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One-dimensional nonlinear waves

Standing and travelling waves

u(x − ct) with c = 0 or c 6= 0

periodic wave pulse/solitary wave front/kink

found as solutions of an ODE with “time” x − ct

Modulated waves

, . . .
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Questions

Existence: no time dependence

solve a steady PDE

1d waves: solve an ODE

Stability: add time

solve an initial value problem

- initial data u∗(x) + εv(x)

? what happens as t → ∞ ?
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Transverse spectral stability

Questions

Existence: no time dependence

solve a steady PDE

1d waves: solve an ODE

Stability: add time

solve an initial value problem

- initial data u∗(x) + εv(x)

? what happens as t → ∞ ?

Interactions: initial value problem

- initial data: superposition of two/several nonlinear waves

? what happens ?

Role in the dynamics of the PDE
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Stability problems

spectral stability

linear stability

nonlinear stability

orbital stability

asymptotic stability
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Stability problems

spectral stability

linear stability

nonlinear stability

orbital stability

asymptotic stability

Answers depend upon

type of the wave: localized, periodic, front,...

type of the PDE
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PDEs

Dissipative models: e.g. reaction diffusion systems

Ut = D ∆U + F (U)

U(x , t) ∈ R
N ; t ≥ 0 time; x = (x1, . . . , xd) ∈ R

d space

D diffusion matrix: D = diag (d1, . . . , dN) > 0

F (U) kinetics (smooth map)

Dispersive models: e.g. the Korteweg-de Vries equation

ut = uxxx + uux , u(x , t) ∈ R, x ∈ R, t ∈ R

Mixed models: dissipation and dispersion

Spectral stability of periodic waves in dispersive models
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Dispersive models

Generalized KdV equation

ut + (uxx + up+1)x = 0 p ≥ 1

other 1d models: Kawahara, BBM, NLS,...

Kadomtsev-Petviashvili equations

(ut − uxxx − uux)x + σuyy = 0 x , y ∈ R

KP-I equation: σ = 1 (positive dispersion)

KP-II equation: σ = −1 (negative dispersion)

2d generalization of the KdV-equation

ut − uxxx − uux = 0

Spectral stability of periodic waves in dispersive models
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Answers

localized waves and fronts

well established methods

nonlinear stability is well understood for many different models

periodic waves

nonlinear stability is quite well understood for dissipative

models

[Schneider, Gallay & Scheel,. . . ]

very recent results for mixed models

[Noble, Johnson, Rodrigues & Zumbrun, . . . ]

partial results for dispersive models

Spectral stability of periodic waves in dispersive models
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Classes of perturbations for periodic waves

periodic perturbations (same period as the wave):

orbital stability

[Angulo, Bona, & Scialom; Gallay & H.; Hakkaev, Iliev, & Kirchev;

. . . ]

localized/bounded perturbations: spectral stability

[H., Lombardi, & Scheel; Serre; Gallay & H.; H. & Kapitula;

Bottman & Deconinck; Bronski, Johnson & Zumbrun; Ivey &

Lafortune; Noble; . . . ]

intermediate class: periodic perturbations with period a

multiple of the period of the wave

orbital stability for the KdV equation [Deconinck & Kapitula]

relies on integrability of KdV
Spectral stability of periodic waves in dispersive models
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Spectral stability of periodic waves

– Operator theory –

alternative tool: Evans function

Bloch-wave decomposition (Floquet theory)

Perturbation methods for linear operators

Use of the Hamiltonian structure

Example: gKdV equation

ut + (uxx + up+1)x = 0 p ≥ 1

Application: KP equation

Spectral stability of periodic waves in dispersive models
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Periodic waves of the gKdV equation

Travelling periodic waves: u(x , t) = q(x − ct)

qyy = cq − qp+1 + b, y = x − ct

three parameter family (a, b, speed c) – up to spatial

translations

scaling invariance  c = 1

KdV equation, p = 1: Galilean invariance  b = 0

Family of periodic waves: qa,b(y) = Pa,b(ka,by)

with Pa,b a 2π-periodic even solution of

k2
a,bvzz − v + vp+1 = b

Spectral stability of periodic waves in dispersive models
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Small periodic waves

qa,b(y) = Pa,b(ka,by)

with Pa,b a 2π-periodic even solution of

k2
a,bvzz − v + vp+1 = b

Small amplitude

Pa,b(z) = Qb + cos(z) a − p + 1

4
a2 +

p + 1

12
cos(2z) a2 + O(|a|(a2 + b2))

Qb = 1 +
1

p
b − p + 1

2p2
b2 + O(|b|3)

k2
a,b = p + (p + 1)b − p(p + 1)(p + 4)

