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Abstract
The aim of this paper is to analyze how active R&D policies a¤ect the

growth rate of an economy with endogenous growth and non-renewable re-
sources. We know from Scholz and Ziemens (1999) and Groth (2006) that in
in�nitely lived agents (ILA) economies, any active R&D policy increases the
growth rate of the economy. To see if this result also appears in economies
with �nite lifetime agents, we developed an endogenous growth overlapping
generations (OLG) economy à la Diamond which uses non-renewable re-
sources as essential inputs in �nal good�s production. We show analytically
that any R&D policy that reduces the use of natural resources implies a raise
in the growth rate of the economy. Numerically we show that in economies
with low intertemporal elasticity of substitution (IES), active R&D policies
lead the economy to increase the depletion of non-renewable resources. Nev-
ertheless, we �nd that active R&D policies always imply increases in the
endogenous growth rate, in both scenarios. Furthermore, when the IES co-
e¢ cient is lower (greater) than one, active R&D policies a¤ect the growth
rate of the economy in the ILA more (less) than in OLG economies.
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1 Introduction

One of the central analytical �ndings of the literature on growth is that
worldwide economic growth is possible in spite of the �nite supply of ex-
haustible resources if there is su¢ cient technological progress. The feasibility
of positive long-run growth, despise nonrenewable natural resources being an
essential input in the production sector, has been extensively explored in the
neoclassical exogenous growth framework, among others by Stiglitz (1974),
Solow (1974), Dasgupta and Heal (1974) and Agnani et al. (2005). In all
these models, the feasibility of positive long-run growth of per capita con-
sumption depends on the scope and extent of technological progress relative
to the endogenous depletion rate of non-renewable resources. Furthermore,
even though technological progress is exogenously given, long-run growth is
endogenously determined since it depends on the endogenous depletion rate.
The relationship between the use of exhaustible resources and techno-

logical progress has also been analyzed in the endogenous growth literature
developed in the 1990s. Studies such as Aghion and Howitt (1998), Barbier
(1999), Scholz and Ziemens (1999) analyze the sustainability of positive long-
run growth paths in economies with exhaustible resources and in�nitely-lived
agents (ILA), where the engine of growth is the creation of new intermediate
inputs that are used as imperfect substitutes in the �nal-good sector.1 This
present paper follows this research line. In particular, our aim is to inves-
tigate how active R&D policies may a¤ect the growth rate in endogenous
growth economies that use exhaustible resources, which are essential inputs
in the production sector.
We already know from Scholz and Ziemens (1999) and Groth (2006)

that in ILA economies, any active R&D policy increases the growth rate
of the economy. In this paper, we analyze the equivalent economy studied in
Scholz and Ziemens (1999) with �nite lifetime agents instead of considering
in�nitely-lived individuals. In particular, we develop an overlapping
generations (OLG) model à la Romer (1990) where each generation consists
of �nite households that live for two periods and are not altruistic as in
Diamond (1965). Authors such as Solow (1986) point out that OLG models
appear to be �the natural habitat� for discussing on the impact of current

1Aghion and Howitt (1998), Barbier (1999) and Nili (2001) solve the central planner�s
problem in this type of economy with constant elasticity of intertemporal substitution.
Scholz and Ziemes (1999) extend this analysis by studying the market equilibrium in this
kind of economy.
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resource extraction decisions on future generations. Other research such as
Agnani et al. (2005) justi�es the use of an OLG framework vs. that of the
ILA models to analyze long-run growth with exhaustible resources, relying
on the existence of empirical evidence against the altruism assumed in ILA
models. Therefore, a comparison between the results in an OLG framework
with respect to the ILA setup appears to be necessary. One of our main
�ndings is that the policy implication is di¤erent in both scenarios.
From the theoretical point of view, we �nd that any active R&D policy

a¤ects the growth rate of the economy through two channels. First, the
direct channel, which shows that the more productive the R&D sector is,
the higher the growth rate of the stock of knowledge, regardless of the use
of the exhaustible resources. This ceteris paribus result is quite intuitive,
since this is the standard result in Romer�s model, without exhaustible
resources. Second, the indirect channel which comes through the use of
the exhaustible resources in the �nal output sector. The sign of this indirect
e¤ect is ambiguous. We prove analytically that for both frameworks, ILA
and OLG, any active R&D policy that leads the economy to deplete less
exhaustible resources will increase the growth rate of the economy (this is
the case in which direct and indirect e¤ects work in the same direction).
For the ILA economy, we show that the indirect e¤ect is positive whenever

the intertemporal elasticity of substitution is greater than one and not
too high. Contrariwise, the indirect e¤ect is negative for values of the
intertemporal elasticity of substitution lower than one. However, even for
cases where the indirect e¤ect goes in the opposite direction to the direct
e¤ect, we prove that the �nal e¤ect of an active R&D policy on the growth
rate is unambiguously positive.
For the OLG economy the determination of the stationary depletion rate

is even more complex than in the ILA set up, so we are not able to characterize
analytically the cases in which the indirect e¤ect is positive or negative.
Because of this complexity we numerically simulate the e¤ects of active R&D
policies in the economy under the two scenarios, ILA and OLG. First of all,
the parameters of the model are selected such that the benchmark case for
both scenarios represents the same economy, and mimics some empirical facts
of the economy. Secondly, we compare the results under both scenarios when
productivity in the R&D sector increases. Our main numerical �ndings are as
follows: First, OLG and ILA economies are similar in terms of growth rates;
however they are very di¤erent in the composition of the growth process.
Whereas under the ILA scenario, economic growth relies more on a lower
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use of non-renewable resources, under the OLG economy the growth process
depends on higher growth in the R&D sector. In this sense we could say that
ILA economies are more exhaustible-conservationist. The intuition behind
this result is clear. Since in ILA economies agents live up to in�nity, they are
able to wait until later to consume. Thus agents consume less today, depleting
fewer resources, and devoting a high percentage of human capital to the R&D
sector. Second, in both OLG and ILA economies, where agents are more
willing to wait to consume in the future (i.e. with high IES coe¢ cient), active
R&D policies are more conservationist, depleting exhaustible resources less.
And third, active R&D policies always increase the growth rate, under both
scenarios. Furthermore, when current and future consumption are substitutes
(complementaries), i.e. when the IES coe¢ cient is lower (greater) than one,
active R&D policies a¤ect the growth rate more (less) in economies where
agents live in�nitely than those with �nite lifetime agents.
The rest of the paper is organized as follows. Section 2 presents the

OLG model. The market equilibrium in an OLG framework is de�ned in
Subsection 2.1 and the balanced growth path is characterized in Subsection
2.2. In Section 3 we analyze the e¤ect of an R&D policy on the two types of
economies, ILA vs. OLG. Conclusions are presented in Section 4.

2 The Overlapping Generations (OLG)Model

We develop the basic two-period overlapping generations framework (Dia-
mond (1965)) in an endogenous growth economy à la Romer (1990), with
exhaustible resources which are essential inputs for production in the �nal
good sector. From now on we refer to this set up as the OLG model. In order
to analyze the role of the agents with �nite lifetimes, we solve the equivalent
model but with in�nitely-lived agents. This is the model analyzed in Scholz
and Ziemens (1999), but in continuous time rather than discrete time, and
is developed in Appendix 2.
We assume that each generation consists of L new individual agents

who live for two periods. There is no population growth. There are three
production sectors: the �nal-good sector, the intermediate sector and the
R&D sector.

Consumers/Households:
All individual agents have rational expectations and are identical except
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for their age. As usual in growth literature, since we are interested in
economies for which balanced growth paths exist, we consider consumer
preferences with constant elasticity of intertemporal substitution (King and
Rebelo (1993))2. In particular the preferences of a representative agent born
at period t are represented by

u (c1t; c2;t+1) =
c1��1;t � 1
1� � +

1

1 + �

 
c1��2;t+1 � 1
1� �

!
;

where c1;t and c2;t+1 represent consumption for young and old age,
respectively; � � 0 is the subjective discount rate of the agent and 1=� > 0
is the intertemporal elasticity of substitution (IES). The closer to (farther
from) zero the parameter � is, the more substitute (complementary) current
and future consumptions are. In particular � = 1 represents the logarithmic
preferences case.
Each agent born at period t; is endowed when young with a �xed quantity

of human capital, h. Since all agents are identical, except for their age,
the individual human capital of a young individual and the average level of
human capital in the young population (which is assumed to be �xed in the
economy) coincide. He/she receives the wage, wHt; per unit of labor, which
can be used either to consume the �nal good, c1;t; to buy the ownership
rights to the resource stock, mt+1; or to save, st+1 (physical capital or bonds
issued by the intermediate sector)3. The �nal consumption good is taken as
a numerary and pt is the price of the exhaustible resource in terms of �nal
consumption good.
When the agent is old, at period t+1; his/her income comes from di¤erent

sources. The return of his/her savings is (1 + rt+1) st+1 which includes the
rental from his/her physical capital stock and from the bonds issued by the
intermediate �rms. On the other hand, old agents receive income from selling
resource property rights, mt+1; to the young generation and to �nal-good

2Constant elasticity of intertemporal substitution is a su¢ cient but not a necessary
condition to guarantee the existence of balanced growth. See Stokey and Lucas (1984) for
more details.

