we need to use the following bilinear
estimate

Theorem (Tao 2001)

Let 92 < n <2, and suppose that Z(Wpm, Wny) ~ 1. Then for all ¢ > 0,

l—l—e — —_—
e =2 Poghe™ =B Pugh, [l oty S 20 27| Pogh | 2y | P Il 2y

There is some gain when working at different Fourier scales!
We explote this to improve the ¢2 summation. Therefore, instead of

Littlewood—Paley we have

||elt\/ It\/fﬁ It\/

gHLq(RdH) = He gH[_z (RI+1)

. . . 1
=D ™V APg VT OPg Y eV Pug VTR Prg| B i)
k>t k<t

S (DIY e Pg VAP iglrany)
>0k
and we have to deal with the summation in ¢.

=
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When we decompose with Whitney we have to deal with

1"V =2 Prg Y72 Py gl r(ratay

= || Z Z ™V Prgh e 7APk+Zg:/;7'HLf(Rd+1)'

J m,m’:7"n2,k~7"n;f(+e

Where are the functions {eithng,;, e"thngL,}j’m’m/ Fourier
supported?

Answer: surprisingly they are disjoint Fourier supported!

Wolff observed it for a fixed index j (in the case of £ = 0).
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A calculation shows that they are supported in
H e = {(€7) € Ape xR: d((6,7),€) ~ 2728, L, ) S 27}

That is, the index j gives the distance to the cone.
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How can we take advantage of this Fourier orthogonality?
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In L2 if a collection of functions (f)x has disjoint Fourier support, then
1D Allz2 <> 13
k k

This orthogonality is only valid in dimension d = 3:

” Z Z eit 7APkg{:n eit 7APk+€g,/;1/||%2(R3+1)

I m,mt il

SY Y €Y TR Pugh €Y TR Pyughy e ey

-
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For different norm than L2, Tao—Vargas-Vega used a substitute of the L2
orthogonality:

Lemma (Vargas-Vega-Tao 1998)

Let Ry be a collection of rectangles in frequency space such that the dilates
(1+ ¢)Rx with ¢ > 0 are almost disjoint, and suppose that f; are collection
of functions whose Fourier transforms are supported on Ry. Then for all
1<p<oo

1
=

1> flle < (D Nfelig)?
k k

where p* = min(p, p').

In our case we can not find a collection of rectangles R; , v almost
disjoints such that H&E Rjmm-

_]7m7m
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We need to measure the loss if we use different sets than rectangles.

Lemma

Let (Ex)kez be a collection of sets such that there exist almost disjoint
(Fk)kez, with E C Fy for every k, such that there exist bump functions
¢g, equal to 1 on E, and 0 outside Fy, and such that

[ e < ¢ 3)

uniformly in k. Suppose that (f¢)kez are a collection of functions whose
Fourier transforms are supported on (Ex)xez. Then for all 1 < p < oo, we

have
[ kaup Sl (Z ufku"*)

where p, = min(p, p') and p* = max(p, p’).

1

5
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Therefore by last Lemma
itV p o aitV=D e
H Z Z e’t Pkg{n e’t Pk+£gjm/ H’Lr(Rd+1)
J m,m’:ﬂJ,;’,kNH"f(M
d— 1 _orx o . o .
< G (re—27%) Z Z Hem/ APkg{n o'tV APk—i—Zg,]n/HZ*r(Rdﬂ)’
I mm i, ~7-’,;;f+l
and also by orthogonality at single scale:
IS S VPR, VIRl e
J m,m’:r’,:,J,kNH';j’f(H

. P . L,
N (Z( Z ||e’t _APkg{n e’ _APkJrégfjn/Hz*r(RdH))r*) .

-
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. . .. d—1¢, o« .
The first one is not sufficient as the constant 2¢°z (*=27%) does not permit
to sum in £

H Z Z eit 7A'Dkg}l;7 eit 7APk+ZgJ,:n/HE(Rd+1)

J m,m’:7J,7’,kfv7"’f('*'/Z

d— 1 r* . — . . — .
< 2/ re—27% Z Z ||elt\/ APkg{n e/t\/ APk+Zg;In/

I mm' i, ~1J”’J<+Z

H Tr(Rdﬂ)-
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The second one is not sufficient due to the power of % that appears
itV p i aitV—D i
H Z Z e’ Pkgfn e’ Pk+egf,,/||£,(Rd+1)
J m,m’:7‘,",’,k~7j’f+z

. . . : 1 I
SOCC > e Pugh €Y TR Pryigi ] gy )

I mmt et
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The combination of both instead will permit to obtain the result:

” Z Z eit _APkg# eit _APk-&-ég{n/HZ*r(RdH)

J m,m’:ﬂ-’,,’,k~7-’n;f(+z

. .. . 1\ ar«
(X0 X 1Y P I P gl 5 ) )

I mmrf

d-1(,, o it/— i it/ — e
(2Z 7 (=27 )Z Z ||ethkg{,, e A'Dk+€g,],~,/||Lr(Rd+1)>

J m,m’:7J,,’,k~Tr’T;f<+Z

for some 0 < o < 1.
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The first one is bad because of the L exponent, but even though it does
not permit to get the LP norm on the right hand side with p < 2, we can
still get the L2 norm.