12
a2 − p + 1

p
b2 + O(|a|3 + |b|3)

Question: spectral stability ?
Spectral stability of periodic waves in dispersive models
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Spectral stability

Linearized operator

Aa,bv = −k2
a,b∂zzzv + ∂zv − (p + 1)∂z (P

p
a,bv)

Spectrum in L2(R) or Cb(R)

σ(Aa,b) = {λ ∈ C ; λ −Aa,b is not invertible }

The periodic wave is spectrally stable if

σ(Aa,b) = {λ ∈ C ; Re λ ≤ 0}

Spectral stability of periodic waves in dispersive models



Introduction
Spectral stability of periodic waves

Transverse spectral stability

Bloch-wave decomposition
Perturbation arguments
Hamiltonian structure

Spectral stability

Linearized operator

Aa,bv = −k2
a,b∂zzzv + ∂zv − (p + 1)∂z (P

p
a,bv)

Spectrum in L2(R) or Cb(R)

σ(Aa,b) = {λ ∈ C ; λ −Aa,b is not invertible }

The periodic wave is spectrally stable if

σ(Aa,b) = {λ ∈ C ; Re λ ≤ 0}

Question: locate the spectrum ?

first difficulty: continuous spectrum

Spectral stability of periodic waves in dispersive models
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Bloch-wave decomposition

reduces the spectral problem for localized/bounded perturbations to

the study of the spectra of an (infinite) family of operators with

point spectra [Reed & Simon; Scarpelini; Mielke; . . . ]

one spatial dimension: Floquet theory

Spectral stability of periodic waves in dispersive models



Introduction
Spectral stability of periodic waves

Transverse spectral stability

Bloch-wave decomposition
Perturbation arguments
Hamiltonian structure

Bloch-wave decomposition

reduces the spectral problem for localized/bounded perturbations to

the study of the spectra of an (infinite) family of operators with

point spectra [Reed & Simon; Scarpelini; Mielke; . . . ]

one spatial dimension: Floquet theory

Theorem

σL2(R)(Aa,b) = σC0
b
(R)(Aa,b) =

⋃

γ∈(− 1
2
, 1
2
]

σL2(0,2π)(Aa,b,γ)

where

Aa,b,γ = −k2
a,b(∂z + iγ)3 + (∂z + iγ) − (p + 1)(∂z + iγ)(Pp

a,b·)

Notice that the operator Aa,b,γ has compact resolvent =⇒ its spectrum

consists of eigenvalues with finite algebraic multiplicity.

Spectral stability of periodic waves in dispersive models
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Floquet theory

λv = Aa,bv = −k2
a,b∂zzzv + ∂zv − (p + 1)∂z (P

p
a,bv)

First order system

d

dz
W = A(z , λ)W , W =





v
w1 = vz
w2 = vzz





A(z , λ) matrix with 2π-periodic coefficients

Floquet theory: any solution is of the form

W (z) = Qλ(z)eC(λ)zW (0)

Qλ(·) is a 2π-periodic matrix function

C (λ) matrix with constant coefficients 1

1eigenvalues of C(λ): Floquet exponents

Spectral stability of periodic waves in dispersive models
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Spectral problem

d

dz
W = A(z , λ)W , W (z) = Qλ(z)eC(λ)zW (0)

The ODE has a nontrivial bounded solution for λ ∈ C

⇐⇒ kerC0
b
(R)(Aa,b − λ) 6= {0}

⇐⇒ ex. solution of the form W (z) = Q(z)eiγz

γ ∈
[

− 1
2 , 1

2

)

, Q(·) 2π − periodic

⇐⇒ the eigenvalue problem has a nontrivial solution

v(z) = q(z)eiγz , γ ∈
[

− 1
2 , 1

2

)

, q(·) 2π − periodic

⇐⇒ ex. nontrivial 2π-periodic solution to

λq = Aa,b,γq = −k2
a,b(∂z + iγ)3q + (∂z + iγ)q − (p + 1)(∂z + iγ)(Pp

a,bq)

for γ ∈
(

− 1
2 , 1

2

]

Spectral stability of periodic waves in dispersive models
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Spectral problem

d

dz
W = A(z , λ)W , W (z) = Qλ(z)eC(λ)zW (0)

The ODE has a nontrivial bounded solution for λ ∈ C

⇐⇒ kerC0
b
(R)(Aa,b − λ) 6= {0}

⇐⇒ ex. nontrivial 2π-periodic solution to

λq = Aa,b,γq = −k2
a,b(∂z + iγ)3q + (∂z + iγ)q − (p + 1)(∂z + iγ)(Pp

a,bq)

for γ ∈
(

− 1
2 , 1

2

]