3Consumers own the existing durable goods-producing �rms, therefore the (net)
intermediate sector�s pro�ts are paid to them. Alternatively, we could have assumed that
consumers diversify their savings in the three forms, in physical capital, bonds (issued by
intermediate �rms) and exhaustible resource, but only in that amount of the exhaustible
resource that is not used in the production process. (See Mourmouras (1993)).
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�rms.4 The revenue from this sale is pt+1mt+1 (in per worker terms).
Therefore, the representative agent born at period t, maximizes his/her

utility function with respect to young and old consumption taking prices
as given. This problem can be set out in per worker terms as follows:
8t = 1; 2; :::

Max
fc1;t;c2;t+1;st+1;mt+1g

c1��1;t � 1
1� � +

1

1 + �

 
c1��2;t+1 � 1
1� �

!
;

s:t: c1;t + ptmt+1 + st+1 = wH;th; (1)

c2;t+1 = (1 + rt+1) st+1 + pt+1mt+1; (2)

wH;t; pt and rt+1 are given.

The �rst order conditions for this maximization problem can be expressed as

c2;t+1
c1;t

=

�
1 + rt+1
1 + �

�1=�
; (3)

1 + rt+1 =
pt+1
pt
: (4)

Equation (3) indicates that each consumer equates the marginal rate of
substitution between current and future consumption to their relative prices,
or marginal rate of transformation given by 1 + rt+1. Equation (4) is
the standard arbitrage condition that characterizes the optimal investment
between the two forms of savings such that the marginal returns on both
must be equal. In other words, the marginal rate of saving in the exhaustible
resource, pt+1=pt; must be equal to the marginal rate of saving in physical
capital or bonds issued by the intermediate �rms, 1 + rt+15.
Combining �rst order conditions (3)-(4) and taking into account consumer

budget constraints, the consumer saving function can be characterized as

st+1 + ptmt+1 =
wH;th

1 + (1 + �)1=� (1 + rt+1)
�( 1��� )

:

4We are assuming that there exists a market for the exhaustible resource stock which
is sold by older generations to younger generations, and a market for the exhaustible
resource that is �nally extracted and used in the production process (see, for example,
Olson and Knapp (1997) or Agnani et al. (2005)).

5This arbitrage condition satis�es the well-known Hotelling rule of optimal resource
extraction for exhaustible resource in partial equilibrium models, under assumption of
costless extraction (Hotelling, 1931).
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Notice that given the arbitrage condition, (4), the consumer�s income in the
second period depends on st+1+ptmt+1: Therefore, from the consumer�s point
of view, any combination of physical capital, bonds and exhaustible resources
satisfying this saving function maximizes his/her utility.

Production Sectors:
There are three production sectors: the �nal-good sector, the intermediate-

goods sector and the R&D sector.

a) The �nal-good sector:
This sector produces a homogeneous good, Yt; that can be consumed or

invested in the form of physical capital. All �rms share the same production
technology and use as inputs human capital, HY;t; a variety of intermediate
goods, X i

t with i = 1; :::At; and the exhaustible resource extracted, Et: At
indicates how large the variety of the intermediated goods is, and it also
represents the stock of knowledge of the economy.
The aggregate production function for the �nal output is given by

Yt = H
�1
Y t

hPAt
i=1 (X

i
t)
�2
i
E�3t . Following Romer (1990), we assume the same

technology for producing any intermediate good and, in consequence, their
unit cost is the same. Therefore, since they enter in the �nal-good sector
symmetrically, in equilibrium an identical amount of each intermediate good
will be produced: X i

t = Xt; 8i = 1; ::::At: This implies that in equilibrium
the total amount of intermediate-goods in the economy can be denoted byPAt

i=1 (X
i
t)
�2 = AtX

�2
t and the aggregate production function by

Yt = AtH
�1
Y tX

�2
t E

�3
t : (5)

Constant returns to scale with respect to all private inputs are assumed, i.e.,
�1 + �2 + �3 = 1:
Final-good �rms hire labor, intermediate goods and exhaustible resources

to maximize pro�ts taking prices and the stock of technology as given.
Therefore, the representative �rm�s problem can be set down as follows in
each period t,

7



Max
fHY t;fXi

tg
At
i=1;Etg

1
t=0

Yt � wH;tHY;t � qt
AtX
i=1

X i
t � ptEt;

s:t: Yt = H
�1
Y t

AtX
i=1

�
X i
t

��2 E�3t ;
wH;t; qt; pt; and At are given.

where qt is the price of the intermediate goods.
In the case of an interior solution, the �rst-order conditions for the �rm�s

maximization problem are given by the following equations

�1H
(�1�1)
Y t (AtX

�2
t )E

�3
t = wH;t; (6)

�2H
�1
Y tX

(�2�1)
t E�3t = qt; (7)

�3H
�1
Y t (AtX

�2
t )E

�3�1
t = pt; (8)

which indicate that �rms hire labor, intermediate goods and exhaustible
resources until their marginal products equal their factor prices.

b) The monopolistic intermediate-goods sector / design market:
The intermediate-goods sector uses the designs innovated by the R&D

sector to produce the intermediate goods that are available in each period.
This sector is composed of At �rms indexed by �i�. The only input used in
the production of the intermediate good i is physical (man-made) capital,
Kt;

6 and the production function is given by

X i
t = K

i
t=�; 8i 2 [0; At] ;

where Ki
t is physical capital used in the production of intermediate good i,

and � denotes the units of physical capital required to produce one unit of
intermediate good, X i

t .
Each �rm indexed by �i� owns an in�nite life-time patent that allows it to

produce monopolistically its corresponding intermediate good. This patent
is bought in a competitive market for new designs (patents) and it �nanced
through a bond issued with an interest rate of rt+1.

6Capital goods are produced in a separate sector that has the same technology as the
�nal-output sector, i.e. Kt can be accumulated as foregone output. We assume that
physical capital stock, Kt; does not depreciate, � = 0:
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Since the patent has an in�nite life-time, the equilibrium price of the
patent will be equal to the present discount value of the in�nite stream of
pro�ts it will generate. So, the price for the patent, PAt , is given by the
following expression in each period t

PAt =

1X
�=t+1

��Q
�
s=t+1(1 + rs)

or equivalently solving the above equation we can write,

PAt =

�
1

1 + rt+1

�
[PAt+1 + �t+1]; (9)

where �t is the pro�t of a representative monopolist producing intermediate
good i at period t.
Once the patent has been paid, each intermediate-good i is produced

monopolistically by a single �rm, which sells it to the �nal good sector at
a price, qt: Taking into account the demand function for intermediate good,
(7), the monopoly problem for the intermediate �rm producing a good i is
given by,

Max
fXtg1t=0

�t = qtXt � rtKi
t ;

s:t:

8<: qt = �2H
�1
Y tX

(�2�1)
t E�3t ;

Xt = K
i
t=�;

HY;t; Et and rt are given.