The key Lemma is

Let g >2,and1 < p<2. Then

= S
D Q1K= (| PegmllF) S lIPrgll3-
J m

Javier Ramos (U.A.M) A refinement of the Strichartz inequality January 2012



The last lemma is proved using the atomic decomposition of Keel and Tao.

Lema (Keel-Tao 1999)

Let f € LP(RY) for some 1 < p < co. Then, we can decompose

f(X) = Z Can(X)a

neZ

where xp, are functions bounded in magnitude by 1 and supported in
disjoint sets of measure at most 2", and c, are non-negative real numbers

such that
> 2%elP ~ I8,
neZ
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Using some polarization arguments we get finally the result.

There exist p < 2 and 6 > 0 such that

K8\ _jk N0 1-0
IS0, )l gy 1 <C( sup 2431712557 | Peluom ol
(R) Joke,m 2.9(1-0)

0 i, 0p=2 = _
+ sup 2%z | k|2 e ||Pk(U1)Jm||j‘;||U1||1_9% )-

Jrr.m 2,q(1-0)
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Introduction of the Profile decomposition

Let F: X — Y be a linear transformation between two Banach spaces.

F is called compact if for every bounded sequence x, € X, the sequence
F(xn) has a convergent subsequence.

Let consider the wave operator

2 d+1

S:Hzx {2 — (%4

(uo, 1)  — S(uo, u1)
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Symmetries of the Hz x H~2 wave equation

Let (uo, 1) € Hz x H~2, then the following u(x, t) transformations of
S(up, up)(x, t) are also solutions of the wave equation
u(x, t) = S(uo, u1)(rx, rt) with r >0
u(x, t) = r S(ug, u1)(x, t) with r >0
u(x, t) = S(uo, u1)(x + xo, t + to) with xo € R and t € R
u(x,t) = S(ug, u1)(x — x, + \;I:I\:/tlz’ \/tl_—vl);lz) with |[v| <1 and x, is
the projection of x onto the line parallel to v.
u(x,t) = S(up, u1)(0x, t) with 6 € SO(d)
o u(x,t) = eSS, (ug, ur)(x,t) + €’~'S_(ug, u)(x, t) with
0.,0_ €[0,2m).
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Symmetries of the Hz x H~2 wave equation

o u(x,t) = S(uo, u1)(rx, rt) with r >0

o u(x,t) =rS(ug, u1)(x,t) with r >0

o u(x,t) = S(uo, u1)(x + xo, t + to) with xo € R? and t € R

o u(x,t) = S(uo,u1)(x — Vbt ) with |v] < 1 and x, is

\/1 V2 /1= |v2

the projection of x onto the line parallel to v.

These cause a defect of compactness in the wave operator.
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-1 . 1 . -1 - 1
For example: Let ug,u1 € H2 x H™2, we define H2 x H™2:
d—1 d—1
o n(x) = n2 up(nx), urn(x) = n 2 Ttug(nx). We have that

luo.nll 3 = Nlwoll ;3 Nuwnll; -3 = lleall -y
but

S(uo,n, u1,n)(x,t) = n 2 S(uo, ur)(nx, nt)

does not have any convergent subsequence.
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And in general this defect of compactness comes always from:
Let (r", €7, w", x", t")hen be a sequence in
R*\ {0} x [1,00) x S971 x RY x R, we define the transformations " by

n. d—1

n _ L 2 "N=1_nc, N 4 .n
["S(x,t) = (ﬁ) 5((TW,,) P(x — X"t — t ))7
where letting w € SY71, and ¢ € [1, 00), the transformation (T5,)~! is a

Lorentz transformation rescaled by ~ ¢” and with v = (w", 1).

We want to express the wave operator acting on any bounded subsequence
in terms of this defect of compactness, and that it is the so called profile
decomposition.
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|dea of the Profile decomposition

Roughly speaking, the profile decomposition states that for any bounded
sequence uon, Ui,n € H2 x H_%, we have that {S(ug n, u1,n)}n can be
written, up to taking a subsequence, as a sum of transformations
{{T7vj}n}; called profiles with a small interaction, where v; are also

solutions, and a remainder term r¥ which is very small in some sense:
N
— n N
S(uo,p,u1,n) = E v +r,
j=1
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Some previous linear profile decompositions for dispersive equations:
First profile decomposition for the Schrédinger and wave equation

Bahouri-Gérard (1999) for the H! x L2 wave equation in dimension d = 3.

Merle—Vega (1998) for the L2 Schrédinger equation in dimension d = 2.

After that, many works on that

Keraani (2001) for the H' Schrédinger equation in dimension d > 3.
Carles—Keraani (2007) for the L? Schrédinger equation in dimension d = 1.
Bégout—Vargas (2007) for the L2 Schrédinger equation in dimension d > 3.
Shao (2009) for the Airy equation.

Bulut (2010) for the H° x H°~1 wave equation in dimension d > 3 and
s> 1.

Killip-Stovall-Visan (2011) for the H* x L? Klein-Gordon equation

Fanelli-Visciglia (2011) for a large clase of a dispersive propagators.
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Some previous linear profile decompositions for dispersive equations:
First profile decomposition for the Schrédinger and wave equation

@ Bahouri—Gérard (1999) for the H' x L? wave equation in dimension d = 3.

After that, many works on that

@ Keraani (2001) for the H! Schrédinger equation in dimension d > 3.

@ Bulut (2010) for the H® x H*~! wave equation in dimension d > 3 and
s> 1.

@ Fanelli-Visciglia (2011) for a large clase of a dispersive propagators.

Using a Sobolev inequality in the spirit of Gérard (1996).
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Some previous linear profile decompositions for dispersive equations:
First profile decomposition for the Schrédinger and wave equation

@ Merle-Vega (1998) for the L2 Schradinger equation in dimension d = 2.

After that, many works on that

Carles—Keraani (2007) for the L? Schrédinger equation in dimension d = 1.

Bégout—Vargas (2007) for the L2 Schrédinger equation in dimension d > 3.
Shao (2009) for the Airy equation.

Killip-Stovall-Visan (2011) for the H* x L2 Klein-Gordon equation

Using Strichartz refinement in the spirit of Bourgain (1998).

Javier Ramos (U.A.M) A refinement of the Strichartz inequality January 2012 36 / 46



The interaction of the profiles is small:

N pdi1
thUPIIZF"S(%%)II ;7 = limsup [I7S(¢f, 4} ;’;;1 :
=il 1 (Rd+1) =i n— o0 d—1 (Rd+1)

That is, by a change of variables

N
imsu |3~ 175(0h AL FIE SIL TR
j +1

j=1 =1

How can we ensure this property?
The sequences (r, (7, w]', x[, t])jen in R+ x [1,00) x S9! x R? x R must be
orthogonal.
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If (r?, 7, w, x, t1)jen is a family of sequences in

R+ \ {0} x [1,00) x S971 x RY x R, then we say that the family is orthogonal if
one of the following properties is satisfied for all j # k:
A. Lorentz property
g &
n + on T2 +0o0
% EJ- n—00

B. Rescaling property

n n
O
n + no +00
.on—
oo oo
C. Angular property
n__ .n n __ ypn n n__ n
rJ- —rk,fj —@k and £J|VVJ Wk|n?o>o+oo

D. Space-time translation property

o7
n__._n n __ pn n __ n i\—1_n/_n n .n n
rf=rg, 4] =g, wi =w/ and (ij") (X" — it — tg) o oo
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The remainder term is small:

lim | =0
|mOO |rr’n_)solip|| “ 2 1(Rd+1)
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Theorem

-
...

Let (ug.n, th.n)n be a bounded sequence in Hz x H=(RY) with d > 2. Then,
there exist a subsequence (still denoted (ug n, u1,n)n), @ sequence

( 0,¢’1)J€N C Hz x H=2(R?) and a family of orthogonal sequences
(J 7, Wl XD ) jen in RY\ {0} x [1,00) x S771 x R x R, such that for every

N > 1
N . .
S(UOJH U17,,)(X, t) = Z rfs(%’ djjl)(xv t) + S(Ré\,lnv R{\,In)(x7 t)’
j=1
with
||mOO ||'r1‘n_>solipHS(R0 e R1 ")”Lz%(n&dﬂ) =0.

Furthermore, we also have for every N > 1,

i3 + o(1).

N
ICoum i m)IBs s = SNk GDIR s s+ I(RY RIIZ 5
Jj=1

Javier Ramos (U.A.M) A refinement of the Strichartz inequality January 2012 40 / 46



Property of compact operator: let F : X — Y be a linear transformation
between two Banach spaces.

For every sequence u, — 0, we have F(x,) — 0 in norm. J
n—o0o

Theorem

Let d > 2, and let (ug,n, u1,n)n be a sequence in H2 x H_%(Rd) such that

[ (uo,n, tn,n)ll,

H%XH_%(RC’) <M and ||S(uo,n, Ul,n)HLzﬂ > A

d—I(RI+1) —

Then, there exists a sequence (r", 0", w", x" t") in
R\ {0} x [1,00) x S9! x RY x R such that, up to a subsequence,

(M) S (to,n, t1,n) = U with 90 221 00y 2 COA M)
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Steps of the proof of the profile decomposition.

@ 1. Obtaining a profile decomposition but assuming that the initial
data has compact Fourier support away from zero. The
transformations on the profiles are space-time translations.

@ 2. Using the argumentation of Bourgain (1998) (and Merle-Vega
(1998)) to reduce to the case when the initial data has compact
Fourier support away from zero, but with an epsilon dependence, that
is, for a fixed ¢ > 0 we find some profiles with a remainder term
smaller in the Strchartz norm than e. _ _

Key observation: The transformations Tv2vjm maps a a set 5t into a
set in Ag U A1 U Ay of measure ~ 1.

Observe that for every cap 75K in which the supremun of the
refinement is taken, we have that

suppx, . ((T2,)7125(x)) € Ag U A1 U Ay,

@ 3. Prove a profile decomposition with a weaker condition on the
smallness of the remainder term (not using the Strichartz norm).
@ 4. Deduce the required smallness condition putting together.2 and 3.

Javier Ramos (U.A.M) A refinement of the Strichartz inequality January 2012 42 / 46



As an application we get that there exists a maximizer for the Strichartz inequality. A
lot of related work has been done in the last years, some of them are:

@ Kunze (2003) proved the existence of maximizers for the Schrédinger equation in
d=1.

@ Foschi (2007) for the Schrédinger and wave equation in dimensions d = 1,2 found
the maximizers.

@ Hundertmark—Zharnitsky (2006), Bennett—Bez—Carbery—Hundertmark (2009) and
Carneiro (2009) also found the maximizers in dimension d = 1,2; with different
techniques.

@ Shao (2009) proved that maximizers exist for the Schrédinger equation in all
dimensions, and Bulut for the H* x H*~! wave equation with s > 1 in dimensions
d > 3; both with the profile decomposition.

@ Duyckaerts, Merle and Roudenko (2011) for the nonlinear Schrédinger equation.

@ Christ—Shao (2011) for the Fourier extension inequality for the sphere in dimension
d = 2; and Fanelli-Vega—Visciglia (2011) extended it for more general surfaces and
dimensions.

@ Bez—Rogers found the maximizers for the H* x L2 wave equation in dimension
d =5.
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Existence of maximizers for the Stricharz inequality

Corollary

Let d > 2, then there exists a maximizing pair (1o, 1) € HZ x H—%(Rd)
such that

1SC0, 0l ny = WD 0,00 8,3 gy

where
W(d)i= sup{S(0 Bl agis ., ¢ (60 01) € H2 x FI~2
with [|(¢o, 61)]| ,3

3 xH 2 (RY) =y
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Proof. We choose (ugn, u1,n) € HZ x H~% such that

[C6o.m10) 533 oy = 1 20 [S(ams )] gy — W)
242
W(d) &1 —lim sup [|S(uo,n, t1,n)| Sdi1
n—oo L°d—1 (Rd+1)
= ||m limsu IS(¢y,
N—oo n—>oop||Z % Q&Il | 2%(Rd+1)

00 ) _ pdil
D IS(¢h, I Lk
=1 L dfl(]Rd+1

A4l e 2d+1
WP Y@ DT
j:l
d+
<W(d)2¥5 ZH S, &) H2 )d < W(d)H
j=1

Therefore, in order to have equalities throughout, there should be exactly
one term in the sum, which yields the maximizing pair.
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Application of our Strichartz inequality to the nonlinear theory:
@ We can prove a concentration pehenomena for solutions of the
4
nonlinear Oyt — Au = 7y|u|9-T u wave equation. It is based in works
of Bourgain (1998) and Begout-Vargas (2007).

@ We can prove a nonlinear profile decomposition (based in the linear
decomposition) which permits to prove that there exists a blow-up
solution with minimal initial data, based in the work of Keraani (2006).

@ We can characterize nonlinear solution with linearizable data based in
work of Bahaouri—Gérard (1998) and Carles—Keraani (2007).
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