⇐⇒ the linear operator λ −Aa,b,γ has a nontrivial kernel

in L2(0, 2π)

⇐⇒ λ ∈ σL2(0,2π)(Aa,b,γ), γ ∈
[

−1

2
,
1

2

)

Spectral stability of periodic waves in dispersive models
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Bloch-wave decomposition

Lemma

1 kerC0
b
(R)(Aa,b − λ) 6= 0 ⇐⇒ λ ∈

⋃

γ∈[− 1
2
, 1
2)

σL2(0,2π)(La,c,γ)

2 kerC0
b
(R)(Aa,b − λ) 6= 0 ⇐⇒ λ ∈ σC0

b
(R)(La,c) = σL2(R)(La,c)

Proof of (2). Solve λv −Aa,bv = f using

Floquet theory

variation of constant formula . . .

Spectral stability of periodic waves in dispersive models
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Bloch-wave decomposition

Theorem

σL2(R)(Aa,b) = σC0
b
(R)(Aa,b) =

⋃

γ∈(− 1
2
, 1
2
]

σL2(0,2π)(Aa,b,γ)

where

Aa,b,γ = −k2
a,b(∂z + iγ)3 + (∂z + iγ) − (p + 1)(∂z + iγ)(Pp

a,b·)

Next question: locate the point spectra of Aa,b,γ ?

Spectral stability of periodic waves in dispersive models
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Point spectra of Aa,b,γ

Perturbation arguments for linear operators

small perturbations of operators with constant coefficients

(restrict to small waves)

symmetries: spectra are symmetric with respect to the

imaginary axis

Hamiltonian structure

operator Aa,b,γ = JγLa,b,γ

Jγ is skew-adjoint

La,b,γ is self-adjoint

Other ways:

use integrability and compute spectra explicitly

numerical calculations

Spectral stability of periodic waves in dispersive models
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Small periodic waves

Spectrum of

Aa,b,γ = −(∂z + iγ)3 +
1

k2
a,b

(∂z + iγ) − p + 1

k2
a,b

(∂z + iγ)(Pp
a,b·) ?

Waves with small amplitude

Pa,b(z) = Qb + cos(z) a − p + 1

4
a2 +

p + 1

12
cos(2z) a2 + O(|a|(a2 + b2))

Qb = 1 +
1

p
b − p + 1

2p2
b2 + O(|b|3)

k2
a,b = p + (p + 1)b − p(p + 1)(p + 4)

12
a2 − p + 1

p
b2 + O(|a|3 + |b|3)

a, b small

Spectral stability of periodic waves in dispersive models
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Step 0: perturbation argument

Spectrum of

Aa,b,γ = −(∂z + iγ)3 +
1

k2
a,b

(∂z + iγ) − p + 1

k2
a,b

(∂z + iγ)(Pp
a,b·) ?

a, b small −→ Aa,b,γ is a “small perturbation” of A0,0,γ

Aa,b,γ = A0,0,γ + A1
a,b,γ , A0,0,γ = −(∂z + iγ)3 + (∂z + iγ)

A0,0,γ operator with constant coefficients

A1
a,b,γ operator with 2π-periodic coefficients

‖A1
a,b,γ‖H1→L2 = O(|a| + |b|)

– Aa,b,γ is a small relatively bounded perturbation of A0,0,γ –

Spectral stability of periodic waves in dispersive models
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Step 1: spectrum of A0,0,γ

Fourier analysis

σ(A0,0,γ) =
{

iωn,γ = i
(

(n + γ)3 − (n + γ)
)

; n ∈ Z

}

triple

simple

simple

γ = 0 γ 6= 0

Spectral stability of periodic waves in dispersive models
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Step 2: γ∗ ≤ |γ| ≤ 1
2

simple

all eigenvalues are simple

picture persists for small a, b ?

Difficulties

infinitely many simple eigenvalues

relatively bounded perturbation

Spectral stability of periodic waves in dispersive models



Introduction
Spectral stability of periodic waves

Transverse spectral stability

Bloch-wave decomposition
Perturbation arguments
Hamiltonian structure

Step 2: γ∗ ≤ |γ| ≤ 1
2

Lemma

r
√

1 + n2

For all γ∗ > 0, r > 0, ex. ε∗ > 0 such that

σ(Aa,b,γ) ⊂
⋃

n∈Z

B(iωn,γ , r
√

1 + n2),

for |a| + |b| ≤ ε∗ and γ∗ ≤ |γ| ≤ 1
2 .