The �rst-order condition for this maximization problem is

qt =
rt�

�2
: (10)

The resulting monopoly price given by equation (10) is a markup over the
marginal cost, and this markup is determined by the elasticity of the demand
curve, 1= (�2 � 1). The �ow of monopoly pro�t is positive and works out at

�t = (1� �2) qtXt > 0: (11)
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c) The R&D sector:
This sector uses human capital and the existing stock of knowledge to

produce new knowledge, which consists in designs for new intermediate
goods. There are j competitive �rms producing designs and sharing the
same technology, �Hj

A;tAt; which depends upon a productivity parameter,
�, the amount of human capital devoted to R&D activities by the research
�rm j, Hj

A;t, and the stock of knowledge available (number of designs) in the
economy, At:
The aggregate stock of designs evolves according to the following law of

motion,
At+1 � At = �HA;tAt; (12)

where we HA;t =
P

j H
j
A;t is the aggregated amount of human capital used

by the R&D �rms.
The technological productivity parameter, �; is an intrinsic parameter

that characterizes the R&D process of the economy. It captures all those
factors that a¤ect productivity in the R&D sector, apart from the amount
of human capital devoted to the R&D activities. Such factors might include
property rights, corruption, R&D infrastructure, even the ability to imitate
from outside. In fact, in some articles, such as Benhabib and Spiegel (1994)
or Córdoba and Ripoll (2005), the R&D sector productivity depends on the
distance of the technology in the country relative to the technology frontier,
which is assumed to be exogenous to the country. In general, the higher the
value of �, the higher the growth rate of new knowledge, for a given amount of
human capital devoted to the R&D sector. Therefore, if an economy wishes
to accelerate the creation of new knowledge it should develop technological
policies that increase this productivity parameter.
A representative research sector �rm hires the stock of human capital to

maximize its pro�ts given the dynamics of the stock of technology and taking
wages, patent price and initial stock of technology as given,

Max
fHA;tg1

t=0

PAt (At+1 � At)� wH;tHA;t;

s:t:

8<:
At+1 � At = HA;t�At;
HA;t � 0;
wH;t; P

A
t and A0 are given.

The �rst order condition for maximization of the R&D �rm�s problem is
given by

PAt �At � wH;t; (13)
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with equality if HA;t > 0. This condition indicates that R&D �rms hire
human capital until their marginal product equals its factor price. As in
Romer (1990), if the stock of human capital in the economy is not high
enough, the economy will allocate no resources to produce new designs.

Exhaustible Resources
The economy is initially endowed with a positive amount of exhaustible

resources, M0. The stock of exhaustible resources in the current period,
Mt; is determined by the stock available in the previous period minus those
resources extracted for the use of the �nal-good sector, i.e. Mt =Mt�1�Et�1:
If we de�ne the depletion rate of exhaustible resources as

� t =
Et
Mt

(14)

the equilibrium dynamics for exhaustible resources can be expressed as

Mt+1 = (1� � t)Mt: (15)

Human Capital
The human capital stock, H = hL; is �xed and is addressed either to the

�nal good sector, HY ; or to the R&D sector, HA:

H = HY;t +HA;t: (16)

2.1 The Equilibrium Solution

In the endogenous growth model described above, a dynamic equilibrium is
a sequence of quantities fc1;t; c2;t; st+1; Kt+1; Yt; Xt; � t+1; Et;Mt+1; HY;t; HA;t;
At+1; �tg1t=0 and prices

�
PAt ; wH;t; rt; pt; qt

	1
t=0

such that: i) consumers
maximize utility subject to their intertemporal budget constraint taking
prices as given; ii) �rms in the �nal-good sector maximize pro�ts choosing
labor and intermediate inputs taking their prices as given; iii) each
design owner produces its corresponding intermediate good maximizing
monopolistic pro�ts, taking human capital and the demand they face as
given; iv) producers of the new designs maximize pro�ts choosing labor,
taking wages, patent price and initial stock of technology as given; and v) all
markets clear.

Market clearing
Market clearing conditions are given by the following:
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i) Human capital allocates between the �nal-good sector and the R&D
sector such that equations (6), (13) and (16) are satis�ed.

ii) The resource market clears when non-renewable resources supplied
by old agents are equal to the demand of �rms and young agents.
Therefore, the equilibrium evolution of the stock of exhaustible
resources is given by equation (15)

iii) The designs market clears when the demand for each new design equals
its supply, i.e. whenever equation (9) holds.

iv) The physical capital market clears when the stock of capital in the
economy is equal to the demand for capital in the intermediate good
sector. This means that

�AtXt = Kt: (17)

v) The �nal good market clears when demand equals supply. The �nal
good is devoted to consumption or to investment in physical capital,
patents or non-renewable resources. Since we have used st to denote
the savings per worker in physical capital and patents, the condition
under which the �nal good market clears can be written in the standard
way, i.e. the stock of physical capital per worker is given by

Kt+1 + P
A
t At+1 = st+1L: (18)

The equilibrium characterization is summarized in the following de�nition.

De�nition 1 For any arbitrary initial value of � 0; an equilibrium of this
OLG economy is an in�nite sequence of quantity allocations
fc1;t; c2;t+1; st+1; Kt+1; Yt; Xt; � t+1; Et;Mt+1; HY;t; HA;t; At+1; �tg1t=0 and prices�
PAt ; wH;t; rt; pt; qt

	1
t=0

such that consumers, �nal-goods producers and re-
search �rms maximize their objective functions taking prices as given, the
intermediate �rms maximize their monopolist pro�ts and all markets clear,
given the initial conditions K0;M0; A0 > 0

7. In other words, an equilibrium
is a solution of the non-linear system (1)-(18).

7Since physical capital, exhaustible resources and technology are essential for
production, K0; M0 and A0 must be positive. Otherwise young consumers of the initial
generation would have no income and consumption would remain zero forever.
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Note that the equilibrium is unable to determine the initial depletion
rate. This problem has been solved in other related articles in di¤erent ways.
Aghion and Howitt (1998) choose K0 such that the economy starts on the
balanced growth path and � 0 is chosen under this assumption. Scholz and
Ziemes (1999) choose � 0 such that the steady state is a saddle path. Stiglitz
(1974) takes the initial price for the exhaustible resource as given. Barbier
(1999) takes the initial depletion rate of the exhaustible resource as given.
Since we are interested only in the balanced growth equilibrium we do not
address this issue.

2.2 The Balanced Growth Path

In general terms, balanced growth paths are those where all variables grow
at a constant rate. As Groth (2006) notes, compliance with Kaldor�s
styled facts is generally equivalent with the existence of balanced growth
paths. Furthermore, King et. al. (1988) point out that economies
characterized by constant growth rates in the long-run provide clear evidence
of industrialization. This is why in this section we focus on the equilibria
paths where all variables grow at constant rates. In particular, we analyze
balanced growth paths de�ned as follows :

De�nition 2 A balanced growth path is an equilibrium path where all
variables grow at a constant rate and the depletion rate of exhaustible
resources and stock of human capital allocations among the �nal-good and
R&D sectors remain constant.

Let us de�ne 
z as the ratio zt+1=zt, on the balanced growth path for
all endogenous variables except for depletion rate and the stock of human
capital in the �nal-good and R&D sectors. For the latter ones, we de�ne
� = � t+1 = � t; HY = HY;t+1 = HY;t and HA = HA;t+1 = HA;t: With these
de�nitions the balanced growth path will be determined by a zero growth
rate for the depletion rate and human capital allocations and by constant
growth rates (
z � 1) for the rest of the endogenous variables. The following
proposition states conditions that any balanced growth path of this OLG
economy must satisfy.
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Proposition 1 Any balanced growth path of this OLG economy is given by a
vector

�

Y ; 
K ; 
A; 
M ; 
�; 
s; 
c1 ; 
c2 ; 
X ; 
E; 
p; 
q; 
r; 
PA ; 
wH ; HY ; HA; �

	
satisfying the following system of equations

�22



�(1��) =
(1��2)�2

A�(1��)

 
�H

1+(1+�)
1
� ( 


1�� )
�( 1��� )

� 
A

!
� �3

�
;


A =
(1��)[(1+�H)(1��2)�2+�1]

(1��)(1��2)�2+�1 ;

HY =
�1([
A�(1��)]
(1��)�(1��2)�2 :

9>>>>=>>>>; ; if HA = H�HY > 0;
(1��)�22


�(1��) =

�1

1+(1+�)
1
� ( 


1�� )
�( 1��� )

� 
M (�3+(1��2)�2)
�

;


A = 1;
HY = H:

9>>=>>; ; if HA = 0;

M = 
E = 1� � ;

X = 
PA = 
� = (1� �)

�3
1��2 ;


p =



1� � ;

r = 
q = 1;


K = 
Y = 
c1 = 
c2 = 
s = 
wH = 
:

where 
 = 
A(1� �)
�3

1��2 :

Proof. See Appendix 1.

