Space-Time Analyticity of Solutions to the Heston volatility model in Mathematical Finance

Peter TAKÁČ* Institut für Mathematik, Universität Rostock, Ulmenstraße 69, Haus 3, D-18051 Rostock, Germany, *e*-mail: peter.takac@uni-rostock.de Web: http://www.math.uni-rostock.de/forschung/AngAnalysis

A lecture at the University of the Basque Country, UPV/EHU, 12:00 September 2nd, 2015. Seminar room of the Math section.

^{*}Joint work with Bénédicte Alziary, CeReMath, Toulouse School of Economics, France.

Abstract

We begin by a brief presentation of a well-known mathematical model for European option pricing in a market with stochastic volatility: the popular Heston volatility model (Rev. Financial Studies, 1993). European options are used for market completion. We explain the connection between a complete market and the analyticity of the weak solution to a general, strongly parabolic linear Cauchy problem of second order in $\mathbb{R}^N \times (0,T)$ (N=2) with analytic coefficients (in space and time variables). The analytic smoothing property is expressed in terms of holomorphic continuation of global (weak) L^2 -type solutions to the system. Given $0 < \xi' < \infty$ and $0 < T' < T < \infty$, we sketch a proof that any L²-type solution $u: \mathbb{R}^1 \times (0,\infty) \times (0,T) \subset \mathbb{R}^2 \times (0,T) \to \mathbb{R}^1, u \equiv u(x,v,t)$, possesses a bounded holomorphic continuation $u(x + iy, \xi + i\eta, \sigma + i\tau)$ into a complex domain in $\mathbb{C}^N \times \mathbb{C}$ (N = 2) defined by $(x,\xi,\sigma) \in \mathbb{R}^1 \times (\xi',\infty) \times (T',T), |y| < A'_1, |y| < A'_2, \text{ and } |\tau| < B', \text{ where } A'_1, A'_2, B' > 0$ are constants depending upon ξ' and T'. The proof uses the extension of a solution to an L^2 -type solution in a complex domain in $\mathbb{C}^2 \times \mathbb{C}$, such that this extension satisfies the Cauchy--Riemann equations. The holomorphic extension is thus obtained in a (weighted) Hardy space H^2 . A serious difficulty in the Heston model is that the solution is sought only in a half-space $\mathbb{H} = \mathbb{R}^1 \times (0, \infty)$ in \mathbb{R}^2 with rather complicated dynamic boundary conditions at the boundary $\partial \mathbb{H} = \mathbb{R}^1 \times \{0\}$; a similarity with the Feller boundary condition (Ann. Math., 1951) will be discussed. We avoid this trouble by a suitable choice of the weight in the weighted L^2 space.

Keywords: Space-time analyticity, parabolic PDE; holomorphic continuation, Hardy space; market completeness, European option

2000 Mathematics Subject Classification:	Primary	35B65, 35K10;
	Secondary	91B28, 91B70;