Spectral stability of periodic waves in dispersive models



Introduction
Spectral stability of periodic waves

Transverse spectral stability

Bloch-wave decomposition
Perturbation arguments
Hamiltonian structure

Step 2: γ∗ ≤ |γ| ≤ 1
2

Proof.

r
√

1 + n2
Resolvent formula

(λ −Aa,b,γ)−1= (λ −A0,0,γ)−1
“

id −A1
a,b,γ (λ −A0,0,γ)−1

”

−1

• ‖ (λ −A0,0,γ)
−1 ‖L2→H1 ≤ 1

r

• ‖A1
a,b,γ‖H1→L2 = O(|a| + |b|)

−→ λ −Aa,b,γ is invertible for λ outside these balls.

Spectral stability of periodic waves in dispersive models
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Step 2: γ∗ ≤ |γ| ≤ 1
2

Lemma

r
√

1 + n2
Fix γ∗ > 0 and choose r > 0 small. Then

the balls are mutually disjoints;

Aa,b,γ has precisely one simple

eigenvalue inside each ball

B(iωn,γ , r
√

1 + n2), for a, b

sufficiently small, and γ∗ ≤ |γ| ≤ 1
2 .

This eigenvalue is purely imaginary.

Spectral stability of periodic waves in dispersive models
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Step 2: γ∗ ≤ |γ| ≤ 1
2

Proof. Choose a ball B(iωn,γ , r
√

1 + n2), r sufficiently small.

Aa,b,γ has precisely one simple eigenvalue inside this ball.

Construct spectral projectors

Πn
0,0,γ for A0,0,γ and Πn

a,b,γ for Aa,b,γ

Show that

‖Πn
a,b,γ − Πn

0,0,γ‖ < min
(

1
‖Πn

0,0,γ‖
, 1
‖Πn

a,b,γ
‖

)

Conclude that Πn
a,b,γ and Πn

0,0,γ have the same finite rank,

equal to 1.

Spectral stability of periodic waves in dispersive models
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Step 2: γ∗ ≤ |γ| ≤ 1
2

Proof. Choose a ball B(iωn,γ , r
√

1 + n2), r sufficiently small.

Aa,b,γ has precisely one simple eigenvalue inside this ball.

Construct spectral projectors

Πn
0,0,γ for A0,0,γ and Πn

a,b,γ for Aa,b,γ

Show that

‖Πn
a,b,γ − Πn

0,0,γ‖ < min
(

1
‖Πn

0,0,γ‖
, 1
‖Πn

a,b,γ
‖

)

Conclude that Πn
a,b,γ and Πn

0,0,γ have the same finite rank,

equal to 1.

This eigenvalue is purely imaginary.

The spectrum is symmetric with respect to the imaginary axis,

so that the simple eigenvalue lies on the imaginary axis.

Spectral stability of periodic waves in dispersive models
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Step 3: |γ| ≤ γ∗ (γ small)

simple

triple

|n| ≥ 2

n = 0,±1
Step 3.1: |n| ≥ 2 argue as in Step 2.

Step 3.2: n = 0,±1 −→ Aa,b,γ has

three eigenvalues inside the ball B(0, 1)

Spectral stability of periodic waves in dispersive models
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Step 3.2: n = 0,±1, |γ| ≤ γ∗

Locate the three eigenvalues inside B(0, 1) ?

Consider the associated spectral subspace (three-dimensional)

compute a basis
{

ξ0
a,b,γ , ξ1

a,b,γ , ξ2
a,b,γ

}

;

compute the 3 × 3-matrix Ma,b,γ representing the action of

Aa,b,γ on this subspace;

locate the three eigenvalues of this matrix 2

=⇒ purely imaginary if p < 2

2Difficulty: three small parameters; use the results for a = b = 0 and γ = 0.

Spectral stability of periodic waves in dispersive models
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Spectral stability

Theorem

Consider the generalized KdV equation

ut + (uxx + up+1)x = 0, p ≥ 1

and the periodic travelling wave qa,b for a and b sufficiently small.

p < 2

σ(Aa,b,γ) ⊂ iR

the periodic wave is spectrally stable

p > 2

σ(Aa,b,γ) ∩ {λ ∈ C, Reλ > 0} 6= ∅
the periodic wave is spectrally unstable

Spectral stability of periodic waves in dispersive models



Introduction
Spectral stability of periodic waves

Transverse spectral stability

Bloch-wave decomposition
Perturbation arguments
Hamiltonian structure

Hamiltonian structure

Bloch operators

Aa,b,γ = JγLa,b,γ

where
Jγ = ∂z + iγ, La,b,γ = −k2

a,b(∂z + iγ)2 + 1 − (p + 1)Pp
a,b

Jγ is skew-adjoint with compact resolvent,

and invertible for γ 6= 0

La,b,γ is self-adjoint with compact resolvent,

and invertible for a.a. γ

La,b,γ has a finite number of negative eigenvalues

Connection between the spectra of Aa,b,γ and La,b,γ ?

Spectral stability of periodic waves in dispersive models
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Spectra of A := Aa,b,γ and L := La,b,γ

Spectrum of A
– symmetric w.r.t. imaginary axis –

ku := #{λ ∈ σ(A) : Re λ > 0}
k−
i := #{λ ∈ σ(A) : Reλ = 0,

with negative Krein signature}

Spectrum of L
– real –

n(L) := #{λ ∈ σ(L) : λ < 0}

↓
→ n(L) = ku + k−

i

Krein signature: the sign of 〈Lv , v〉 for a simple eigenvalue with eigenvector v

Spectral stability of periodic waves in dispersive models
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Definition of k−
i

Take λ ∈ σ(A) with Re λ = 0, and consider the associated spectral

subspace Eλ (finite-dimensional)

Consider the Hermitian matrix L(λ) associated with the quadratic

form 〈L|Eλ
·, ·〉 on Eλ

Define k−
i (λ) = n(L(λ)) (the number of negative eigenvalues of the

matrix L(λ))

Set

k−
i :=

∑

λ∈σ(A),Re λ=0

k−
i

(λ)

Spectral stability of periodic waves in dispersive models
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gKdV equation

perturbation arguments (a, b small)

locate the spectra for a = b = 0

→ operators with constant coefficients

→ use Fourier analysis

use n(L) = ku + k−

i

Spectral stability of periodic waves in dispersive models
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Spectra at a = b = 0

Spectrum of A0,0,γ

γ 6= 0 γ = 0

Spectrum of L0,0,γ

γ 6= 0 γ = 0

Spectral stability of periodic waves in dispersive models
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Perturbation arguments: (a, b) small

Spectrum of Aa,b,γ Spectrum of La,b,γ

Spectral decomposition

σ(Aa,b,γ) = σ1(Aa,b,γ) ∪ σ2(Aa,b,γ)

The eigenvalues in σ1(Aa,b,γ) have positive Krein signature

n(L) = ku + k−

i =⇒ σ1(Aa,b,γ) ⊂ iR

Spectral stability of periodic waves in dispersive models
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Location of σ2(Aa,b,γ)

|γ| ≥ γ∗

γ ∼ 0

3Difficulty: three small parameters; use the results for a = b = 0 and γ = 0.
Spectral stability of periodic waves in dispersive models
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Location of σ2(Aa,b,γ)

|γ| ≥ γ∗

The three eigenvalues in σ2(Aa,b,γ) are simple

The spectrum is symmetric w.r.t. the imaginary axis

=⇒ σ2(Aa,b,γ) ⊂ iR

γ ∼ 0

3Difficulty: three small parameters; use the results for a = b = 0 and γ = 0.
Spectral stability of periodic waves in dispersive models
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Location of σ2(Aa,b,γ)

|γ| ≥ γ∗

The three eigenvalues in σ2(Aa,b,γ) are simple

The spectrum is symmetric w.r.t. the imaginary axis

=⇒ σ2(Aa,b,γ) ⊂ iR

γ ∼ 0

compute a basis
{

ξ0
a,b,γ, ξ1

a,b,γ , ξ2
a,b,γ

}

for the three

dimensional spectral subspace;

compute the 3 × 3-matrix Ma,b,γ representing the action of

Aa,b,γ on this subspace;

locate the three eigenvalues of this matrix 3

=⇒ purely imaginary if p < 2

3Difficulty: three small parameters; use the results for a = b = 0 and γ = 0.
Spectral stability of periodic waves in dispersive models
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Spectral stability

Theorem

Consider the generalized KdV equation

ut + (uxx + up+1)x = 0, p ≥ 1

and the periodic travelling wave qa,b for a and b sufficiently small.

p < 2

ku(γ) = 0, k−
i (γ) = 2, for any γ ∈

[

− 1
2 , 1

2

)

\ {0}
σ(Aa,b,γ) ⊂ iR

the periodic wave is spectrally stable

p > 2

ku(γ) = 1, k−
i (γ) = 1, for sufficiently small γ = o(|a|)

σ(Aa,b,γ) ∩ {λ ∈ C, Reλ > 0} 6= ∅
the periodic wave is spectrally unstable
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

KP equations

(ut − uxxx − uux)x + σuyy = 0 x , y ∈ R

KP-I equation: σ = 1 (positive dispersion)

KP-II equation: σ = −1 (negative dispersion)

