HARMONIC ANALYSIS MORNING 30 January, 2015

Extending sets by means of the Maximal function: Continuity estimates

(10:00) IOANNIS PARISSIS

UPV/EHU, IKERBASQUE

ABSTRACT: Let \mathfrak{B} be a collection of bounded open sets in \mathbb{R}^n such as balls, cubes or *n*-dimensional rectangles with sides parallel to the coordinate axes. We let $M_{\mathfrak{B}}f(x)$ denote the maximal operator associated with the collection \mathfrak{B} :

$$M_{\mathfrak{B}}f(x) := \sup_{x \in B \in \mathfrak{B}} \frac{1}{|B|} \int_{B} |f(y)| dy$$

We are interested in the so-called *Halo* function of \mathfrak{B} :

$$C_{\mathfrak{B}}(\alpha) := \sup_{\substack{E \subset \mathbb{R}^n \\ 0 < |E| < \infty}} \frac{1}{|E|} |\{x \in \mathbb{R}^n : M(\mathbf{1}_E)(x) > \alpha\}|,$$

where $\alpha \in (0, 1)$ and the supremum is taken over all measurable sets E. For α very close to 1 we can think of the set $\{M_{\mathfrak{B}}(\mathbf{1}_E) > \alpha\} \supset E$ as an enlargement of E, defined in accordance with the geometry of \mathfrak{B} . It is natural to expect that this enlargement should converge to the set E itself, in some appropriate sense, as $\alpha \to 1^-$. We prove this heuristic statement by showing that

$$\lim_{\alpha \to 1^{-}} C_{\mathfrak{B}}(\alpha) = 1$$

for different choices of \mathfrak{B} . For more general collections \mathfrak{B} (such as homothecy invariant collections of convex sets) we state a corresponding conjecture. This talk reports on joint work with Paul A. Hagelstein (Baylor)

LUGAR / LEKUA: Sala de seminarios de la sección de matemáticas Matematika ataleko mintegi gela