
How to compile in the Computers of the SGI-IZO

SGI-IZO

September 16, 2010

Abstract

In this article we describe how to compile and prepare the programs to run in the machines

of the service. It also shows, with a simple example, how to easily submit and run your

programs in any of all the computers of the service.

1 Preliminary facts

1.1 Do you have problems or you need help?

Contact the technicians.1

1.2 What is to compile?

The programs are usually written in a human readable language, in like Fortran or C emplyoing
human understandable words such as copy, multiply, print, etc. Machines, however, work in binary
language, they speak binary language. The compilation is the process in which a human readable
code, e.g. Fortran, is translated to machine readable language, binary code.

The compiler is the program that make this translation, producing a binary for the machine
in which it is run.2

1.3 About the architectures

In the SGI-IZO we have several processor types (architectures), namely ia64 (Itanium processors),
x86 64 (Opteron, Xeon and core2duo processors) and x86 (Pentium IV, Pentium D . . . processors).
The architectures define how the processor works, i.e., how it parses the instructions and the
data. Usually, different architectures are not compatible. A program compiled to run in ia64
architecture does not work in a x86 64 architecture because it can not understand that binary
code, ia64 instructions and x86 64 instructions have different implementation.

Itanium and x86 64 architectures are able to run x86 code. They have been built with backward
compatibility but the performance may be poor, specially in the ia64 case.

Ideally, a program compiled in one architecture must run only in this architecture. Sometimes,
unfortunatelly, this is not possible, and only then could be justified the usage of an x86 binary on
the other architectures.

2 Compiling

2.1 The compiler

One of the most used compilers are the GNU ones, which are free software. Those are good
compilers for x86 and x86 64 architectures, i.e., for Péndulo Grid and Opteron nodes in the

1http://www.ehu.es/sgi/Personal del Servicio tf.html
2Cross-compiling over architectures is also possible.

1

Table 1: Commands to execute the different compilers.

Language GNU Intel

C gcc icc

C++ g++ icpc

fortran gfortran ifort

machines of the service. Nevertheless the GNU compilers, give very bad performance for the ia64
architecture, i.e., for the Itanium2 processor like in the Arina server and Itanium nodes.

In the service we have also installed the Intel compilers with usually have a very good per-
formance, specially for Intel processors. This are the only recommended compilers for the ia64
architecture, Itanium2 nodes.3

In table 1 we summarize the commands to execute the different compilers. We will focus only
in the Intel compilers. We strongly recommend the use of the Intel compilers on the

machines of the service.

2.2 How to compile

In the rest of the document we will use the Intel Fortan compiler but everything is extensible to
other language or compiler. As an example, we will a very simple fortran program that prints
“Hello World” saved in a file with the name hola.f90:

program hola

write(*,*) "Hello world!"

end program hola

To compile this program type in the command line:

ifort hola.f90 -o hola

the “-o hola” option tells the program to rename the output, the binary will be created as hola
and after compilation the hola binary file will appear in our directory. To execute it type:

./hola

and “Hello world!” will appear in the screen.
You can tune your compilation by using several flags. The most common one is -O which sets

some optimizations. When a code is compiled with Optimization we ask the compiler to try to
create a binary and modify it in order to be executed faster or more efficiently. By default, the
optimization level is 2, we can increase it to 3, which is the maximum optimization level. For
example:

ifort -O3 hola.f90 -o hola

During the optimization process, sometimes, the code is changed on a whay that it may
produce erroneous results. Thus, anytime that an optimization procedures is used when

compiling, the correctness of the results should be checked with some tests.
To learn more about different compiler options go to the manuals or use the man linux command,

i.e. man ifort.

3The PGI compilers are available for the Opteron nodes but they will not be treated because it has note been

upgraded in the last years.