2d generalization of the KdV-equation

ut − uxxx − uux = 0
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

1d periodic traveling waves

1d traveling waves: u(x , y , t) = v(x − ct) ; speed c

periodic waves: v is periodic and

v ′′ = −cv − 1

2
v2 + b

Galilean and scaling invariances: c = 1, b = 0
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

1d periodic traveling waves

1d traveling waves: u(x , y , t) = v(x − ct) ; speed c

periodic waves: v is periodic and

v ′′ = −cv − 1

2
v2 + b

Galilean and scaling invariances: c = 1, b = 0

small periodic waves: va(ξ) = Pa(kaξ) , a small

Pa(z) = a cos(z) +
1

4

(

1

3
cos(2z) − 1

)

a2 + O(|a|3)

k2
a = 1 − 5

24
a2 + O(a4)

Spectral stability of periodic waves in dispersive models



Introduction
Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Linear equation

scaling z = ka(x − t), ỹ = k2
a y , t̃ = k3

a t

KP equation

utz − uzzzz −
1

k2
a

uzz −
1

k2
a

(uuz)z + σuyy = 0

the periodic wave Pa(z) is a stationary solution
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Linear equation

scaling z = ka(x − t), ỹ = k2
a y , t̃ = k3

a t

KP equation

utz − uzzzz −
1

k2
a

uzz −
1

k2
a

(uuz)z + σuyy = 0

the periodic wave Pa(z) is a stationary solution

linearized equation

wtz − wzzzz −
1

k2
a

wzz −
1

k2
a

(Paw)zz + σwyy = 0

coefficients depending upon z

Ansatz w(z, y , t) = eλt+iℓyW (z) , λ ∈ C, ℓ ∈ R

Spectral stability of periodic waves in dispersive models
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Spectral stability

λWz − Wzzzz −
1

k2
a

Wzz −
1

k2
a

(PaW )zz − σℓ2W = 0
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Spectral stability

λWz − Wzzzz −
1

k2
a

Wzz −
1

k2
a

(PaW )zz − σℓ2W = 0

linear operator

Ma(λ, ℓ) = λ∂z − ∂4
z − 1

k2
a

∂2
z ((1 + Pa)·) − σℓ2

the periodic wave is spectrally stable if Ma(λ, ℓ) is invertible

for any λ ∈ C with Re λ > 0, and unstable otherwise

the type of the perturbations is determined by the choice of

the function space and the values of ℓ
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

One-dimensional perturbations

ℓ = 0

Ma(λ, 0) = ∂zKa(λ), Ka(λ) = λ − ∂3
z − 1

k2
a
∂z((1 + Pa)·)

Ka(λ) is the linear operator in the KdV equation

∂z is not invertible (in general)

replace Ma(λ, 0) by Ka(λ)
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

One-dimensional perturbations

ℓ = 0

Ma(λ, 0) = ∂zKa(λ), Ka(λ) = λ − ∂3
z − 1

k2
a
∂z((1 + Pa)·)

Ka(λ) is the linear operator in the KdV equation

∂z is not invertible (in general)

replace Ma(λ, 0) by Ka(λ)

Definition

The periodic wave is spectrally stable in one dimension if the

linear operator Ka(λ) is invertible, for any λ ∈ C, Re λ > 0 ,

in L2(0, 2π), for 2π-periodic perturbations;

in L2(R) or Cb(R), for localized or bounded perturbations.
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Two-dimensional perturbations

ℓ 6= 0

Definition

The periodic wave is transversely spectrally stable if

it is spectrally stable in one dimension

the linear operator Ma(λ, ℓ) is invertible, for any λ ∈ C,

Re λ > 0 , and any ℓ ∈ R, ℓ 6= 0 ,

in L2(0, 2π), for perturbations which are 2π-periodic in z;

in L2(R) or Cb(R), for perturbations which are localized or

bounded in z.
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Previous results

spectral stability in one dimension for periodic, localized,

bounded perturbations

[H. & Kapitula, 2008; Bottman & Deconinck, 2009]

transverse spectral (in)stability for perturbations which are

periodic in z, when ℓ is small

[Johnson & Zumbrun, 2009]

long wavelength transverse perturbations, when ℓ ≪ 1

short wavelength transverse perturbations, when ℓ ≫ 1

finite wavelength transverse perturbations, otherwise
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Spectral stability problem

study the invertibility of the operator Ma(λ, ℓ) in L2(0, 2π), for

Re λ > 0 , and ℓ 6= 0

Spectral stability of periodic waves in dispersive models
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Spectral stability problem

study the invertibility of the operator Ma(λ, ℓ) in L2(0, 2π), for

Re λ > 0 , and ℓ 6= 0

Lemma

Assume that λ ∈ C and ℓ ∈ R, ℓ 6= 0.

The linear operator Ma(λ, ℓ) acting in L2(0, 2π) is invertible

if and only if λ belongs to the spectrum of the operator

Aa(ℓ) = ∂3
z +

1

k2
a

∂z((1 + Pa)·) + ℓ2∂−1
z

acting in L2
0(0, 2π) (square-integrable functions with zero-mean).
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Proof

Ma(λ, ℓ) is invertible in L2(0, 2π) if and only if its restriction

to the subspace L2
0(0, 2π) is invertible

elements in the kernel have zero mean when ℓ 6= 0

Ma(λ, ℓ) = ∂z (λ −Aa(ℓ)) and ∂z is invertible in L2
0(0, 2π)

Spectral stability of periodic waves in dispersive models
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Spectrum of Aa(ℓ)

Properties of the spectrum

consists of isolated eigenvalues with finite algebraic multiplicity

is symmetric with respect to the real and the imaginary axis

We rely on

the decomposition Aa(ℓ) = −∂zLa(ℓ)

La(ℓ) = −∂2
z − 1

k2
a

((1 + Pa)·) − ℓ2∂−2
z self-adjoint

and the property: Aa(ℓ) has no unstable eigenvalues, if La(ℓ)

has positive spectrum

perturbation arguments for linear operators: Aa(ℓ) is a small

perturbation, for small a, of the operator with constant

coefficients A0(ℓ) = ∂3
z + ∂z + ℓ2∂−1

z
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Transverse instability

Theorem

For any a sufficiently small, there exists ℓ2
a =

1

12
a2 + O(a4) , such

that

1 for any ℓ2 ≥ ℓ2
a, the spectrum of Aa(ℓ) is purely imaginary;

2 for any ℓ2 < ℓ2
a, the spectrum of Aa(ℓ) is purely imaginary,

except for a pair of simple real eigenvalues, with opposite

signs.

small periodic waves of the KP-I equation are transversely unstable

the instability occurs in the transverse long-wave regime, ℓ2 = O(a2)
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Proof

spectrum of the unperturbed operator L0(ℓ)

strictly positive if ℓ 6= 0

0 is a simple eigenvalue if ℓ = 0
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Proof

spectrum of the unperturbed operator L0(ℓ)

strictly positive if ℓ 6= 0

0 is a simple eigenvalue if ℓ = 0

|ℓ| ≥ ℓ∗

use the decomposition Aa(ℓ) = −∂zLa(ℓ)

perturbation arguments show that La(ℓ) has no negative

eigenvalues

ℓ small

Spectral stability of periodic waves in dispersive models
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Proof

ℓ small

decompose σ(Aa(ℓ)) = σ0(Aa(ℓ)) ∪ σ1(Aa(ℓ))

σ1(Aa(ℓ))

use the decomposition Aa(ℓ) = −∂zLa(ℓ)

positivity of the restriction of La(ℓ) to the corresponding spectral

subspace

σ0(Aa(ℓ)) contains two eigenvalues

direct computation of the eigenvalues: compute successively a basis of

the spectral subspace, the 2 × 2 matrix representing the action of Aa(ℓ)

on this basis, and the eigenvalues of this matrix

Spectral stability of periodic waves in dispersive models
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Localized or bounded perturbations

study invertibility of the operator Ma(λ, ℓ) acting in L2(R) or

Cb(R), for Re λ > 0 and ℓ 6= 0
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Localized or bounded perturbations

study invertibility of the operator Ma(λ, ℓ) acting in L2(R) or

Cb(R), for Re λ > 0 and ℓ 6= 0

Lemma

The linear operator Ma(λ, ℓ) is invertible, in either L2(R) or

Cb(R), if and only if the linear operators

Ma(λ, ℓ, γ) = λ(∂z + iγ) − (∂z + iγ)4 − 1

k2
a

(∂z + iγ)2((1 + Pa)·) − ℓ2

acting in L2(0, 2π) are invertible, for any γ ∈
(

−1

2
,
1

2

]

.

Proof: Floquet theory
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Spectral stability problem

γ = 0 corresponds to periodic perturbations

γ 6= 0 the operator ∂z + iγ is invertible

Spectral stability of periodic waves in dispersive models
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Spectral stability problem

γ = 0 corresponds to periodic perturbations

γ 6= 0 the operator ∂z + iγ is invertible

Lemma

Assume that γ ∈
(

−1
2 , 1

2

]

and γ 6= 0 .

The linear operator Ma(λ, ℓ, γ) is invertible in L2(0, 2π)

if and only if λ belongs to the spectrum of the operator

Aa(ℓ, γ) = (∂z + iγ)3 +
1

k2
a

(∂z + iγ)((1 + Pa)·) + ℓ2(∂z + iγ)−1

acting in L2(0, 2π).
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Spectrum of Aa(ℓ, γ)

Properties of the spectrum

consists of isolated eigenvalues with finite algebraic multiplicity

is symmetric with respect to the imaginary axis

σ(Aa(ℓ, γ)) = σ(−Aa(ℓ,−γ)) −→ restrict to γ ∈
(

0,
1

2

]

We rely on

the decomposition Aa(ℓ, γ) = −(∂z + iγ)La(ℓ, γ)

and the property: Aa(ℓ, γ) has no unstable eigenvalues, if

La(ℓ, γ) has positive spectrum

perturbation arguments: Aa(ℓ, γ) is a small perturbation, for

small a, of the operator with constant coefficients

A0(ℓ, γ) = (∂z + iγ)3 + (∂z + iγ) + ℓ2(∂z + iγ)−1
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Unperturbed operators

spectrum of L0(ℓ, γ):

eigenvalues k = n + γ, n ∈ Z in k 7→ k2 − 1 +
ℓ2

k2

ℓ = 0.3 ℓ = 0.8
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Spectrum of L0(ℓ, γ)

positive spectrum for ℓ2 > ℓ2
−

one negative eigenvalue if ℓ2
0 < ℓ2 < ℓ2

−

two negative eigenvalues if 0 < ℓ2 < ℓ2
0

0 < ℓ2
0 = γ2(1 − γ2) < ℓ2

−
= γ(1 − γ)2(2 − γ)
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Spectrum of L0(ℓ, γ)

positive spectrum for ℓ2 > ℓ2
−

one negative eigenvalue if ℓ2
0 < ℓ2 < ℓ2

−

two negative eigenvalues if 0 < ℓ2 < ℓ2
0

0 < ℓ2
0 = γ2(1 − γ2) < ℓ2

−
= γ(1 − γ)2(2 − γ)

ℓ2 ≥ ℓ2
−

+ ε∗

the spectrum of Aa(ℓ, γ) is purely imaginary

0 < ℓ2 < ℓ2
−

+ ε∗
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

0 < ℓ2 < ℓ2
−

+ ε∗

decompose σ(Aa(ℓ, γ)) = σ0(Aa(ℓ, γ)) ∪ σ1(Aa(ℓ, γ))

σ1(Aa(ℓ, γ)) is purely imaginary

σ0(Aa(ℓ, γ)) contains one or two eigenvalues

one eigenvalue: use symmetry of the spectrum

two eigenvalues: direct computation (compute successively a basis of

the spectral subspace, the 2 × 2 matrix representing the action of

Aa(ℓ, γ) on this basis, and the eigenvalues of this matrix)
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Transverse instability

Theorem

Assume γ ∈
(

0, 1
2

]

and set ℓc(γ) =
√

3γ(1 − γ) .

For any a sufficiently small, there exists

εa(γ) = γ3/2(1 − γ)3/2|a|(1 + O(a2)) > 0 such that

1 for |ℓ2 − ℓ2
c(γ)| ≥ εa(γ), the spectrum of Aa(ℓ, γ) is purely

imaginary;

2 for |ℓ2 − ℓ2
c(γ)| < εa(γ), the spectrum of Aa(ℓ, γ) is purely

imaginary, except for a pair of complex eigenvalues with

opposite nonzero real parts.
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Spectral stability problem

Same of formulation in terms of the spectra of the operators

Aa(ℓ) and Aa(ℓ, γ)
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Spectral stability problem

Same of formulation in terms of the spectra of the operators

Aa(ℓ) and Aa(ℓ, γ)

Main difference: eigenvalues of the unperturbed operators

L0(ℓ) and L0(ℓ, γ)

eigenvalues k = n + γ, n ∈ Z in k 7→ k2 − 1− ℓ2

k2

the number of negative eigenvalues

increases with ℓ
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Spectral stability of periodic waves

Transverse spectral stability

Spectral problem
KP-I equation
KP-II equation

Transverse stability result

Theorem

The spectrum of the operator Aa(ℓ) acting in L2
0(0, 2π) is purely

imaginary, for any ℓ and a sufficiently small.

Small periodic waves of the KP-II equation are transversely stable for

perturbations

which are 2π-periodic in z (the direction of propagation)

have long wavelength in the transverse direction
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Spectral stability of periodic waves

Transverse spectral stability

Conclusion

KP-I equation transverse instability

for periodic and non-periodic perturbations

instabilities occur in the transverse long-wave regime

KP-II equation transverse stability for perturbations

which are periodic in the direction of propagation

have long wavelength in the transverse direction

same type of stability properties as for solitary waves

Spectral stability of periodic waves in dispersive models
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