This proposition states that in this OLG framework the stationary
depletion rate, � ; is obtained endogenously from a non-linear equation and
is determined in the last instance for all the parameters of the economy.8

This is not surprising since Agnani et al. (2005) obtain a similar result for
OLG economies with exhaustible resources but with an exogenous engine of
growth. Proposition 3, in Appendix 2, shows that in ILA economies, the
stationary depletion rate also depends on all parameters of the model but in
a di¤erent manner. But for the particular case of logarithmic consumer
preferences (� = 1); the stationary depletion rate is given solely by the

8It is not possible to characterize the uniqueness of the equilibrium of this economy.
We have found numerical parametrizations for which there are multiple equilibria.
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consumers� subjective discount rate, �, in ILA economy (see Corollary 1
in Appendix 2) while it depends on all the parameters in the OLG setup.
There are two types of balanced growth paths: those with interior

solutions for the stock of human capital devoted to the R&D sector and those
with corner solutions characterized by a null allocation of human capital in
the R&D sector.
The growth rate of the economy, both in OLG and ILA economies, is given

by 
 � 1 = 
A (1� �)
�3=(1��2) � 1; where 
A also depends on the depletion

rate, � , in the case of an interior solution (i.e. when HA > 0). Therefore,
any change in the exogenous variables that a¤ects the endogenous growth
rate solely through their e¤ect on the endogenous stationary depletion rate
(such as � and �), will depend only on how the endogenous depletion rate
� a¤ects the endogenous growth rate.9 There are two e¤ects, both of the
same sign, such that any exogenous change (in � or �) that negatively a¤ects
the endogenous depletion rate will have a positive e¤ect on the endogenous
growth rate10. The direct e¤ect shows that the greater the endogenous
depletion rate of the non-renewable resources, the lower the endogenous
growth rate, regardless of the growth of the stock of knowledge, 
A: That is
@
=@� < 0; taking 
A as a constant. The indirect e¤ect works through the
allocation of the stock of human capital between R&D and the �nal output
sector. Analyzing 
A we can see that the higher the stationary depletion
rate, the lower the growth of the stock of knowledge in the economy, and,
consequently, the lower the growth rate.11 Note that this indirect e¤ect

9This is not the case for the R&D parameter, �: In this case this parameter a¤ects 

directly through 
A: See Proposition 1.
10This result is very similar to the one obtained in Groth (2006) under an endogenous

growth model, with non-renewable resources, without technical progress. In particular, he
�nds that along a BGP, policies that decrease (increase) the depletion rate (and only such
policies) will increase (decrease) the per capita growth rate.
11Note that from the de�nition of 
 we have

@


@�
=
@
A
@�

(1� �)
�3

1��2 � �3
1� �2

(1� �)
��1
1��2 
A:

The second sum of the left hand side expresses the direct e¤ect. The indirect e¤ect comes
through 
A, that is

@
A
@�

= ��1 [(1 + �H) (1� �2)�2 + �1]
[(1� �) (1� �2)�2 + �1]2

< 0:

Therefore @
=@� < 0.
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appears because the engine of growth in the economy is endogenous.12

From Propositions 1 and 3 in Appendix 2, the following remark shows
necessary conditions that guarantee positive growth in ILA and OLG
economies.

Remark 1 A necessary (but not su¢ cient) condition for an ILA and OLG
economy to exhibit positive growth is that part of the human capital has to be
allocated to the R & D sector, HA > 0:

Note that equilibria with HA = 0 imply that 
A = 1 and 
 =

(1� �)�3=(1��2) < 1 whenever the exhaustible resource is an essential input
in the �nal-good production, �3 > 0:
Propositions 1 and 3 also state that on the balanced growth path, income,

physical capital, consumption, savings and wage rates grow at the same rate,
(
 � 1), which depends on all parameters of the economy. The price of non-
renewable resources grows at a higher rate than income, indicating that these
resources are exhaustible and consequently the supply decreases over time.
Since the gross interest rate is the growth rate of the price of exhaustible
resources (arbitrage condition (4)), the interest rate must be constant on the
balanced growth path. Observe that the stock of non-renewable resources
and the use of such resources in the production process, Mt and Et, decline
over time. Moreover, if the growth rate of the economy is positive, i.e. if

 > 1; then the price of exhaustible resources must increase.
Another interesting result from Proposition 1 and 3 is stated in the

following remark.

Remark 2 The patent price decreases along the balanced growth path.

This result contrasts with Romer�s growth model (1990) solution, where
the patent price remains constant, because the wage per unit of labor must
grow at the same rate in both sectors (�nal-good and R&D sector) (equations
(6) and (13)), and income and physical capital grow at a lower rate than
the number of designs (stock of knowledge) due to the use of the exhaustible
resources in the �nal-good sector. In consequence, the patent price decreases,
capturing the fact that on the balanced growth path the productivity of the
stock of knowledge decreases with the use of non-renewable resources.

12When the engine of growth is exogenous, the indirect e¤ect does not appear (see
Agnani et al. (2005)).
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Although OLG and ILA economies show the same relationship between
the endogenous growth rate and the endogenous stationary depletion rate,
the relationships between the endogenous stationary depletion rate and the
exogenous variables are di¤erent in both frameworks. In the following section
we compare the balanced growth paths obtained in the ILA and OLG
scenarios. In particular we focus on how the balanced growth varies when
R&D policies are implemented in both scenarios.13

3 R&D Policy and the Finite Lifetimes

The aim of this paper is to analyze how an active R&D policy may a¤ect
the growth rate of the economy. In particular, we compare the results of an
increase in the R&D productivity parameter, �, in in�nitely lived economies
and in economies with �nite lifetime agents.
From Proposition 1 and 3 (last in Appendix 2), we know that the

relationship between the endogenous growth rate of the economy and the
technological parameter of the R&D sector is not obvious. The next
proposition shows that when increases in the R&D parameter lead an
economy to reduce the extraction of resources, this implies an increase in
the growth rate of the economy in question. However, the opposite may not
occur.

Proposition 2 In ILA and OLG economies, if @�=@� < 0 then @
=@� > 0.

Proof. Since the growth rate of the economy is given by 
 = 
A(1� �)
�3

1��2 ,
then

@


@�
=
@
A
@�

(1� �)
�3

1��2 � �3
1� �2

(1� �)
��1
1��2 
A

@�

@�
:

Since 
A =
(1��)[(1+�H)(1��2)�2+�1]

(1��)(1��2)�2+�1 ; then

@
A
@�

=
(1� �)H (1� �2)�2
(1� �) (1� �2)�2 + �1

+
@
A
@�

@�

@�
:

On the other hand, since

13Scholz and Ziemens (1999) focus on the determinacy and stability of the equilibrium
for the ILA economy. They show that some technological prerequisites have to be met in
order to guarantee the stability of the equilibrium. We do not focus on this aspect.

17



@
A
@�

= ��1 [(1 + �H) (1� �2)�2 + �1]
[(1� �) (1� �2)�2 + �1]2

< 0;

if @�
@�
< 0; then @
A

@�
> 0 and @


@�
> 0.

Groth (2006) shows that the condition imposed for the statement of
this proposition is not only a su¢ cient but also a necessary condition in
endogenous growth economies with non-renewable resources and without
technical progress.
Note that the above proposition shows the best situation for the economy

to stimulate its growth rate. Note also that 
A =
(1��)[(1+�H)(1��2)�2+�1]

(1��)(1��2)�2+�1 ;
where � is endogenously determined by all parameters of the model.
Therefore, any change in the technological parameter a¤ects the growth rate
of the stock of knowledge through two channels. First, the direct channel
which shows that the greater the R&D productivity parameter, the higher the
growth rate of the stock of knowledge, regardless of the stationary depletion
rate, � : This is so because the higher the productivity parameter of the R&D
sector, the higher the amount of human capital allocated to the R&D sector.
That is @
A=@� > 0; taking � as given. Second, the indirect channel which
works through the use of the non-renewable resources in the �nal output
sector. Analyzing 
A we can see that any increase in the depletion rate leads
to a reduction of technological growth; however, the relationship between the
technological parameter and the stationary depletion rate is ambiguous. It is
clear that if the relationship between the R&D productivity parameter and
the use of the non-renewable resources is negative, the direct and indirect
channels work in the same direction and any stimulant R&D policy increases
the growth rate of the stock of knowledge. However when an increase in
the technological parameter leads to an increase in the depletion rate, the
indirect e¤ect goes in the opposite direction to the direct e¤ect, and the �nal
result of the R&D productivity parameter over the growth rate is ambiguous.
Corollaries 1 and 2 in Appendix 2 characterize the sign of the indirect

e¤ect for the ILA economy. In particular, the indirect e¤ect is shown to
be positive whenever �3

�1+2�3
� � � 1 and negative for � > 1: Considering

Proposition 2, it is straighforward that whenever �3
�1+2�3

� � � 1; an active
R&D policy will a¤ect the growth rate of the economy positively. However,
even for cases where the indirect e¤ect goes in the opposite direction to the
direct e¤ect, i.e. when � > 1, Proposition 4 in Appendix 2 proves that
the �nal e¤ect of an active R&D policy over the growth rate is positively
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unambiguous.
To summarize, when the IES, 1=�; is lower than (�1 + 2�3) =�3 an active

R&D policy guarantees an increase in the growth rate of an ILA economy.
However this result cannot be generalized for very large values of the IES
in the ILA economy. This �nding does not enter in con�ict with Scholz
and Ziemens (1999) who show that the growth rate of the economy always
responds positively to active R&D policies.14 In the case of the OLG economy
the determination of the stationary depletion rate is even more complex than
in the ILA set up, so, unlike the ILA model, we are not able to characterize
cases in which @�=@� < 0: Because of this analytical complexity, we present
in the following subsections the calibration of the economy used to compare
numerically, in both scenarios (ILA and OLG), the e¤ects of an active R&D
policy over the growth of the economy.

3.1 Parameterization

To compute the stationary equilibrium, we specify values for the parameters
such that i) they are consistent with some empirical facts and ii) they are
perfectly standard in the literature.
The subjective discount rate was chosen to make that the annual discount

factor 0.98, which is standard in calibration literature. In the ILA framework
it implies a value for � equal to 0.02. If we assume that in the OLG economy,
each period is 25 years long, an annual discount rate of 0.02 is equivalent to
0.65 for a 25-year period.15

In the benchmark case, the IES is equal to 1 (i.e. � = 1) which represents
consumer logarithmic preferences. Besides being studied in theoretical papers
(see for instance Agnani et al. (2005), Hsuku (2007)), there is evidence
that the IES is signi�cantly di¤erent from zero and probably close to one
(Beaudry and Wincoop (1996)). On the other hand, this value is in the
interval that Gourinchas and Parker (2002) considered as plausible. They
conclude that the IES coe¢ cient varies between 0.7 and 2. Note that if
the IES is equal to 1, we have already proved analytically that under the
ILA economy, an active R&D policy never a¤ects the depletion rate and, in

14Scholz and Ziemens (1999) develop their model in continous time. This allows them
to �nd an explicit expression for the growth rate which is tractable to �nding this e¤ect.
15If each period covers 25 years, the parameter values for each period are such that

(1 + �) = (1 + ��)
p
; (1� �) = (1� ��)p and 
 = (
�)

p
; where variables with � are the

annual parameter value and p = 25.
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consequence, we can assure that the growth rate of the economy increases.
Since the value of the IES parameter substantially the endogenous variables,
we also study the robustness of the results by analyzing how they might di¤er
under di¤erent values for the IES (in the interval estimated by Gourinchas
and Parker (2002)).
The values for capital and labor shares are standard. In particular, they

were selected such that the labor share equals 60% (�2 = 0:60) and the
capital share equals 35% (�1 = 0:35). The share of exhaustible resources
in the �nal-good production function, �3; was set at 0:05; as in Groth and
Schou (2002).
Finally, the stock of human capital was normalized to one, and the

productivity in the R&D sector selected to obtain an annual growth rate
of 2% in the benchmark case of the two economies. This criterion meant
selecting � = 14:80 for the OLG economy and � = 0:086 for the ILA set
up.16

With this benchmark parametrization both the ILA and OLG economies
have a unique balanced growth path with an annual growth rate of 2%.
The human capital in the R&D sector, HA, is positive at 26:34% in the
ILA scenario and 6:86% within the OLG framework, implying an annual
growth rate of the stock of knowledge, 
A � 1; of 2:25 (ILA economy) and
4:51 (OLG economy). Moreover, the stationary depletion rates obtained, in
annual terms, are such that the use of non-renewable resources is 1:98% and
6:37% in the ILA and OLG scenarios, respectively..
Table 1 summarizes the parameter values chosen to implement the

numerical exercises for both scenarios, OLG and ILA. He introducido
el valor de IES en la tabla.

3.2 Simulating changes in the productivity of the R&D
sector

Once the benchmark ILA and OLG economies had been calibrated, a
simulation exercise was implemented in order to check how much the results
di¤er in the two scenarios when the R&D productivity parameter, �; varies.
Table 2 illustrates the depletion rate, the percentage of the stock of human

capital devoted to the R&D sector and the growth rate of both economies for

16An alternative way of choosing H is to take H for the ILA economy such that the
growth rate of knowledge (1 + �H) is equal, in annual terms, to that of the OLG economy.
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Table 1: Parameter Values for OLG and ILA Benchmark
Economies
Parameters ILA OLG Data and annually targets
Preferences
1=� 1 1 (07; 2) following Gourinchas and Parker (2002)
� 0.02 0.65 Annual discount factor = 0:98

Each period is 25 years long
Final-good sector Observed variables (values)
�1 0.35 0.35 Standard
�2 0.60 0.60 Standard
�3 0.05 0.05 Groth and Schou (2001)
R&D sector
� 0.116 15.345 Annual growth rate = 2%
H 1 1

di¤erent changes in �: In particular, the �rst row of the table shows the value
of the aforementioned endogenous variables in the benchmark economies.
Three important conclusions can be observed. First, in all the cases

analyzed, OLG and ILA economies are clearly similar in terms of growth
rates; however their make-up are radically di¤erent. Whereas in the ILA
scenario, economic growth relies more on a lower use of non-renewable
resources, in the OLG economy the growth process depends on higher growth
in the R&D sector. In this sense we could say that ILA economies are more
exhaustible-conservationist. The intuition behind this result is clear. Since
in ILA economies agents live up to in�nity, they are able to wait until later
to consume. Agents thus consume less today, depleting fewer resources, and
devoting a high percentage of human capital to the R&D sector.
Second, in the benchmark case, any increase in the R&D productivity

parameter does not a¤ect the stationary depletion rate in the ILA economy.
This is consistent with the analytical result shown in Corollary 1 in Appendix
2, since the benchmark economy is assuming logarithmic preferences, and this
implies that the depletion rate depends solely on the subjective discount rate.
For the OLG economy we observe that any increase in the R&D productivity
parameter reduces the use of non-renewable resources. This means that the
two channels, through which the R&D productivity parameter a¤ects the
economic growth, move in the same direction, implying an increase in the

21



Table 2: E¤ects of Implementing Active R&D Poli-
cies

(%)
� HA 
 � 1

�0s % change OLG ILA OLG ILA OLG ILA
0% 6.37 1.98 6.86 26.34 2.00 2.00
30% 6.22 1.98 8.43 29.54 3.10 3.03
50% 6.16 1.98 9.12 30.96 3.70 3.71
100% 6.05 1.98 10.25 33.27 4.92 5.43
200% 5.95 1.98 11.26 35.58 6.42 8.87

Table 3: Results of a 100% increase in the R&D productivity parameter for
di¤erent values of the IES

Changes in % points
� HA 
 � 1

IES parameter OLG ILA OLG ILA OLG ILA
1=� = 0:7 (complementaries) 0.35 1.15 1.01 5.46 2.25 3.08
1=� = 1 -0.32 0.00 3.39 6.93 2.92 3.43
1=� = 2 (substitutes) -1.27 -1.00 9.63 9.14 3.62 3.35

growth rate (as we have analytically proved in Proposition 2). And third,
although the growth rate increases in both scenarios, the increase in the ILA
economy is higher than in the OLG economy. For instance, when the R&D
parameter grows 100%, the growth rate increases 3:43 percentage points in
the ILA economy while in the OLG set up it only increases 2:9 points.
We saw in Corollary 4 in Appendix 2 that the value of the IES parameter

substantially a¤ects the endogenous depletion rate. As a result, we carried
out a sensitivity analysis of this parameter. Table 3 quanti�es the changes, in
percentage points, of the variables when the R&D parameter grows 100% for
three di¤erent values of the IES coe¢ cient, He corregido epsilon por
1/epsilon 1=� = 0:7; 1=� = 1 and 1=� = 2: For instance the 3:08 in the
�rst row of the last column means that for the case in which 1=� = 0:7; if the
R&D parameter grows 100%; the growth rate of the ILA economy increases
by 3:08 percentage points.
Note that increases in the R&D parameter a¤ect the use of the resources

in equilibrium di¤erently depending on the IES parameter. We already know
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from Corollary 2 in Appendix 2 that, in an ILA economy, if the IES coe¢ cient
belongs to the interval

h
1; �1+2�3

�3
= 9
i
then the depletion rate decreases when

the R&D productivity parameter increases, and if the IES parameter is lower
than 1, the use of non-renewable resources increases. We can see numerically
that this is also true for the OLG economy if the IES parameter belongs to
the above interval. In general, it is clear that for low (high) values of the
IES coe¢ cient, active R&D policies lead to increase (decrease) in the use of
exhaustible resources. The intuition is clear. The larger the intertemporal
elasticity substitution, the better substitutes current and future consumption
are; in consequence, agents are willing to wait longer to consume in the future
and, therefore, do not need to deplete exhaustible resources so much today.
En esta version esta cambiado complementarios-subtituros

respecto a la version del REEWe also can see that in all the simulated
cases, R&D policy increases the growth rate of the economy. This result
corroborates Scholz and Ziemens (1999) and Groth (2006)�s �ndings for the
ILA economy. The numerical simulations also indicate that when current
and future consumption are complementaries (substitutes), i.e. when the IES
coe¢ cient is lower (greater) than one, then the active R&D policy increases
the growth rate in the ILA economy more (less) than in the OLG economy.

4 Conclusions

The aim of this paper was to analyze how an active R&D policy might a¤ect
the growth rate of an economy with endogenous growth and non-renewable
resources. In particular, we compared the results of an increase in the R&D
productivity parameter, in in�nitely lived economies and in economies with
�nite lifetime agents.
From Scholz and Ziemens (1999) and Groth (2006) we know that in

in�nitely lived agents economies, any active R&D policy increases the
growth rate of the economy. In order to see if this result also appears
in economies with �nite lifetime agents, we developed an endogenous
growth overlapping generations (OLG) economy à la Diamond which uses
non-renewable resources as essential inputs in the �nal-good production.
Following Romer (1990), we considered there was an R&D sector which
produces new designs to create new intermediate goods which are essential
for the production of the �nal good. In particular, this innovation process
creates new capital goods which do not substitute the exhaustible resources
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because all of them are essential in production.
From the theoretical point of view, we found that any change in the R&D

productivity parameter a¤ects the growth rate of the economy through two
channels. First, the direct channel, which shows that the greater the R&D
productivity parameter, the higher the growth rate of the stock of knowledge,
regardless of the stationary depletion rate, � : This ceteris paribus result is
quite intuitive, since this is the standard result in Romer�s model, with non-
renewable resources. That is, the higher the R&D productivity parameter,
the higher the endogenous amount of human capital allocated to the R&D
sector, which implies higher growth in the stock of knowledge and higher
growth in the economy, taking � as given.
Second, the indirect channel which is opened through the use of non-

renewable resources in the �nal output sector. We know that any variation
in the use of non-renewable resources will a¤ect endogenous growth in two
ways. On the one hand, as in an exogenous growth model, i.e. without
taking into account its e¤ect on the endogenous amount of human capital
allocated to the R&D sector, and therefore without taking into account its
e¤ect on the endogenous growth of the stock of knowledge. On the other
hand, taking into account its e¤ect on the endogenous amount of human
capital allocated to the R&D sector and, in consequence, on the growth
of the stock of knowledge. We show that both e¤ects are unambiguously
negative, that is the lower the depletion rate, the higher the growth rate of
stock of knowledge and therefore the growth rate of the economy. However,
we have not been able to obtain, algebraically, an unambiguous relationship
between the R&D productivity parameter and the stationary depletion rate
for the OLG economy. It is clear that if the relationship between the R&D
productivity parameter and the use of exhaustible resources is negative, the
direct and indirect channels work in the same direction and any stimulant
R&D policy increases the growth rate of the stock of knowledge. However
when an increase in the technological parameter leads to a rise in the use of
resources, then the indirect e¤ect works in the opposite direction to the direct
e¤ect, and the �nal result over the growth rate of the economy is ambiguous.
Finally, since it is not possible to characterize analytically the balanced

growth path of an OLG economy and compare it with an ILA economy, we
worked on a numerical simulation. First of all, we chose the parameters such
that the benchmark case for those economies is the same, and mimics some
empirical facts of the economy. Secondly, we compared the results under
both scenarios when the R&D parameter increases. Our main numerical
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�ndings are as follows: First, OLG and ILA economies are similar in terms
of growth rates; however they are very di¤erent in the composition of the
growth process. Whereas in the ILA scenario, economic growth relies more
on a lower use of non-renewable resources, in the OLG economy the growth
process depends on higher growth in the R&D sector. In this sense we could
say that ILA economies are more exhaustible-conservationist. Second, in
both OLG and ILA economies where agents are more willing to wait longer
to consume (i.e. with a large IES coe¢ cient), active R&D policies are more
conservationist, depleting the exhaustible resources less. And third, active
R&D policies always increase the endogenous growth rate, in both scenarios.
Furthermore, when current and future consumption are complementaries
(substitutes), i.e. when the IES coe¢ cient is lower (greater) than one,
active R&D policies a¤ect the growth rate more (less) in economies in which
agents live in�nitely than those in which agents have �nite lifetimes.En esta
version esta cambiado complementarios-subtituros respecto a
la version del REE
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Appendix 1
Proof of Proposition 1:
A market equilibrium for the OLG economy is an in�nite sequence of

quantity allocations fst+1; Kt+1; Yt; Xt; c1;t; c2;t+1; � t+1; Et;Mt+1; HY;t; HA;t; At+1g1t=0
and prices

�
PAt ; wH;t; rt; pt; qt

	1
t=0
that solves the non-linear system, (1)-(18).

Proof of 
M = (1� �) ; 8 HA > 0 :
Straightforward from valuation of resource market clearing equation (15)

on the balanced growth path.

Proof of 
E = 
M ; 8 HA > 0 :
Straightforward from evaluating the depletion rate de�nition, equation

(14), on the balanced growth path.

Proof of 
X = (1� �)
�3

1��2 , 8 HA > 0 :
Combining equations (4), (7), (8) and (10) we obtain

�3H
�1
Y t+1

�
At+1X

�2
t+1

�
E
(�3�1)
t+1

�3H
�1
Y t (AtX

�2
t )E

(�3�1)
t

= 1 +
�2
�
�2H

�1
Y t+1X

(�2�1)
t+1 E�3t+1:

Evaluating this expression on the balanced growth path and reordering,

�

�22
H��1
Y

h

A (
X)

�2 (
E)
(�3�1) � 1

i
= X

(�2�1)
t+1 E�3t+1: (A)

Taking the ratio of this expression in period t + 1 and t; we have that
1 = (
X)

(�2�1) (
E)
�3 : Considering that 
E = (1� �) ; we obtain 
X =

(1� �)
�3

1��2 :

Proof of 
r = 
q = 1; 8 HA > 0 :
Taking the ratio of equation (10) en t + 1 and t and evaluating on the

balanced growth path we obtain that 
r = 
q: Doing the same with equation
(7) we obtain


q = (
X)
(�2�1) (
E)

�3 ;

which, considering that 
E = (1� �) and 
X = (1� �)
�3

1��2 ; becomes 
q = 1:

Proof of 
� = 
X ; 8 HA > 0 :
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Taking the ratio of monopoly pro�t equation in t+1 and t and evaluating
on the balanced growth path we obtain that 
� = 
q
X : Since in the balanced
growth path 
q = 1 then 
� = 
X :

Proof of 
Y = 
wH = 
; 8 HA > 0 :
Taking the ratio of equations (5) and (6) in t + 1 and t and evaluating

on the balanced growth path we obtain that 
Y = 
wH = 
A (
X)
�2 (
E)

�3.

Considering that 
E = (1� �) ; and 
X = (1� �)
�3

1��2 ; we obtain 
Y =


wH = 
A (1� �)
�3

1��2 � 
:

Proof of 
p � 
= (1� �) ; 8 HA > 0 :
Taking the ratio of equation (8) in t + 1 and t and evaluating on

the balanced growth path we obtain that 
p = 
A (
X)
�2 (
E)

(�3�1).

Considering that 
E = (1� �) ; and 
X = (1� �)
�3

1��2 ; we obtain 
p =


A (1� �)
�3

1��2
�1 � 
= (1� �) :

Proof of 
K = 
; 8 HA > 0 :
Taking the ratio of the physical capital clearing condition equation (17)

in t + 1 and t and evaluating on the balanced growth path we obtain
that 
K = 
A
X . Considering that 
X = (1� �)

�3
1��2 ; we obtain 
K =


A (1� �)
�3

1��2 � 
:

Proof of 
c1 = 
c2 ; 8 HA > 0 :
Taking the ratio of the equation (3) in t+ 1 and t and evaluating on the

balanced growth path we obtain that


c2

c1

=

�
1 + rt+1
1 + rt

�1=�
:

Considering that on the balanced growth path 
r = 1; we have rt+1 = rt = r.
Therefore 
c1 = 
c2 :

Proof of 
c1 = 
; 8 HA > 0 :
Substituting the saving function in the �rst consumer restriction (1), we

obtain

c1t = (wH;th)

 
1� 1

1 + (1 + �)
1
� (1 + rt+1)

�( 1��� )

!
:
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Taking the ratio of this expression in t + 1 and t and evaluating on the
balanced growth path we obtain that 
c1 = 
A (
X)

�2 (
E)
�3 : Considering

that 
E = (1� �) and 
X = (1� �)
�3

1��2 ; we obtain 
c1 = 
A (1� �)
�3

1��2 �

:

Proof of 
s = 
; 8 HA > 0 :
Substituting (6) and (8) in the saving function and evaluating on the

balanced growth path we obtain

st+1 = H
�1
Y AtX

�2
t E

�3
t

24 �1H�
1 + (1 + �)

1
� (1 + r)�(

1��
� )
�
HY

� �3
E
�

35 : (B)

Taking the ratio of this expression in periods t + 1 and t; we obtain that

s = 
A (
X)

�2 (
E)
�3 : Since 
E = (1� �) ; and 
X = (1� �)

�3
1��2 ; we

obtain 
s = 
A (1� �)
�3

1��2 � 
:

Proof of 
PA = 
X ; 8 HA > 0 :
Equalizing human capital wage in equations (13) and (6), we obtain the

following expression
PAt � = �1H

�1�1
Y t X�2

t E
�3
t :

Taking the ratio of this expression in t + 1 and t; and evaluating on the
balanced growth path, we arrive at 
PA = (
X)

�2 (
E)
�3 : Considering that


E = (1� �) and 
X = (1� �)
�3

1��2 ; we obtain 
PA = (1� �)
�3

1��2 :

Proof of Hy =
�1(
A�
M )

M�(1��2)�2

; 8 HA > 0 :
First, by solving the patent price di¤erence equation (9) we obtain the

following expression

PAt =
1X
i=0

�t+1+i

t+1+iY
!=0

�
1

1 + rt+1+i

�i+1
:

On the balanced growth path, �t+1+i = 
i+1� �t and rt+1+i = ri+1rt = rt:
Therefore, the patent price on the balanced growth path can be written

PAt =

1X
i=0


i+1� �t
1

(1 + rt)
i+1 =


��t
1 + rt

1X
i=0

�

�
1 + rt

�i
=

�t+1
1 + rt � 
�

:
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Substituting intermediate sector pro�ts and intermediate good prices (7) and
considering the �nal good production function (5),

PAt =
(1� �2)�2qt+1Xt+1

1 + rt � 
�
=
(1� �2)�2 YtAt


Y

A

1 + rt � 
�
: (C1)

On the other hand, substituting conditions (6) and (5) in (13) we obtain the
following expression for the patent price,

PAt =
wH;t
�At

=
�1

Yt
At

�HY;t
: (C2)

Taking into account 
� = (1� �)
�3

1��2 = 
Y

A
and 1 + rt =


Y

M
; equalizing

patent prices in (C1) and (C2) and reordering we obtain

HY =
�1(


A

M
� 1)

�(1� �2)�2
:

Proof of 
A =

M (1+�h)(1��2)�2+
M�1


M (1��2)�2+�1
; 8 HA > 0 :

Evaluating the knowledge dynamics equation (12) on the balanced growth
path and considering the human capital clearing condition (16), we obtain
the following condition


A = 1 + � (H �HY ) :

Substituting the value that human capital attributes to the �nal goods sector,
HY ; and reordering, we obtain the value


A =
(1 + �H) (1� �2)�2 + �1
(1� �2)�2 + �1 (
M)

�1 :

Proof of �22



�
M
= (1��2)�2

(
A�
M )

0@ �H

1+(1+�)
1
�

�



M

��( 1��� ) � 
A
1A� �3

�
; 8 HA > 0 :

Reordering terms in equation (A) :


A (
X)
�2 (
E)

(�3�1) � 1
�22

=
H�1
Y At+1X

�2
t+1E

�3
t+1

�At+1Xt+1

:
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And taking into account equation (17) and 
A (
X)
�2 (
E)

(�3�1) = 
Y

M
= 
p:

Yt+1
Kt+1

=

Y � 
M
�22
M

: (D1)

On the other hand, substituting (B), (C2), HY and 
A with HA > 0 into
equation (18), we obtain the following expression:

Yt
Kt

= 
K

0@ �1H�
1 + (1 + �)

1
� (1 + r)�(

1��
� )
�
HY

� �3
M
�

� �1
A
�HY

1A�1

: (D2)

On the balanced growth path, equation (D1) must be equal to equation (D2):


Y � 
M
�22
M

= 
K

0@ �1H�
1 + (1 + �)

1
� (1 + r)�(

1��
� )
�
HY

� �3
M
�

� �1
A
�HY

1A�1

:

Taking into account that 
K = 
Y = 
; 1 + r =



M

and substituting Hy:

�22



 � 
M
=
(1� �2)�2
(
A � 
M)

0BB@ �H

1 + (1 + �)
1
�

�



M

��( 1��� ) � 
A
1CCA� �3� :

Proof of Hy = H; if HA = 0 :
Straightforward from evaluation of the human capital clearing condition

(16) with HA = 0:

Proof of 
A = 1; if HA = 0 :
Evaluating the knowledge dynamics equation (12) on the balanced growth

path, we obtain 
A = 1:

Proof of 
PA = 
Y ; if HA = 0 :
On the one hand, from equations (5), (6) and (17), we obtain �t+1 =

(1� �2)�2 Yt+1At+1
: On the other hand, from (5), (7) (10) and (17), we obtain the

expression rt+1 = �2
Yt+1
Kt+1

: Substituting both expressions in the equilibrium
price for the patent (9), after some manipulations we obtain


PA = 1 + �
2
2

�
Yt+1
Kt+1

�
� (1� �2)�2

A

�
Yt+1
PAt

�
: (E)
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Since Yt+1
Kt+1

is a constant by (D1), then on the balanced growth path Yt+1
PAt

must
be a constant. Therefore, 
PA = 
Y : Since HA = 0; 
A = 1; we obtain

PA = (1� �)

�3
1��2 :

Proof of 
M�
2
2



�
M
= �1 

1+(1+�)
1
�

�



M

��( 1��� )! � 
M (�3+(1��2)�2)
�

; if HA = 0 :

Substituting (1) - (6) and (8) in the �nal good market clearing condition
(18) we obtain

Kt+1 =
�1Yt�

1 + (1 + �)
1
� (1 + rt+1)

�( 1��� )
� � �3
MYt

�
� PAt A:

Reordering and taking into account (D1), this expression can be rewritten as


Y

�
�22
M

Y � 
M

�
=

�1�
1 + (1 + �)

1
� (1 + rt+1)

�( 1��� )
� � �3
M

�
� P

A
t A

Yt
:

Given that 
PA = (1� �)
�3

1��2 = 
Y when HA = 0 from expression (E), after
some manipulations we obtain

PAt A

Yt
=
(1� �2)�2
M

�
:

Substituting this in the former equation taking into account that 1+ r = 


M

and reordering


M�
2
2



 � 
M
=

�1�
1 + (1 + �)

1
�

�



M

��( 1��� )� � 
M (�3 + (1� �2)�2)�
:
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Appendix 2
In�nitely-lived agents model
Scholz and Ziemens (1999) analyze an economy similar to the one

developed in Section 2, but with in�nitely-lived agents (ILA) and in a
continuous set up. In this appendix, we solve their model in a discrete time,
in order to compare the results in both frameworks, OLG and ILA.
Since the only di¤erence between the equilibrium characterization of the

ILA model and the OLGmodel is the consumers�s life-span, we only illustrate
the consumers�problem and the characterization of the balanced growth path
of the ILA set up.
Consumers own the stock of exhaustible resources, designs and physical

capital. So the problem of an in�nitely lived representative agent consumer,
in per worker terms, can be written as17,

Max
fct;kt+1;mt+1;st+1g1t=0

1X
t=0

�
1

1 + �

�t c1��1;t � 1
1� � ;

s:t:

�
ct + st+1 + ptmt+1 = wHth+ (1 + rt) st + ptmt;
m0 > 0 given:

(19)

The FOC of this maximization problem can be written as

ct+1
ct

=

�
1 + rt+1
1 + �

�1=�
; (20)

pt+1
pt

= 1 + rt+1: (21)

Note that these �rst order conditions are the same as those obtained in OLG
model (equations 3 and 4, respectively). The �rst equation indicates that
consumers equate the marginal rate of substitution between consumption
today and consumption tomorrow to their relative prices 1+rt+1. The second
equation states that the marginal rate of saving in exhaustible resources must
be equal to the marginal rate of saving in physical capital or bonds issued
by the intermediate �rms.
The equilibrium characterization for the ILA model is summarized in the

following de�nition.
17Alternatively, we could solve the individual problem, denoting the total saving

allocated to buy physical capital and bonds issued by the intermediate �rms as st+1 =
kt+1 + P

A
t at+1:
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De�nition 3 For any arbitrary initial value of � 0; an equilibrium of this ILA
economy is an in�nite sequence of quantity allocations
fKt+1; Yt; Xt; st+1; ct; � t; Et;Mt+1; HY;t; HA;t; At+1; �tg1t=0 and prices�
PAt ; wH;t; rt; pt; qt

	1
t=0

such that consumers, �nal-goods producers and re-
search �rms maximize their objective functions taking prices as given, the
intermediate �rms maximize their monopolist pro�ts and all markets clear,
given the initial conditions K0;M0; A0 > 0. In other words, an equilibrium
is a solution of the non-linear system (5) -(21) and the transversality condi-
tion18.

Balanced Growth Path
The balanced growth path is de�ned as in the OLG framework (de�nition

2). From now on, the superscript ILA stands for solutions of the in�nitely-
lived representative agent�s economy.

Proposition 3 Any balanced growth path of the ILA economy is given by a
vector

�

ILAY ; 
ILAK ; 
ILAA ; 
ILAM ; 
ILAc ; 
ILAX ; 
ILAE ; 
ILAp ; 
ILAq ; 
ILAr ; 
ILAPA ; 


ILA
wH
;

HILA
Y ; HILA

A ; � ILA
	
satisfying the following system,


ILAA =
[(1+�H)(1��2)�2+�1](1��ILA)

(1��ILA)(1��2)�2+�1 ;

HILA
Y =

�1[
ILAA �(1��)]
(1��ILA)�(1��2)�2 ;

9=; ; if HILA
A = H �HILA

Y > 0;


ILAA = 1;
HILA
Y = H:

�
; if HA = 0;

� ILA = 1� 1

(
ILA)��1 (1 + �)
;


ILAM = 
ILAE = 1� � ILA;

ILAX = 
ILAPA = 
ILA� =

�
1� � ILA

� �3
1��2 ;


ILAr = 
ILAq = 1;


ILAp =

ILA

1� � ILA ;


ILAK = 
ILAY = 
ILAc = 
ILAwH
= 
ILA;

18In this model the transversality condition implies that the following condition must be
satis�ed: 
(1�") < (1 + �), which implies that (1� �) < 1. This condition is analogous to
the condition provided by Groth (2006) when solving a model similar to ours in continuous
time.
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where 
ILA = 
ILAA

�
1� � ILA

� �3
1��2 :

Proof of Proposition 3

Following proof of Proposition 1, it is clear that in this context the
balanced growth path is such that


ILA = 
ILAk = 
ILAy = 
ILAwH
= 
ILAA

�
1� � ILA

� �3
1��2 ;


ILAM = 
ILAE = 1� � ILA;


ILAA =
((1 + �H) (1� �2)�2 + �1)

�
1� � ILA

�
(1� � ILA) (1� �2)�2 + �1

; if HILA
A > 0;

HA = H �HY ; if HILA
A > 0;

HY =
�1
�

ILAA � 
ILAM

�

ILAM �(1� �2)�2

; if HILA
A > 0;


ILAA = 1; if HILA
A = 0;

HY = H; if HILA
A = 0;


ILAr = 
ILAq = 1;


ILAp =

ILA


ILAM

;


ILAX = 
ILAPA = 
ILA� =
�
1� � ILA

� �3
1��2 :

Proof of 
ILAc = 
ILAy = 
ILA :

Taking into account the restriction in the representative agent problem
(19) and substituting, in per worker terms, the �nal good production function
(5) and �rms�optimization conditions (6), (7), (8) and (10), we obtain

ct + st+1 =
�1h

hYt
yt +

�
1 +

�22yt
�Atxt

�
st + �3

yt
et
(mt �mt+1) :

Considering the depletion rate (14), market clearing conditions (15) and (17),
this expression can be written

ct + st+1 � st = yt
�
�1h

hYt
+ �22

st
kt
+ �3

�
:
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Substituting the �nal-good market clearing condition (18) and the R&D
optimization condition (13), the above expression can be rewritten as

ct + kt+1 � kt = yt�1
�

ILAy

�
�1h

hYt
+ �22 + �3

�
+
�1


ILA
A

�hYt�1
+
�22�1


ILA
A

�hYt�1

yt
kt

�
:

Taking the ratio of the above equation in t and t� 1 and evaluating on the
balanced growth path, we obtain that


ILAc ct�1 + 

ILA
k (kt � kt�1)

ct�1 + kt � kt�1
=
yt�1
yt�2

= 
ILAy :

Since 
ILAk = 
ILAy ; we have


ILAc


ILAy

ct�1 + kt � kt�1 = ct�1 + kt � kt�1;

which implies that 
ILAc = 
ILAy = 
ILA:
From valuation of conditions (20) and (21) on the balanced growth path,

we obtain straightforwardly that 
ILAc =
�

ILAp

1+�

�1=�
. Since we have proved

that 
ILAc = 
ILA and 
ILAp = 

1��ILA ; it must be true that 1 � �

ILA =
1

(
ILA)��1(1+�)

Note that for the case of logarithmic consumer preferences (� = 1); the
results coincide with Aghion and Howitt (1998), Barbier (1999) and Scholz
and Ziemes (1999). In particular, the stationary depletion rate depends solely
on the consumer discount rate.

Corollary 1 With elasticity of intertemporal substitution equal to one, the
stationary depletion rate for the ILA economy is given by � = �= (1 + �).

Proof. Straightforward from the �rst equation on Proposition 3.

Corollary 2

If

8<:
�3

�1+2�3
� � < 1 =) @� ILA=@� < 0;

� = 1 =) @� ILA=@� = 0;
1 < � =) @� ILA=@� > 0:
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Proof. Substituting 
ILA in � ILA on Proposition 3 and after some
manipulation, we can write the following expression,�

1� � ILA
� (1��2)�+�3(��1)

(1��2)
��
1� � ILA

�
(1� �2)�2 + �1

�1��
= [(1 + �H) (1� �2)�2 + �1]1�� (1 + �)�1 :

Di¤erentiating with respect to � ILA and �; we obtain

@� ILA

@�
=
N

D
;

where

N = (1� �) [(1 + �H) (1� �2)�2 + �1]��H (1� �2)�2 (1 + �)�1 ;

D = �(1� �2) �+ �3 (�� 1)
(1� �2)

�
1� � ILA

� (�1+2�3)(��1)
(1��2)

��
1� � ILA

�
(1� �2)�2 + �1

�1��
+

(�� 1)
��
1� � ILA

�
(1� �2)�2 + �1

��� �
1� � ILA

��3(1�2�)���1
(1��2) (1� �2)�2:

After some mathematical work, D can be expressed as

D = �
�
1� � ILA

� (�1+2�3)(��1)
(1��2)

��
1� � ILA

�
(1� �2)�2 + �1

�1��
�
��
1� � ILA

�
(1� �2)�2 (�3�+ �1) + �1 [� (�1 + 2�3)� �3]

	
:

For the case in which �3
�1+2�3

� � < 1; N > 0 and D < 0: This implies that
@� ILA=@� < 0: When � = 1; N = 0 and @� ILA=@� = 0: For � > 1; N < 0
and D < 0: Therefore @� ILA=@� > 0:

Proposition 4 In an ILA economy, @
ILA=@� > 0 if �3
�1+2�3

� �.

Proof. Substituting � ILA in the 
ILA expression on Proposition 3 in
Appendix 2 and after some manipulation, we can write the following
expression for 
ILA�


ILA
�1�(1��)�1+2�3

(1��2)
h�

ILA

�1��
(1� �2)�2 + �1 (1 + �)

i
= [(1 + �H) (1� �2)�2 + �1] (1 + �)�

�3
(1��2) :

Di¤erentiating with respect to 
ILA and �; and after some work we obtain

@
ILA

@�
=

H (1� �2)�2 (1 + �)�
�3

(1��2)

(�1 + ��3)�2 (
ILA)
� (1��)�3

(1��2) + [� (�1 + 2�3)� �3]�1 (1 + �) (
ILA)�(1��)
�1+2�3
(1��2)

;

which is positive whenever �3
�1+2�3

� �:
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