2

Table 2: Returned value of the arch command for the different computing nodes

Node type main server arch

Itanium node in Arina cluster Arina ia64
Xeon node in Arina cluster Guinness x86 64
Opteron node in Arina cluster Maiz x86 64
PC node in Péndulo grid Péndulo i686

2.3 How to link libraries

There are very usefull mathematical libraries with very optimized codes for basic mathematical
functions. You can check what libraries are installed in our machines in our web page.4 For
example, to use the libfftw.a library that performs Fast Fourier Transform that is installed on
/software/fftw-3.2.2/lib directory you must use the -L option to tell the directory path and
the -l option to pass the library name (without the .a suffix and without the lib prefix):

ifort hola.f90 -o hola -L/software/fftw-3.2.2/lib -lfftw

without the blank spaces after -L and -l. If several libraries are linked the order is important. In
our the web (www.ehu.es/sgi) page usually there are examples about how to link the libraries.

3 Compiling a Code to be used in all the machines of the

service

If you are going to use your own compiled code on the IZO-SGI computers, we encourage you to
first analize the performance of the different architectutes, i.e. ia64 vs. x8 64, this might be very
different. If so, you could focuse your work on that specific computer type. If the performance is
similar, then, we recommend you to use all the resources available at the service to improve your
productivity.

The service has several architectures (ia64, x86 and x86 64), and you must run your programs
in the architecture where they were compiled. If you compile your code only in the itanium server
you have to be sure that it will only be run on itanium nodes. To do so, you must add the
itanium label on the Torque script to the nodes= option when submitting the job.5 In this way,
you force the queue system to use only an itanium node.

The qsub all command 6 allows you to submit a job to Arina and Péndulo at the same time, it
will run in the first place it founds a free appropriate node (be aware of the walltime and memory
limits of Péndulo7).

If you want to use all the computation nodes of the service you must compile your
program for all the architectures and at run time select the proper binary for the architecture.
This can be easilly done with the aid of the arch command that returns the architecture of the
compute node. In table 2 you have the values that the command arch returns for the different
architectures availabe at the IZO-SGI, and which is the server you should use to compile the
programs for such architecture.

Appending the architecture value to the name of your binary, at the compilation time, is very
helpfull to discriminate between de different architecures, and to make sutre that each binary runs
in the proper architecture:

4http://www.ehu.es/sgi/Librer ias tf.html
5http://www.ehu.es/sgi/Comandos interes tf.html
6http://www.ehu.es/sgi/Enviando Arina y Pendulo tf.html)
7http://www.ehu.es/sgi/GRID Pendulo tf.html

3

ifort hola.f90 -o hola ia64

and similarlly, for the the other architectures you have to generate the hola x86 64 and the
hola i686 binaries. Then, if you set up your Torque scripts to execute the hola binary such as:

./hola $(arch)

you will run the hola ia64 binary in itanium nodes, hola x86 64 in opteron and xeon nodes and
hola i686 in Péndulo nodes, so you do not need to care about which binary type you should send
to which specific node, this is done automatically by the computer.

3.1 A simple example:

In this subsection we describe with an example the steps to run your programs with qsub all

command in any of the nodes of the service, taking advantage of the arch command and allowing
you to forget about which binary is executed where:

1. Connect to Arina.

2. Compile your program adding the architecture to the name

ifort hola.f90 -o hola ia64

3. Connect to Maiz.

4. Compile your program adding the architecture to the name.

ifort hola.f90 -o hola x86 64

5. Connect to Péndulo.

6. Compile your program adding the architecture to the name.

ifort hola.f90 -o hola i686

7. (optional) Make a bin directory in your home to store the binaries and avoid unnecessary
copies. Copy or move there the binaries.

mkdir $HOME/bin

mv hola * $HOME/bin

8. Edit your script to send jobs to torque and add this line to execute your new binaries

$HOME/bin/hola $(arch)

or if you skip the previous step and your binaries are in the current directory

./hola $(arch).

9. Submit it to Arina’s and Péndulo’s torque queue systems with the qsub all command.

Now you can use qstat arina and qstat pendulo to check that you have one job in each
server. The first that starts running will produce the results, the other will be automatically
deleted.

4

	Preliminary facts
	Do you have problems or you need help?
	What is to compile?
	About the architectures

	Compiling
	The compiler
	How to compile
	How to link libraries

	Compiling a Code to be used in all the machines of the service
	A simple example:

